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INTRODUCTION
The ideas of embodied cognition (Varela et al., 1991) are now widely
accepted after decades of dedicated researches in which the community
of the behavior-based robotics (Brooks, 1999) and adaptive behaviors have
largely contributed to the success of this trend. The core ideas of embodied
cognition can be summarized as illustrated in Figure 1. It is said that
cognitive behavior is the result of dense interactions between the internal
process and the environmental processes by means of the tight sensory-
motor coupling of them (Beer, 1995). In the actual implementations for
behavior-based robots, the internal process is often merely a mapping
process from sensory inputs to motor outputs where the mapping function
might be acquired through evolution or learning processes. It has been
argued that cognition of these robots are “situated” when certain stable
dynamic structures are generated in the coupling of the internal process
and the environmental dynamics. Although this view is straightforward and
seems to capture some important aspects in behavior systems especially
in the reflex behavior, we may wonder that the overwhelm of this simplified
view may underestimate the essential problems of the embodied cognition.

First of all, cognitive behavior is not just the results of iterations
of sensory-motor mapping in adopted environments since it does not
explain any of mental processes beyond perception and motor generation.
It has been considered that behavior systems of mammal levels have
anticipatory functions for future with utilizing internal models (Kawato
et al., 1987). This anticipation can be either just for direct near future
in implicit sensory-motor level or more explicit prediction for event
sequences in longer future periods. The anticipation mechanisms enable
the behavior systems to mentally simulate or plan for future (Tani, 1996;
Ziemke et al., 2005). At the same time, the behavior systems may have
regression mechanisms in order to re-interpret their own experiences
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from the past to the current time. The error between the reality and its
anticipation can be utilized for modulating the internal parameter of the
behavior systems in order to situate themselves to dynamically changing
contexts. Therefore, it is better to consider that cognitive processes are
time-extended both in past and future directions rather than limited to just
current time sensory-motor reflex.

Although “internal models” have been prohibited words in the
behavior-based robotics community (Brooks, 1991), we may argue that
behavior systems without internal models are blind. The author and his
colleagues have shown through a set of robotics experiments that internal
models or representation can be well situated in behavior context if
they can be acquired as self-organized dynamic attractors in the internal
neuronal dynamics (Tani, 1996; Tani and Nolfi, 1999; Tani et al., 2004).
Our thoughts in this point might be parallel to recent discussions by Steels
(Steels, 2003) in which he claims that an exploration of adaptive “external”
representations in terms of language might lead the research to go beyond
physical behavior towards cognition although his approach seems to be
much more computational than ours.

It is true that the internal models can never be a complete world model
but be an only partial one. However, the errors by the internal models can
tell the behavior systems at the least how much they are familiar or fit with
the current situation and may, in hope, guide them to re-situate when they
are lost in the current situations. In other words, the internal models can
tell the boundary of rationality in terms of the predictability. On the other
hand, the behavior systems without internal models merely continue to
iterate sensory-motor reflex in the same way always without awareness
of what are going on in the current situation. Since the rationality of
any cognitive systems are bounded at the best in dealing with dynamic
environments, certain meta-level cognitive functions of monitoring their
own situations and conditions are inevitable. If we agree that the internal
models are dispensable for any cognitive behaviors, the problem would
be how to acquire them. The internal models should be acquired through
direct experiences of the behavior systems and they should be organized
in multiple levels from the lower sensory-motor flow level to the higher
episode sequences level.

Figure 2a illustrates our ideas. The system has a motor generation part
and a sensory anticipation part both of which are modulated by the internal
parameters. The motor generation part is just a sensory-motor mapping
function with the internal parameter. We can think of generating specific
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Figure 1. Sensory-motor coupling between behavior system and
environment.

sensory-motor sequence patterns by setting their corresponding values
into the internal parameters. This is like as if a specific behavior primitive
or motor schema (Arbib, 1981) in repertory were retrieved by using a key
of this internal parameter. The anticipation part is realized by a forward
model (Demiris and Hayes, 2002; Kawato et al., 1987; Tani, 1996; Werbos,
1990; Wolpert and Kawato, 1998) where the sensory inputs of the next time
step are anticipated based on the current motor outputs and the internal
parameters. Then, one step after, the gap between the anticipation and the

Figure 2. (a) Behavior system with anticipation and regression
mechanism. (b) Extension to multiple levels. m(t) and s(t) represent the
current motor and sensory patterns. p represents the internal parameter which
corresponds to the PB vector in the later sections.

reality comes out as the error. This error is utilized to modulate the internal
parameters by means of the inverse dynamics computation of minimizing
the error through the forward model. This is the regression which proceeds
in real time while the system interacts with the environment. It is assumed
that the internal parameters can modulate only slowly compared to the
time constant of the system. The modulation of the internal parameters
means that the current behavior primitive is switched to others because
it does not fit with the current sensation of the environment.

