Schurian-infinite blocks of Hecke algebras of types *A* and *B*

Liron Speyer

Geometric and categorical Lie theory, 11th July, 2025

Hecke algebras

The type A Hecke algebra is the unital, associative \mathbb{F} -algebra \mathcal{H}_n with generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$(T_i - q)(T_i + 1) = 0 \qquad \text{for all } i,$$

$$T_i T_j = T_j T_i \qquad \text{for } |i - j| > 1,$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \qquad \text{for } 1 \leqslant i \leqslant n-2,$$

where $q \in \mathbb{F}$ is a primitive eth root of unity. \mathcal{H}_n is semisimple if e > n.

The *Specht modules* $\{\mathbf{S}^{\lambda} \mid \lambda \vdash n\}$ over \mathcal{H}_n are the ordinary irreducible \mathcal{H}_n -modules, indexed by partitions λ of n.

If $e \le n$, the simple modules appear as quotients of the Specht modules: $\{D^{\lambda} \mid \lambda \vdash n, \ \lambda \text{ is } e\text{-regular}\}.$

Hecke algebras

The type B Hecke algebra $\mathcal{H}_{Q,n}$ is a deformation of $(\mathbb{Z}/2\mathbb{Z}) \wr \mathfrak{S}_n$. It has gens $T_0, T_1, T_2, \ldots, T_{n-1}$ and rels

$$(T_0 - Q_1)(T_0 - Q_2) = 0$$
 $T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0,$
 $(T_i - q)(T_i + 1) = 0$ for all $i \neq 0$,
 $T_i T_j = T_j T_i$ for $|i - j| > 1$,
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for $1 \leq i \leq n-2$,

where $q \in \mathbb{F}$ is a primitive *e*th root of unity and $Q_i \in \mathbb{F}$.

Hecke algebras

If $Q_i=q^{\kappa_i}$ for some $\kappa_i\in\mathbb{Z}$, then $\mathscr{H}_{Q,n}$ is semisimple if e>n and κ_i are 'far enough apart'. Otherwise, $\mathscr{H}_{Q,n}$ is Morita equivalent to a direct sum of tensor products of type A Hecke algebras.

The Specht modules $\{\mathbf{S}^{\lambda} \mid \lambda \text{ a bipartition of } n\}$ over $\mathcal{H}_{Q,n}$ are the ordinary irreducible $\mathcal{H}_{Q,n}$ -modules.

When $\mathcal{H}_{Q,n}$ is not semisimple, the simple modules appear as quotients of the Specht modules: $\{D^{\lambda} \mid \lambda \vdash_2 n, \lambda \text{ is Kleshchev}\}$.

Schurian-finiteness

Let $\mathbb F$ be an algebraically closed field of characteristic $p\geqslant 0$ throughout. For any $\mathbb F$ -algebra A, we say that an A-module M is **Schurian** (or a brick) if $\operatorname{End}_A(M)\cong \mathbb F$. We say that A is **Schurian-finite** (brick-finite) if there are only finitely many isomorphism classes of Schurian A-modules, and **Schurian-infinite** (brick-infinite) otherwise.

Schurian modules must be indecomposable, so clearly

representation-finite \Rightarrow Schurian-finite.

The converse is not true in general – e.g. preprojective algebras of type other than A_n for $1 \le n \le 4$ are representation-infinite, but Schurian-finite.

Schurian-finiteness

A result of Demonet, Iyama and Jasso (2019) yields that A is Schurian-finite if and only if it is τ -tilting finite.

So we can use established results for τ -tilting (in)finite algebras to determine when algebras are Schurian-(in)finite. In particular, we make heavy use of the following reduction result.

Proposition

If the Gabriel quiver of a finite-dimensional \mathbb{F} -algebra A contains the quiver of an affine Dynkin diagram with zigzag orientation (i.e. every vertex is a sink or a source) as a subquiver, then A is Schurian-infinite.

We want to determine the Schurian-finiteness of blocks of Hecke algebras (of types A or B), using the above proposition.

