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Abstract

The current paper investigates the phenomenological aspects of “selves” in
relation to autonomous agents. Through a review of a series of neuro-robotics
experiments conducted by the author’s group, we elucidate three different as-
pects of “selves”, namely, minimal selves, social selves and self-referential selves.
Upon integrative discussions of these “selves”, it is suggested that genuine con-
structs of “authentic” selves may appear with criticality, which is self-organized
in the iterative interplay between regression of past experience and lookahead
prediction of future outcomes. It is concluded that genuine autonomy of agents
likely originates from genuine autonomy of authentic selves.
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1 Introduction

The boom in the work on autonomous agents started two decades ago with the publica-

tion of the edited book, “Designing Autonomous Agents”(Maes, 1991). The concepts of

autonomous agents presented in this book differed drastically from those considered in

conventional artificial intelligence research, which had emphasized abstraction with ex-

plicit symbolic representation and deliberative “thinking” processes for planning and

inference. These new studies focused on the bottom-up pathway from sensorimotor

interactions rather than the top-down internal “thinking” process. One key idea in

this new paradigm was “emergent functionality” (Maes, 1991). The notion was that,

even with simple rules governing sensorimotor interactions, quite complex and unpre-

dictable behaviors could emerge in the coupled dynamics between the agents and their

environments.

It is certainly interesting to watch some behavior-based robots built on such ideas

(Brooks, 1991) interact with their environments. One such example is a mobile robot

exploring light sources while skillfully avoiding obstacles. Another is a robot partici-

pating in simple interactions with humans such as stopping in front of us and saying

“hello” or following us (Horswill, 1993). Such interactions sometimes stimulate us to

think about agency for these robots. However, after a while, we may begin to feel

that the robots with reflex behaviors are simply like steel balls in pinball machines,

repeatedly bouncing against the pins until they finally disappear down the holes; while

we may recognize some complexity on the surface level of these behaviors, they are

fundamentally different from those generally expected from humans. Therefore, we are

likely at some point to become bored with interacting with such robots. Those robots

that have passed the Turing test (Turing, 1950) turn out to be just machines having

stochastic state transition tables. But what is wrong with these robots? Although

they have neither complex skills for action nor complex concepts for conversation, such

complexity issues may not be the main problem.

The current paper conjectures that the problem originates from a fundamental

lack of phenomenological constructs in those robotic agents. In particular, what is

missing might be the “subjectivity” that should direct their intentionality to project

their own particular images on the outer objective world. Such subjectivity should be

developed gradually through interactions with direct sensorimotor experiences with the

world. Development of own views or particular internal models would enable robots to

anticipate and to interpret the outcomes of their actions.

My argument for the need for subjectivity is related to the issue of identity in
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defining agency, as expounded by Barandiaran, Paolo and Rohde (Barandiaran, Paolo,

& Rohde, 2009). They consider that a necessary condition for the appearance of agency

is the presence of a system capable of defining its own identity as an individual and thus

distinguishing itself from its surroundings. Of particular interest here is their view that

the identity or boundary of individuals should be self-defined through environmental

interactions. And the same should also hold true for the concept of subjectivity in my

discussion. It is important to note that anticipation when seen from the top-down view

of agents may not fit with real-world reality in many situations. When environmental

interactions proceed exactly as expected, behaviors can be generated smoothly with

automaticity. However, anticipation can sometimes be wrong, and the conflict that

arises in such case can make generating successive acts difficult. Furthermore, when

the state of the interactions shifts spontaneously between these opposite poles of the

automaticity with perfect matching and the struggle with the conflicts, the boundary

between the subjective mind and the objective world would fluctuate. Here, I argue

that the essential characteristics of this phenomenon would be better understood by

revisiting discussions of “selves” in traditional phenomenology since phenomenologists

have already investigated the dynamic characteristics of the “autonomy” of selves in

their language. Thus, I attempt here to situate or anchor the problems of agency in

the literature of phenomenology.