Furthermore, the internal parameters can be fed into the next higher
level (see Figure 2b). The higher level receives this internal parameters
as the inputs and attempts to anticipate their future time developments
as well as to regress for their past with having additional internal
parameters of this higher level. The higher level is operated with much
slower time constant and therefore the information processing in the
higher level becomes abstracted. The anticipations of the inputs in the
higher level are fed back to the lower level as the top-down signal from
the higher level. Therefore, the internal parameters in the lower level
are determined through dynamic interactions between the top-down
anticipation from the higher level and the bottom-up regression from
the lower level. This top-down and bottom-up interactions are one of
the most essential characteristics in our proposed scheme by which
continuous sensory-motor sequences are automatically segmented into a
set of reusable behavior primitives, as will be detailed in the later section.

There have been various trials to utilize hierarchy in order to scale
learning and generation capability of systems (Dayan and Hinton, 1993;
Morimoto and Doya, 1998; Tani and Nolfi, 1999). In studies of reinforce-
ment learning, it is proposed that the upper level decomposes the entire
task into easier sub-tasks and that each sub-goal is achieved in the lower
level in simulation defined in 2-D maze-like state space (Dayan and Hinton,
1993) and in robotics experiment with high-dimensional continuous motor
space (Morimoto and Doya, 1998). The sub-tasks may correspond to
behavior primitives and change of sub-goals do for that of the internal
parameter in our proposed scheme. However, in these studies sub-tasks
have to be learned as separated from whole task. This means that cues
to segment whole task into sub-tasks are given by experimenters. On the
other hand, (Tani and Nolfi, 1998) showed that hierarchically organized
gating networks can segment sensory-motor sequences into behavior
primitives through learning process. The segmentation can be achieved in
the bottom-up way by introducing autonomous gating mechanism utilizing
the prediction error (Wolpert and Kawato, 1998; Tani and Nolfi, 1998).
However, the study (Tani and Nolfi, 1998) could not investigate the top-
down and bottom-up interactions, which is the main interest in the current
paper, because the system lacks the top-down pathway.

It is considered that embodied cognition requires two different aspects
which seem to conflict with each other in various contexts. On the
one hand, the sensory-motor processes have to deal with detailed
interactions with the environment for the purpose of precise control of
bodily movements. On the other hand, higher level cognition would require
abstractions of those lower level sensory-motor processes, manipulating
them compositionally for conducting goal-directed planning, inference,
etc. This conflict is well represented by the symbol grounding problem
by Harnad (Harnad, 1990), in which it is argued that symbol systems
consisting of arbitrary tokens cannot be grounded because they are not
constrained by physical interactions with the external world. We have,
however, presumed that this gap might be reduced significantly if both
share the same metric space of physical dynamical systems, and if dense
bi-directional bottom-up and top-down interactions can be achieved there.
For the purpose of elucidating the nature of bi-directional interactions by
means of physical dynamics, the ideas shown in Figure 2 have been
implemented on a specific neuronal dynamic model and its characteristics
have been examined under various cognitive robotics experiments. By
reviewing these experiments, the current paper will discuss what is
required beyond the conventional ideas of the embodied cognition and
the behavior-based robotics for the purpose of modeling human cognition
including its metaphysical problems.
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RNNPB
This section introduces our proposed model, recurrent neural network
(RNN) with parametric biases (RNNPB) (Tani, 2003) which implements
our ideas discussed in the introduction. The RNNPB is a variance of RNN
models (Elman, 1990; Jordan, 1986; Pollack, 1991) which are good at
learning temporal patterns by allowing re-entry of the internal activation
state with allocating the so-called context units. Jordan (Jordan, 1986)
showed that a simple attractor dynamics can be embedded in a RNN
with utilizing its context units dynamics. Elman (Elman, 1990) and Pollack
(Pollack, 1991) showed that the certain linguistic grammars can be learned
by self-organizing fractal-shape attractor in the RNN dynamic structure.
As inspired by these prior studies, we investigated the possibility of
scaling RNNs with aiming that a set of behavior primitives are learned as
embedded in multiple attractor dynamics of a single RNN by sharing the
same synaptic weights among them. However, it turned out that multiple
attractors of hosting different behavior primitives can hardly self-organize
through training in the conventional RNN, as have been indicated by Doya
et al. (Doya and Yoshizawa, 1989).