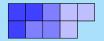
Blocks – type A

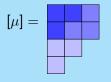
Specht modules S^{λ} and S^{μ} (or simple modules D^{λ} and D^{μ}) are in the same block of \mathscr{H}_n if and only if λ and μ have the same core.

Example

Let $\lambda = (5,4)$, $\mu = (3^2,2,1)$, and e=3. Then λ and μ are in the same block:

$$[\lambda] =$$





The weight or defect of a partition is the number of e-rim hooks that can be removed before obtaining the core. e.g. w=3 above, with core the empty partition.

Blocks – type A

An equivalent description can be given in terms of partitions having *equal multisets of residues modulo e*.

Example

Let $\lambda = (5,4)$, $\mu = (3^2,2,1)$, and e=3. Then λ and μ are in the same block:

$$[\lambda] = \begin{bmatrix} 0 & 1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 2 \end{bmatrix} \qquad [\mu] = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 \\ 0 \end{bmatrix}$$

This description readily generalises to describe the blocks of type B Hecke algebras (for $Q_i = q^{\kappa_i}$).

Blocks – type B

 $Q_i = q^{\kappa_i} \rightsquigarrow$ fill bipartitions with residues mod e, starting with κ_i in the top-left corner of component i.

Spechts S^{λ} and S^{μ} (or simples D^{λ} and D^{μ}) are in the same block of $\mathscr{H}_{Q,n}$ iff bipartitions $\lambda \& \mu$ have same multisets of residues mod e.

Example

Let e=3, $\kappa=(0,1)$, $\lambda=((3,1^2),(3,2^2,1))$, and $\mu=((5,2^2),(2^2))$. Then λ and μ are in the same block:

$$[\lambda] = \begin{bmatrix} 0 & 1 & 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 \\ 2 & 0 \end{bmatrix} \qquad [\mu] = \begin{bmatrix} 0 & 1 & 2 & 0 & 1 \\ 2 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

There is a block invariant called *defect*, but it's more complicated than in type A. Each e-hook contributes 2 to the defect.

Graded decomposition numbers

Results of Brundan, Kleshchev, and Wang $\rightsquigarrow \mathcal{H}_n$ and $\mathcal{H}_{Q,n}$ are isomorphic to cyclotomic KLR algebras, and their Specht modules and simple modules may be graded.

The graded decomposition number $d_{\lambda\mu}^{\rho}(v)$ is defined to be the graded composition multiplicity of D^{μ} in S^{λ} . In other words

$$d^p_{\lambda\mu}(v) = [\mathsf{S}^\lambda : \mathsf{D}^\mu]_v = \sum_{d\in\mathbb{Z}} [\mathsf{S}^\lambda : \mathsf{D}^\mu \langle d \rangle] v^d \in \mathbb{N}[v,v^{-1}].$$

Extensions – type A

Using a result of Shan on Jantzen filtrations and radical filtrations of Weyl modules for q-Schur algebras, we can deduce the following.

Lemma

Suppose that $e\geqslant 3$, p=0, and λ,μ are e-regular partitions of n. If the **coefficient of** \boldsymbol{v} in $d_{\lambda\mu}^0(\boldsymbol{v})$ is nonzero, then

$$\mathsf{Ext}^1_{\mathscr{H}_n}(\mathsf{D}^\lambda,\mathsf{D}^\mu)=\mathsf{Ext}^1_{\mathscr{H}_n}(\mathsf{D}^\mu,\mathsf{D}^\lambda)\neq 0.$$

Combining with an idempotent truncation argument, we get our main tool for showing that a block of \mathcal{H}_n is Schurian-infinite.

Extensions – type B_i

Results of Maksimau play a similar role in type B, working with graded lifts of cyclotomic q-Schur algebras, and their Kozul grading.

Lemma

Suppose that $e\geqslant 2$, p=0, and λ,μ are **Kleshchev bipartitions** of n. If the **coefficient of** ${\bf v}$ in $d^0_{\lambda\mu}({\bf v})$ is nonzero, then

$$\operatorname{Ext}^1_{\mathscr{H}_{Q,n}}(\mathsf{D}^\lambda,\mathsf{D}^\mu)=\operatorname{Ext}^1_{\mathscr{H}_{Q,n}}(\mathsf{D}^\mu,\mathsf{D}^\lambda)\neq 0.$$

Combining with an idempotent truncation argument, we get our main tool for showing that a block of $\mathcal{H}_{Q,n}$ is Schurian-infinite.

