An artistic representation of the formation of an exciton

When light is shone on a semiconducting material, the particles of light interact with the material’s electrons (shown here in blue). This causes the electrons to jump to a higher energy level. Each electron leaves behind a hole at the lower energy level. The two are oppositely charged so they revolve around each other, forming the short-lived exciton.

When light is shone on a semiconducting material, the particles of light interact with the material’s electrons (shown here in blue). This causes the electrons to jump to a higher energy level. Each electron leaves behind a hole at the lower energy level. The two are oppositely charged so they revolve around each other, forming the short-lived exciton. This image appeared in the press release “Scientists capture the fleeting dance of moiré excitons”.

Date:
09 March 2022
Share on: