Publications

2024

  • Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos
    Kiyomitsu A
    Nishimura T, Hwang SJ, Ansai S, Kanemaki MT, Tanaka M, Kiyomitsu T.
    Nature Communications 2024 Feb 1;15(1):981. doi: 10.1038/s41467-024-45251-w

          https://www.nature.com/articles/s41467-024-45251-w

2023

2022

2021

 

-------- Move to OIST as an Assistant Professor (PI) (4.2020) ———

 

2020

  • Kiyomitsu T*,  Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes and Simultaneous Visualization of Their Intracellular Functions. Make Life Visible. (2020), 55-64

2019

  • Kiyomitsu T*.  The cortical force-generating machinery: how cortical spindle-pulling forces are generated.  Curr Opin Cell Biol. (2019) Oct;60:1-8

2018

  • Okumura M, Natsume T, Kanemaki MT, Kiyomitsu T*.  Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble.  eLife. (2018) May 31;7:e36559.

2017

  • Tungadi EA, Ito A, Kiyomitsu T, Goshima G.  Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J Cell Sci. (2017) Nov 1;130(21):3676-3684.

2016

  • Kiyomitsu T*.  Analyzing Spindle Positioning Dynamics in Cultured Cells.  Methods Mol Biol. (2016) 1413:239-52.
  • Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT.  Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep. (2016) Apr 5;15(1):210-218.

2015

  • Kiyomitsu T*.  Mechanisms of daughter cell-size control during cell division. Trends Cell Biol. (2015) May;25(5): 286-95.

 

-------- Move to Nagoya University as an Assistant Professor (non-PI) (8.2013) --------

2013

  • Kiyomitsu T*, Cheeseman IM*. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase.  Cell. (2013) Jul 18;154(2):391-402.

2012

  • Kiyomitsu T, Cheeseman IM.  Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation.  Nat Cell Biol. (2012) Feb 12;14(3):311-7.

2011

  • Kiyomitsu T*, Murakami H, Yanagida M*. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol Cell Biol. (2011) Mar;31(5):998-1011.

2010

  • Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM.  Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores.  J Cell Biol. (2010) Oct 18;191(2):269-80.
  • Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M.  Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes.  J Cell Biol. (2010) Mar 22;188(6):791-807.

-------- Move to Whitehead Institute/MIT as a postdoc (4.2010) --------

2009

  • Bolanos-Garcia VM, Kiyomitsu T, D'Arcy S, Chirgadze DY, Grossmann JG, Matak-Vinkovic D, Venkitaraman AR, Yanagida M, Robinson CV, Blundell TL.  The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores.  Structure. (2009) Jan 14;17(1):105-16.

2007

  • Kiyomitsu T, Obuse C, Yanagida M.  Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1.  Dev Cell. (2007) Nov;13(5):663-676.
  • Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M.  Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1.  Dev Cell. (2007) Jan;12(1):17-30.

2004

  • Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M.  A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol. (2004) Nov; 6(11):1135-41.

2003

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M.  Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol. (2003) Jan 6;160(1):25-39.