GENERAL RELATIVITY HOMEWORK – WEEK 1

Exercise 1. Let's play with two applications of our formula $\epsilon_{ikl}\epsilon_{jkl}=2\delta_{ij}$.

- 1. Consider the Hodge duality $B_{ij} = \epsilon_{ijk}B_k$. Find its inversion, i.e. express B_i in terms of B_{ij} .
- 2. Consider the formula for the determinant of a matrix A_{ij} :

$$\epsilon_{lmn} A_{il} A_{jm} A_{kn} = (\det A) \epsilon_{ijk} . \tag{1}$$

Multiply both sides by a cleverly chosen factor, and deduce a formula for the inverse $matrix (A^{-1})_{ij}$.

Exercise 2. Consider a particle moving at constant velocity v_1 , i.e. $x = v_1t$.

1. Boost into a frame moving with velocity $-v_2$ along the x axis:

$$t \to \frac{t + v_2 x}{\sqrt{1 - v_2^2}} \; ; \quad x \to \frac{x + v_2 t}{\sqrt{1 - v_2^2}} \; .$$
 (2)

What is the particle's velocity in the new frame? Compare with the formula for $\tanh(\theta_1 + \theta_2)$.

2. What will the particle's velocity become if we boost along the y axis instead?