

Application of T-cell adaptation mechanisms to tumor microenvironment for cancer immunotherapy

Naoyuki Taira

Naoyuki Taira, Ke Wang, Masato Hirota, Miho Tamai, Keiko Kono, Hiroki Ishikawa, Hiroaki Kitano Integrated Open Systems Unit

What is the problem?

Cancer immunotherapy has been attracting attention in recent years as a treatment for cancer. Two of the most representative therapies are immune checkpoint blockade (ICB) and CAR-T cell therapy. ICB has been shown to be highly effective for those who respond to it, but because some people do not have cancer antigen-specific T cells that can recognize cancer antigens, its effectiveness is limited. CAR-T cells were created to solve this problem. Although CAR-T cell therapy is highly effective against blood cancers, it is not effective against solid tumors. To address this problem, we are trying to apply our technology to CAR-T cells.

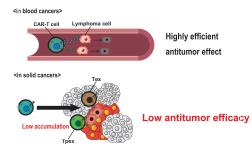


Figure 1: Problem of CAR-T cell therapy

What is your solution?

We have two technologies (patents pending) to enhance T-cell-based cancer immunotherapy. One is the use of an AP-1 transcription factor that promotes accumulation of both progenitor and terminal exhausted T cells (Tpex and Tex cells) in solid tumors, thereby enhancing their anti-tumor effects. Another technology is based on membrane damage signaling that enhances the anti-tumor activity of intra-tumoral T cells. We have demonstrated that our technologies can enhance the anti-tumor responses of transgenic T cells expressing tumor-specific T cell receptors. Our goal is to improve the efficacy of CAR-T cell therapy against solid tumors through our patented technologies.

Keywords: CAR-T cell; AP-1 transcriptional factor; cell membrane damage

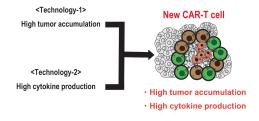


Figure 2: New CAR-T cell therapy using our technology (patents pending)

Other resources

o **Unit website**

Contribution to SDGs

