Computational Neuroscience

Explore topics in computational neuroscience, from single neuron properties to networks of integrate-and-fire neurons. Review the biophysical properties of neurons and extend these findings to cable theory and passive dendrite simulations. Study excitability based on the Hodgkin-Huxley model of the action potential and the contributions of various other ion channels. Review phase space analysis, reaction-diffusion modeling and simulating calcium dynamics. Model single neurons, neuronal populations, and networks using NEURON software. Discuss seminal papers associated with each topic, and produce reports on modeling exercises.

Prerequisites or Prior Knowledge

Requires introductory neuroscience course or equivalent with background knowledge in computational methods, programming, mathematics.