In the next section, we examine in more detail phenomenological accounts of selves

by discussing some of the relevant literature. We then review a series of our neuro-

robotics experiments, whose results might correspond to some aspects of phenomeno-

logical selves. Lastly, we attempt to postulate a definition of the organizational prin-

ciple of autonomy of selves in humans as well as in robotic agents by developing tri-

angular discussions from the perspectives of nonlinear dynamics, neuroscience and

phenomenology, following the so-called neuro-phenomenological approach proposed by

Varela (Varela, 1996).

2 Phenomenological selves

We humans are self-conscious beings. However, the state of self-consciousness is elusive

as we experience it every moment of our lives. We sometimes strongly feel the existence

of our ’selves’ as isolated in the world, but the feeling does not last for long. Or, we can

be apart from such feeling of ’selves’ for hours when concentrating on certain tasks, but

the feeling can return suddenly. William James, the pioneering American psychologist

and philosopher, wrote that, when we take a general view of the wonderful stream of
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our consciousness, what strikes us first is the different pace of its parts. Like a bird’s

life, it seems to be an alternation of flights and perchings (James, 1890). Our group

believe that autonomy of cognitive systems might originate from just such dynamics

of spontaneous shifting between substantive phase of resting and transitive phase of

flying in a stream of consciousness.

Some phenomenologists consider that self in the substantive phase is like a con-

crete object. Strawson (Strawson, 1997) suggests the image of a string of pearls as a

metaphor of self, claiming that each self should be considered as a distinct particle-like

existence, an individual thing or object, like a pearl, yet discontinuous as a function

of time. Then, from where does this sort of discreteness or particle-like characteristics

of self come from, and how can self be consciously aware? Phenomenology has found

clues in the interactions between ’subject’ and ’object’ 1. Let us take Heidegger’s (Hei-

degger, 1962) well-known example of the hammer. For a carpenter, when everything is

going smoothly, the carpenter himself and the hammer function as a unity. But, when

something goes wrong with the carpenter’s hammering or with the hammer, then the

independent existences of the subject (the carpenter) and the object (the hammer) are

noticed. Here, the carpenter becomes conscious of himself as problematic, just as he

becomes conscious of the world, due to things not going as expected. The substantive

phase in the stream of consciousness may correspond to the unity where the subjective

inner reality in terms of expectation creates a perfect match with the objective reality,

whereas the transitive phase may correspond to the breakdown of unity when self be-

comes consciously aware of the gap. In other words, momentary self exists as a discrete

aspect of unity but its existence is noticed only at the moment of its breakdown 2 .

Here, we might ask how he or she can regard all the fragmented discrete selves

as actually belonging to her or his coherent self. Gallagher (Gallagher, 2000) regards

momentary subjective experience of self as the ’minimal self’; however, with reference to

Hume (Hume, 1975), he claims that the minimal self can be developed to the narrative

self constituted with a past and a future in the various stories that we tell about

ourselves.

This construction of the narrative self as like stories from subjective momentary

experiences of self might be deeply related to Husserl’s thoughts on time perception

1Although it is apparently nontrivial to define what are subject and object in phenomenology, these
terms are introduced here for explanatory purposes. It will be described later that such distinction
exists merely in external observer domains.

2There is a recent alternative discussion that minimal selves can be constituted without actions,
but only with passive multi-sensory body images (Blanke & Metzinger, 2009).
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(Husserl, 1964). An essential phenomenological question on time perception voiced

by Husserl (Husserl, 1964) concerns how objective time can be constituted out of the

subjective flow of temporality. Although temporality is experienced as a part of flow

at a deep phenomenological level, it is experienced as temporal objects and events

at a shallow level. In recalling past experiences, a temporal image of the past can

be reactivated as a linear sequence of discrete events, rather than as a replay of the

original continuous flow of our impression.

Varela (Varela, 1999) pointed out an apparently paradoxial nature in the human

perception of temporality, in that a conscious event is perceived as a unity but it is still

part of a flow. He proposed the use of nonlinear dynamics systems theory as a formal

descriptive tool for the phenomenon. By using the phenomenon of spontaneous flip-

ping in multi-stable visual perception, such as in the Necker-cube illusion, he explains

that the dynamic properties of chaos, which is characterized by spontaneous shifts be-

tween static and rapid transition modes, could explain the paradox of continuous, yet

segmented time perception.

