GENERAL RELATIVITY HOMEWORK - WEEK 3

Exercise 1. Let's play with the stress-energy tensor of a fluid.

- Consider a fluid of free particles, moving all with the same velocity **v**, with energy density ρ. Write down all the components T^{tt}, T^{ti}, T^{ij} of the fluid's stress-energy tensor T^{μν}. Find the trace T^μ_μ.
- 2. Same, but this time the particles are moving randomly in all directions, still with the same magnitude $|\mathbf{v}|$ of the velocity.
- 3. What happens to T^{μ}_{μ} in the speed-of-light case $|\mathbf{v}| = 1$?

Exercise 2. Now let's play with the stress-energy tensor of the electromagnetic field.

- 1. Let's construct all possible symmetric matrices $A_{\mu\nu} = A_{\nu\mu}$ out of the electromagnetic field strength $F_{\mu\nu}$ and the Minkowski metric $\eta_{\mu\nu}$. There are exactly two such matrices quadratic in $F_{\mu\nu}$. Find them.
- 2. The energy density of the electromagnetic field is $\rho = \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2)$. Using the answer to part 1, deduce the Lorentz-covariant expression for the complete stress-energy tensor $T^{\mu\nu}$ of the electromagnetic field.
- 3. What is the trace T^{μ}_{μ} ?