Key Proposition (Ariki-Lyle-S., 2023)

Suppose $e\geqslant 2$ & $p\geqslant 0$. If the char 0 graded decomposition matrix has one of the following as a submatrix, and $d^p_{\lambda\mu}(1)=d^0_{\lambda\mu}(1)\in\{0,1\}$ for all row labels λ,μ of the submatrix, then the block is Schurian-infinite.

$$\begin{pmatrix} 1 & & & \\ v & 1 & & \\ 0 & v & 1 & \\ v & v^2 & v & 1 \end{pmatrix} \qquad (\dagger) \qquad \qquad \begin{pmatrix} 1 & & & \\ v & 1 & & \\ v & 0 & 1 & \\ v^2 & v & v & 1 \end{pmatrix} \qquad (\ddagger)$$

Take the matrix (\ddagger), with rows and columns labelled by four e-regular partitions $\lambda, \mu, \nu, \omega$. Then if p=0, the previous lemma gives subquiver

$$\lambda \longrightarrow \mu$$
 $\downarrow \qquad \qquad \downarrow$
 $\nu \longrightarrow \omega$

which is $A_3^{(1)} \leadsto$ the result (in characteristic 0).

Main result – type A

(It is known that a block of \mathcal{H}_n of weight 0 or 1 is representation-finite and therefore Schurian-finite.)

Theorem (Ariki-Lyle-S., 2023)

Suppose $e \ge 3$, and that B is any block of \mathcal{H}_n with weight ≥ 2 . Then B is Schurian-infinite in any characteristic.

Hidden in this theorem is A LOT of work. Ingredients include James–Mathas's runner removal, LLT algorithm, a graded analogue of Scopes equivalences, work on (graded) decomposition numbers and Ext¹ by Richards, Fayers, Fayers–Tan, analysis of Specht homomorphisms, ...

Strategy of proof

- 1) Look at blocks B of fixed weight 2 or 3, and find a submatrix like in the Key Proposition. Find four e-regular partitions in B that will index the submatrix. Display them on an abacus.
- 2) In characteristic 0, we use 'runner-removal' results to reduce *e* down to 3 or 4.
- 3) Compute the corresponding submatrix of the char. 0 graded decomposition matrix for a representative of each 'Scopes class', e.g. by the LLT algorithm.
- 4) Compute these same graded decomposition numbers in char. p using the adjustment matrix results of Richards and Fayers in weight 2, and of Fayers—Tan in weight 3.
- 5) For blocks of weight \geqslant 4, use a row-removal result to equate graded decomposition numbers to those in weights 2 or 3.

Representation type

Definition

The representation type of an \mathbb{F} -algebra A is said to be:

- finite if it has finitely many indecomp. modules, up to isom.;
- *tame* if for any *d*, all but fin. many *d*-dimensional indecomp. modules lie in fin. many one-parameter families, up to isom.;
- wild if \exists a fin.-gen. $A \mathbb{F}\langle X, Y \rangle$ -bimodule M, which is free as a right $\mathbb{F}\langle X, Y \rangle$ -module, s.t. the functor $M \otimes_{\mathbb{F}\langle X, Y \rangle} : \mathbb{F}\langle X, Y \rangle$ -mod $\to A$ -mod preserves indecomposability and isomorphism classes.

Theorem (Drozd, 1979)

Any \mathbb{F} -algebra A has representation type that is exactly one of the above three types.

Strictly wild algebras

Definition

An \mathbb{F} -algebra A is said to be:

- wild if \exists a fin.-gen. $A \mathbb{F}\langle X, Y \rangle$ -bimodule M, which is free as a right $\mathbb{F}\langle X, Y \rangle$ -module, s.t. the functor $M \otimes_{\mathbb{F}\langle X, Y \rangle} : \mathbb{F}\langle X, Y \rangle$ -mod $\to A$ -mod preserves indecomposability and isomorphism classes.
- strictly wild if the functor above is full.