On this account, we proposed a novel scheme of the RNNPB as shown
in Figure 3. In this scheme the parametric biases (PB) units are allocated
in the input layer of the conventional RNN of the heavyside activation
type. The PB works as bifurcation parameter of the network dynamics for
switching among different subsequence patterns in a single RNN (Tani,
2003; Tani and Ito, 2003). The PB as bifurcation parameter actually corre-
sponds to the internal parameter p in Figure 2. For a given PB vector, a spe-
cific sequence pattern is generated. On the other hand, the PB vector can
be inversely computed to account for given input subsequence patterns
through the regression by means of the error back-propagation scheme.
This is actually the recognition process of the RNNPB. These explain an
interesting mechanism of the RNNPB for both recognizing and generating
the same subsequence patterns by the same encoding of the PB vector.

In the current implementation the generation and recognition
processes are conducted simultaneously in the on-line operation of
robots. The PB vector is constrained to modulate only slowly compared to
change in the sensory-motor patterns and that in the context activation.
By this means, it is aimed that the PB dynamics of slow time constant
encode sequential changes of behavior primitives and that the context
activation dynamics encode short-range sensory-motor profile of each
behavior primitive.

Architecture
This section describes more details of the RNNPB.

The role of learning is to self-organize the mapping between the
PB vector and spatio-temporal sensory-motor patterns. It is important
to note that the PB vector for each learning pattern is self-determined
in a non-supervised manner. In the learning phase, a set of sensory-
motor patterns are learned through the forward model of the RNNPB by
self-determining both the PB vectors, which are assigned differently for
each pattern, and a synaptic weight matrix, which is common for all the
patterns. The information flow of the RNNPB in the learning phase is
shown in Figure 3a. This learning is conducted using both target patterns
of motor pattern mt and the sensory pattern st . When given mt and st in
the input layer, the network predicts their values at the next time step in
the output layer as m̂t+1 and ŝt+1. The outputs are compared with their
target values mt+1 and st+1 and the error generated is back-propagated
(Rumelhart et al., 1986) for the purpose of updating both the synaptic
weights and PB vectors. ct represents the context units where the self-
feedback loop is established from ct+1 in the output layer to ct in the
input layer. The context unit activations represent the internal state of the
network.

After the learning is completed, the sensory-motor sequences can
be generated by means of the forward dynamics of the RNNPB with the
PB vectors of currently obtained as shown in Figure 3b. The PB vectors
could be self-determined through the on-going regression processes as
well as the top-down anticipation of them if the higher level network is
implemented. In the generation process, the RNNPB can be operated in a
closed-loop mode where the next step’s sensory-motor prediction outputs
are fed back to the current step as inputs, as denoted by a dotted line on
the left-hand side in Figure 3b. In this way, the RNNPB can look ahead of
imaginary sensory-motor sequences in future steps without receiving the
actual sensory inputs from the environment.

Figure 3c illustrates how the PB vectors can be inversely computed for
the given target sensory sequences in the regression process. The RNNPB,
when receiving the current sensory inputs st , attempts to predict their next
vectors, ŝt+1, by utilizing the temporarily obtained PB vectors. In the next
step, the error for this prediction outcome is obtained from the target
value st+1 and it is back-propagated to the PB units and the current PB
vectors are updated in the direction of minimizing the error with employing
the steepest descent method. The actual computation of the PB vectors
is conducted by using the so-called regression window of the immediate
past steps. The error signal in the output layer is back-propagated through
time (Rumelhart et al., 1986) to the PB vectors which is averaged over the
window steps in order to make the PB vector modulated smoothly over
time steps. The regression is iterated for order of 10–50 times for each
step shift of the regression window in the forward direction. If pre-learned

Figure 3. The system flow of RNNPB in learning (a), generation (b) and recognition (c). Note that generation and recognition can be conducted simultaneously.
PBt and ct denote the PB vector and the context activation state.
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sensory sequence patterns are perceived, the PB vectors tend to converge
to the corresponding values that were obtained in the learning phase.

