

iH₂O₂: Iron catalyzed H₂O₂ production

Satoshi Takebayashi Satoshi Takebayashi, Anju Balakrishnan Syamala Organometallic Chemistry Group

What is the problem?

Hydrogen peroxide (H_2O_2) is an important chemical used for the bleaching of paper, preparation of chemicals, water treatment, and disinfection. Currently, H_2O_2 is almost exclusively produced by the <u>anthraquinone process</u> (Figure 1) that uses a large amount of organic chemicals and palladium catalysts to produce this very simple molecule. As a result, H_2O_2 is ranked as one of the <u>top 10 most energy-intensive chemicals</u> in the United States, and the production is only economically feasible at centralized large scale production sites. One of the simplest ways to synthesize H_2O_2 is the reaction of H_2 and O_2 using a catalyst. Currently, <u>palladium</u> (Pd) is the most active catalyst in this reaction. Combination of this process and electrolysis of water will enable onsite production of H_2O_2 for water treatment at remote locations. However, the price of Pd catalysts is one of the burdens of this process.

What is your solution?

In this project, we will develop simple and cheap <u>organometallic</u> iron (Fe) catalysts to synthesize H_2O_2 from O_2 and H_2 (Figure 2). Iron is the most abundant transition metals in the Earth's crust, and used in important industrial processes such as <u>Haber–Bosch process</u> and <u>Fischer–Tropsch process</u>; however its use in the formation of H_2O_2 is unknown. We are aiming to synthesize iron catalysts that can react with H_2 and form Fe-H species. By tuning properties of iron catalyst, we will generate Fe-H species that have similar reactivity as the key Pd-H species and transfer two H from H_2 to O_2 to form H_2O_2 . Our preliminary experiments showed that our iron catalyst can generate this type of Fe-H! Now, we are developing a process to form H_2O_2 from H_2 and O_2 using this catalyst.

Keywords: Hydrogen peroxide, hydrogen, Catalyst, Iron

Current method

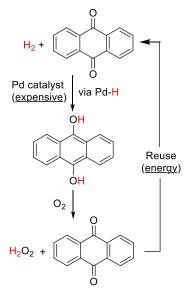


Figure 1 Current method.

Our method

$$H_2 + O_2 \xrightarrow{\text{Iron catalyst}} H_2 O_2$$

Figure 2 Our method.

Other resources

o The group homepage

Contribution to SDGs