Not every wild algebra is strictly wild. e.g. $\mathbb{F}[x,y,z]/(x,y,z)^2$ is wild, but not strictly wild.

Fact

A strictly-wild algebra is Schurian-infinite (brick-infinite). In fact, stronger still, a strictly-wild algebra is actually **brick-wild**.

Refined classification

Theorem (S., 2024)

Suppose $e \geqslant 3$, and that B is any block of \mathcal{H}_n with weight $\geqslant 2$. If e=3, suppose further that B is not (Scopes equivalent to) the weight 2 Rouquier block. Then B is strictly wild, and therefore brick-wild, in any characteristic.

I don't know if the result holds for that one remaining block! Our methods don't work, at least.

Main result – type B

(It is known that a block of $\mathcal{H}_{Q,n}$ of weight 0 or 1 is representation-finite and therefore Schurian-finite.)

First, suppose that $Q_i \neq q^{\kappa_i}$.

Then $\mathcal{H}_{Q,n}$ is Morita equivalent to a direct sum of tensor products of algebras \mathcal{H}_m . Under this equivalence, any block of $\mathcal{H}_{Q,n}$ goes to a tensor product of 'type A blocks' B and B'.

Proposition (Ariki-Lyle-S.-Wang, 2025)

If $e \geqslant 3$, then $B \otimes B'$ is Schurian-finite if and only if $\operatorname{weight}(B) + \operatorname{weight}(B') \leqslant 1$ (if and only if that block has finite representation type).

Main result – type B

From now on, we assume that $Q_i = q^{\kappa_i}$.

Theorem-in-progress (Ariki-Lyle-S.-Wang, 2025)

Suppose $e \geqslant 4$, and that B is any block of $\mathcal{H}_{Q,n}$ with defect $\geqslant 2$. Then B is Schurian-infinite in any characteristic.

Suppose e=3, and that B is any block of $\mathcal{H}_{Q,n}$ with defect $\geqslant 3$. Then B is Schurian-infinite in any characteristic.

If e=3, blocks of defect 2 are not so clear-cut, but we can classify which are Schurian-finite. They are all Schurian-finite if $\kappa_1=\kappa_2$, but otherwise some are Schurian-finite, while others are not (they fall into 6 Scopes classes).

Strategy of proof

'Higher-level runner removal' (Dell'Arciprete(-Putignano) can't get us the decomp. #s we need. **Assume** $e \ge 4$.

- 1) If $\kappa_1 \neq \kappa_2$, can uniformly treat all core blocks of defect ≥ 2 (char-free). Can add e-hooks to those and use 'row-removal' (Bowman–S.). Ditto for $\kappa_1 = \kappa_2$, core blocks of defect ≥ 3 .
- 2) Any block with $\geqslant 2$ removable *e*-hooks on some bipartitions \rightsquigarrow row-removal again cut to level 1 and use our type *A* work.

This leaves core blocks of defect ≤ 2 with 1 hook added on. These have defect 2, 3, or 4.

3) Look at blocks B of defect 2, and find a submatrix like in the Key Proposition. Fayers has given formulae for these decomposition matrices, and they are characteristic-free. Direct computation shows that defect 2 *core blocks* are Schurian-finite when $\kappa_1 = \kappa_2$. Otherwise, they are all Schurian-infinite.

Strategy of proof

4) Decomposition numbers in defect 3 blocks are known to be characteristic-free (and always 0 or 1) by Fayers–Putignano. We have conjectural descriptions of the submatrices we need for $\kappa_1 \neq \kappa_2$.

The $\kappa_1 = \kappa_2$ case remains to be solved.

- 5) The remaining defect 4 blocks have $\kappa_1 = \kappa_2$, and are a defect 2 core block with a single hook added on. These are difficult the decomposition numbers aren't characteristic-free, etc.
- 6) All the e=3 cases need slightly different handling, especially in characteristic 2.