In the actual implementation in the on-line operation of our robot
platforms, the recognition of the past sensory sequences by the regression
and the forward sensory-motor anticipation for future steps are conducted
simultaneously. By means of this, the forward anticipation for near future
is dynamically obtained based on the PB vector which is obtained as
situated to the current sensory-motor sequences. Furthermore, the
forward anticipation of the PB vector by the higher level allows the system
to generate the future anticipation of sensory-motor sequences for longer
steps. The introduction of the higher level will be revisited in the later
section.

Adapting PB vector
Now, the exact mechanism for adapting the PB vector is described. The PB
vectors are determined through regression of the past sequence pattern
in both recognition and learning processes. In the recognition process, the
regression is applied for the immediate past window steps L, by which
the temporal profile of the PB, pt from L steps before to the current step
ct, is updated. The window for the regression shifts as time goes by while
pt is updated through the iterations in the on-line recognition process.
In the learning phase the regression is conducted for all steps of the
training sequence patterns. (This means that the window contains the
whole sequence and it does not shift.)

The temporal profile of pt in the sequence is computed via the
back-propagation through time (BPTT) algorithm (Rumelhart et al., 1986;
Werbos, 1990). In this computation ρt , the potential of the parametric
bias, is obtained first.

The potential ρt changes due to the update computed by means of the
error back-propagated to this parametric bias unit, which is integrated for

a specific step length in the sequence. Then the parametric bias, pt , is
obtained by taking a sigmoid function output of the potential. The utilization
of the sigmoid function is just a way of computationally bounding the value
of the parametric bias to a range of 0.0–1.0. In this way, the parametric
bias is updated to minimize the error between the target and the output
sequence.

For each iteration in the regression of the window, L steps of look-
ahead prediction, starting from the onset step of the window, are computed
by the forward dynamics of the RNN. Once the L steps of the prediction
sequence are generated, the errors between the targets and the prediction
outputs are computed and then back-propagated through time. The error
back-propagation updates both the values of the parametric bias at each
step and the synaptic weights. The update equations for the ith unit of the
parametric bias at time t in the sequence are:

δρt
i = kbp ·

t+l/2∑

step = t−l/2

δ
bp
t

i + knb(ρi
t+1 − 2ρi

t + ρi
t−1) (1)

�ρi
t = ε · δρt

i + η · �ρ́i
t (2)

pi
t = sigmoid(ρi

t/ζ) (3)

where t sweeps from the onset of the window L − tc to the current step
tc in the on-line operation. In Equation (1), δρt , the delta component of
the potential of the parametric bias unit, is obtained from the summation
of two terms. The first term represents the summation of the delta error,
δ
bp
t

i
, in the parametric bias units for a fixed time duration l which should

be much smaller than L. δ
bp
t

i
, which is the error back-propagated from

the output units to the i th parametric bias unit, is summed over the period
from t − l/2 to t + l/2 time steps. By summing the delta error, the local
fluctuations of the output errors will not affect the temporal profile of the

Figure 4. A user is interacting with the Sony humanoid robot.
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Figure 5. Switching of the robot movement pattern among three learned patterns as initiated by switching of user hand movement.

parametric bias significantly. The parametric bias should vary only with
structural changes in the target sequence. Otherwise it should become
flat, or constant, over time.

The second term plays the role of a low pass filter through which
frequent rapid changes of the parametric bias are inhibited. knb is the
coefficient for this filtering effect. ρt is updated based on δρt obtained
in Equation (1). The actual update �ρt is computed by utilizing a
momentum term to accelerate convergence as shown in Equation (2),
where �ρ́i

t denotes the update in the previous iteration. Then, the

current parametric bias pt is obtained by means of the sigmoidal
outputs of the potential ρt divided by ζ in Equation (3). ζ denotes the
steepness parameter of the sigmoid output which is usually set as 1.0 as
default.

Although number of the PB units seem to enhance memory capacity of
the RNNPB, the detailed relation has not been obtained yet. Our preliminary
examination showed that there is a tendency of losing generalization
capability in learning if the number is increased. In the later described
experiments, 4 PB units are allocated.
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COGNITIVE ROBOTICS PROJECTS
In this section, two different cognitive robotics experiments are reviewed.
The first experiment introduces a task of imitative interaction by
a humanoid robot in which a single level RNNPB is utilized. This
experiment examines how the current interactive situations are recognized
and how their corresponding motor sequence patterns are generated
simultaneously. The second experiment introduces a task of object
handling by an arm robot. In this task, problems of self-organization of
behavior primitives and chunking as well as the on-line behavior plan
generation and modulations are investigated with utilizing the RNNPB
model with the two levels structure.

Imitative interactions
Experimental studies of the imitative interactions (Ito and Tani, 2004)
between robots and humans were conducted by using a humanoid robot
built by Sony (see Figure 4).

In this experiment, the robot learns multiple movement patterns shown
by a user’s hand movements in the learning phase. The RNNPB shown
in Figure 3 learns to anticipate how the positions of both the user’s
hands change in time in terms of the sensory mapping from st to st+1

and also it learns how to change the motor outputs correspondingly
in supervised ways. The positions of the user’s hands are sensed by
tracking colored balls in his hands. In the interaction phase, when one
of the learned movement patterns is demonstrated by the user, the
robot arms are expected to move by following the pattern. When the
hand movement patten is switched from one to another, the robot arm
movement pattern should switch correspondingly. This sort of on-line
adaptation can be done by conducting the generation and the recognition
processes simultaneously as a mirror system. When the prediction of
the user’s hand movement generates error, the PB vector is updated to
minimize the error in real time while the motor outputs are generated
depending on the current PB values.

The results of the experiment are plotted in Figure 5. It is observed that
when the user hand movement pattern is switched from one of the learned
patterns to another, the patterns in the sensory prediction and the motor
outputs are also switched correspondingly by accompanying substantial
shifts in the PB vector. Although the synchronization between the user hand
movement pattern and the robot movement pattern is lost once during
the transitions, the robot movement pattern is re-synchronized to the
user hand movement pattern within several steps. The experiments also
showed that once the patterns were synchronized they were preserved
robustly against slight perturbations in the repetitions of the user’s hand
movements. Our further analysis concluded that the attractor dynamics
system, with its bifurcation mechanism via the PB, makes the robot system
manipulatable by the users as well as robust to possible perturbations.

RNNPB with multiple levels for chunking
The RNNPB is extended to have multiple levels by which it can deal with
generation and recognition of more complex behavior patterns. Figure 6
shows the extended architecture. The higher and lower level RNNs are
bi-directionally interfaced using the PB vector. The prediction of the
PB vector sequences generates a top-down plan of motor sequences
while recognition of the sensory flow generates PB vector feedback
corresponding to the actual experience in the environment. The following
will describe how we addressed the problems of chunking in sensory-
motor flow by learning, the bottom-up and top-down interactions between
the levels in behavior generation.

Chunking of sensory-motor flow through iterative learning. The
experiments were conducted for the task of simple object manipulation
using an arm robot of 4-DOF. In this task, the robot perceives the center
position of the object and the arm tip position by the robot camera as the
sensory inputs. The extended RNNPB with two levels is forced to learn
multiple behavior tasks in a supervised manner. Each task consists of a
sequence of behavior primitives, such as approaching an object, pushing
it, and then returning to the home position. There is no prior knowledge

Figure 6. The complete architecture of hierarchically organized RNNPB.
PT : the PB predicted in the higher level interacts with pt : the PB inversely
computed in the lower level.

about those primitive in the networks but the experimenter demonstrates
them to the robot in terms of their combinational sequences. It is also noted
that there are no signs for segmentation of the primitives in the continuous
sensory-motor flow which the robot is exposed to learn. The network has
to discover how to segment the flow of the on-going task by attempting to
decompose the sensory-motor flow into a sequence of segments (behavior
primitives) which are reusable in other tasks to be learned. The actual
learning of the network are conducted with using seven training task
sequences. The connection weights in the both nets are initialized with ran-
dom values with range from −0.1 to 0.1 in the beginning of the learning.

In the current implementation of the PB regression, one minor
modification is made. The PB vector receives the pressure to be modulated
toward either extremes of 0.0 or 1.0 by setting ζ as a smaller value than
1.0. This alternated scheme enables the PB values to change stepwisely
in the segmentation points. When at the least one element of the PB vector
changes its value stepwisely with crossing 0.5, the higher level recognizes
this as the moment of segmentation. In the learning process of the lower
level, the PB sequences are generated as the results of the segmentation
by means of the regression which are used for the training of the higher
level. The forward computation of the higher level RNN proceeds along with
T of the event step accompanied by the segmentation (the event step in the
higher level proceeds to next step in the timing of the segmentation occur-
rence). The higher level learns to predict the next PB vector to switch as
PT+1 with its timing accompanied by the segmentation denoted as τT+1.

Figure 7 shows how the PB sequences are generated in the learning
results, for three of representative training sensory-motor sequences out
of seven. The plots in the top row in this figure show the activation of four
parametric bias units as a function of the time step; the activation values
from 0.0 to 1.0 are represented using the gray scale from white to black,
respectively. The plots in the second and the third rows represent the
temporal profile of motor and sensor values for each training sequence.
The vertical dotted lines indicate the occurrence of segmentation
when the behavior sequence switches from one primitive to another in
generating the training sequence. The capital letters associated with
each segment denote the abbreviation of the corresponding primitive
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Figure 7. For the three representative training sequences (a)–(c), the temporal profiles of the parametric bias, the motor outputs are plotted in the
second row and the sensor inputs are plotted in the third row. The vertical dotted lines denote occurrence of segmentation when the primitive behaviors
switched. The capital letters associated with each segment denote the abbreviation of the corresponding primitive behavior.

behavior. In this figure, it is observed that the switching of bit patterns
in the parametric bias takes place mostly in synchronization with the
segmentation points known from the training sequences although it is
observed that some segments are fragmented. Our examinations for all
the trained sequences showed that the bit patterns in the parametric bias
correspond uniquely to primitive behaviors in a one-to-one relationship in
most cases. They are shown in Figure 7 with the following abbreviations.
AO, approach to object in the center from the right-hand side; PO, push
object from the center to the left-hand side; TO, touch object; IC, perform
inverse C shape; HO, go back to home position; CE, go to the center from
the right-hand side; and C, perform C shape.

Dynamic motor plan adaptation through bottom-up and top-down
interactions. The actual behavior of the robot is generated through
the dynamic interactions between the top-down pathway, based on
look-ahead prediction of the PB sequences in the event step, and the
bottom-up pathway, based on the regression of the PB for the sensory
flow of actually experienced. More specifically, the current PB vector is
iteratively updated by summing both signals derived from the PB prediction
in the higher level and the error back-propagated in the regression of the
actual sensory flow in the lower level.

We examined how action plans can be dynamically adapted due to
changes in the environment by going through bottom-up and top-down
interactions (Tani, 2003). In the new experiment, the robot learns to
generate two different behavior sequences depending on the position of
the object which is perceived as one of the sensory inputs. When the object
is perceived in the center on the task space, the robot has to perform the
task-A in which the arm repeatedly approaches the object and returns to
the home position periodically, as shown in Figure 8a. When the object is

perceived on the left-hand side of the task space, the robot has to perform
the task-B in which the arm repeats a sequence of centering, making a
C-shape, and then returning home, as shown in Figure 8b.

The learning of these two tasks were attempted by training only the
higher level with utilizing the behavior primitives learned in the lower
level in the previous experiment. The lower level was not re-trained in
this new experiment. After the learning was converged, it was shown
that the robot can generate either of the behavior sequences correctly
depending on the position of the object, center or left-hand side. When
the robot starts to move its arm, the PB vector in the initial event step is
inversely computed to account for the sensory inputs of representing the
current position of the object as well as the current position of the hand
tip. The two different situations concerning the object position generate
two different PB vector in the initial event step which are followed by
the corresponding PB sequences learned in the higher level. However,
our current interest is to examine what would happen if the position of
the object is switched from the center to the left-hand side in the middle
of the task execution. The question is that if the behavior plans as well
their executions can be dynamically adapted to the sudden situational
changes through the process of the bottom-up and the top-down
interactions.

The experiment showed that in the initial period the task-A behavior
patten is generated stably by following its mental plan. When the object is
moved from the center to the left-hand side, the anticipation of the sensory
inputs goes wrong and the behavior pattern becomes unstable as deviated
from the task-A. However, this period of unstability is gone afterwhile and
the second behavior pattern initiates and it continues stably. Figure 8c
shows the temporal profile of the behavior generated. The vertical dotted
line denotes the moment when the object is moved from the center to the
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left-hand side of the task space. Observe that it takes 20 steps until the
second behavior pattern is initiated after the object is moved to the left-
hand side. Observe also that the PB, the motor outputs, and the sensory
inputs fluctuate during this transition period. The fluctuation is initiated
because of the gap generated between the top-down prediction of the PB
values and their bottom-up estimation through the regression based on
the sensory inputs. In the five repeated trials in this parameter setting, the
profiles of the transient patterns were diverse. The observed fluctuation
seems to play the role of a catalyst in searching for diverse transition
paths from the steady attractor, associated with the first behavior pattern,

to that for the second behavior pattern. Once the transition is complete,
the second behavior pattern proceeds steadily. It was also found that
the success of the current task largely depends on the parameter which
defines the ratio between the two forces of the top-down anticipation and
the bottom-up regression acting on the PB. If the top-down is too strong,
just the first behavior sequence continues with neglecting the situational
change. On the other hand, if the bottom-up is too strong, the behavior
generation becomes unstable by being sensitive to various noise in the
physical world. The current task becomes successful with setting the
ratio parameter in the middle of these two extremes. The future study

Figure 8. Profiles of task-A and task-B are shown in (a) and (b), respectively. (c) shows the profile of the dynamic switching from task-A to task-B, where
a dotted line indicates the moment when the object is moved from the center to the left-hand side.
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will examine the scheme for on-line adaptation of the ratio parameter by
extending the idea shown in (Tani, 1998).

It is concluded that the bottom-up and top-down interactions are
crucial in resolving conflicts between the levels and thus in adaptively
generating behavior sequences.

DISCUSSION AND SUMMARY
The current paper discussed that the mechanisms of anticipation
and regression are indispensable in modeling cognitive behavior. The
anticipation tells the behavior system that how much the system is
currently situated in the environment and the regression tells the system
how to become re-situated when the anticipation goes wrong with facing
dynamic changes in the environment. This idea was implemented in a
neural network model of RNNPB with/without levels. The PB vector in the
model works as the internal parameter which encodes a set of behavior
patterns.

The scheme of the RNNPB with multiple levels can show one
possible way to acquire compositionality in behavior generation. The
term compositionality comes from philosophy and linguistics (Evans,
1981) saying that whole can be reconstructed by combination of parts.
Our scheme shows how compositionality can be acquired without
using symbols and their manipulations but with dynamical systems
metaphor. More specifically, complex sensory-motor sequences are
decomposed into a set of reusable behavior primitives by utilizing
the parameter bifurcation characteristics of the non-linear neuronal
dynamics.

On the one hand, it might be possible to utilize multiple attractor
dynamics to embed different behavior primitives into different basins of
attraction. The switching of behavior primitives can be carried out by
perturbing the system state to transit from one basin to another from
the higher level. However, the problem is that it is quite difficult to
generate multiple attractors of the desired through training of the standard
RNNs regardless of number of context units and hidden units alllocated.
This seems to come from the fact that significantly high correlations
are established among context units activities due to full connectivities
introduced in the networks, as we have written briefly in the previous
section. Instead, it might be possible to use the echo-state machine
(Jaeger and Haas, 2004) to embed number of different attractor dynamics
because of its inherently rich “reservoir” dynamics in the internal neurons
activities due to sparse connectivities among them. This research direction
could be for future.

The current paper showed that the behavior patterns of learned
can either be generated by the top-down anticipation of the PB or be
recognized by the bottom-up regression of the PB. The actual behavior is
generated through the interactive process between these two pathways.
In the first experiment of the imitative interactions, it was observed that
the sensory-motor sequences are segmented into chunks of different
patterns as accompanied by stepwise changes of the PB values. The
anticipation error during each chunk is low while it becomes larger at
the transit from one chunk to another. During the chunk everything goes
smoothly and automatically where the perfect coherence are generated
between the anticipation by the internal system and the reality from the
environment. However, in the transit, this coherence is lost and intensive
computational processes of the regression are conducted in order to
optimize the PB of the internal parameter. The similar phenomena was
observed in the second experiment with the arm robot. The incoherence,
in this experiment, appears in the transit from the task-A to the task-B
which is triggered by the environmental changes regarding to the position
of the object. It might be said that at these moments of “breakdown” the
behavior system becomes rather “conscious” about the gap between the
its subjective expectation and the reality which results in the intensive
regression and adjustments for the “self”. (Tani, 1998, 2004). On the
other hand, in the coherent state, there are nothing to be “conscious”
about.

The conventional dynamical systems approaches for behavior systems
tend to focus only on the structural stability in the sensory-motor coupling.
The current paper has focused rather on the moment of the breakdown
and proposed novel mechanisms to deal with it. It is highly speculated
that such trials may lead us to further understanding of the problems in
embodied cognition including some metaphysical problems.
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