The same sort of phenomenon is also recognized to occur in action generation. It

has been reported that an action slip, or failure of an action pattern referred to as a

micro-slip (Reed & Schoenherr, 1992), appears in our everyday actions. For example,

while making a cup of coffee, one may mistakenly grasp the coffee cup rather than

the spoon. An interesting observation here is that the action slip does not occur

randomly during the course of the entire action but at some meaningful point. More

specifically, the entire action of, for example, making a cup of coffee seems to consist

of meaningful chunks such as grasping the coffee cup or grasping the spoon where the

slip can take place not inside the chunks themselves but at segmentation or branching

points between the chunks. The chunks here might correspond to behavior primitives

or motor schemata in Arbib’s motor schemata theory (Arbib, 1981), in which primitives

or schemata are considered as a set of reusable action units. Therefore, it is considered

that the stream of ongoing motor behaviors ought to have complementary properties

of constancy and flow (Varela, 1999) where constancy might be afforded by convergent

dynamics trapped by accumulated motor schemata and flow might be afforded by

divergent dynamics of freely combining them.

In regards to the construction of the narrative self, from bundles of experiences of

pure sensorimotor flow, the flow in its original form cannot be manipulable unless it

is somehow segmented into a set of identifiable objects. Then, the ultimate question

is how subjective experiences of continuous sensorimotor flow can be transformed into

manipulable objects by which selves can be consciously described. In other words, how
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can subjective experiences of selves be reflected by themselves? This question actually

addresses the issue of self-referential selves (Varela, 1999; Butz, 2008).

On the basis of this question, by closely examining the dynamic phenomena ob-

served in our synthetic robotics experiments, the current paper attempts to postulate

that neuronal processes of self-organization are likely the underlying key mechanism

constituting self-referential selves. The following review of these experiments will illus-

trate that possible constructs for self-referential selves can emerge in the internal neu-

ronal dynamics through self-organizing compositional mechanisms of assembling and

de-assembling sensorimotor schemata of repeated experiences. And, most importantly,

it will be suggested that self-referential selves could be constituted only in critical con-

ditions of sustaining conflictive interactions between the top-down ’subjective’ mind

and the bottom-up sensorimotor reality.

Before closing this section, I will consider the social aspect of selves. A curious ques-

tion here is how we can recognize the selves of others. This question is considered to

be related to agency detection problems, which were addressed by Trevarthen’s double

TV-monitor experiments (Trevarthen, 1993) as well as Auvray’s perceptual crossing

paradigm (Auvray, Lenaya, & Stewart, 2009). A particularly interesting finding in the

double TV-monitor experiments is that mother and infant can engage in coordinated

utterances and affective expressions when ’live’ facial interactions are allowed on TV

monitors but the infants cannot so engage when the mothers appear in video-recorded

interactions on the monitor (Trevarthen, 1993). Auvray’s perceptual crossing paradigm

showed the same analogy in adult studies. Some model studies (Iizuka & Paolo, 2007;

Martius, Nolfi, & Herrmann, 2008) simulating Auvray’s findings have postulated that

social interaction may lead to agency detection of each other when mutual anticipation

is formed dynamically. In another line of research, Wolpert et al. (Wolpert, Doya, &

Kawato, 2003) postulated that anticipatory competency for others by means of mirror

neurons (Rizzolatti, Fadiga, Galless, & Fogassi, 1996) can lead to agency detection in

the theory-of-mind context. However, our essential question regarding these consid-

erations is how we can distinguish one-self and others if one can perfectly anticipate

about others through a unity which is formed among them by coherent coupling. Al-

though mutual interactions should be inevitable for agency detection, perfect coherence

may not be necessary prerequisite. Genuine perception of agencies or selves of others

should originate primarily from their unpredictable parts and incoherences, as will be

postulated later in this paper.

The next section will start to describe our synthetic robotics approach that would

addresses the issue of autonomy of selves and agency.
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3 The dynamical systems approach

My colleagues and I have utilized the dynamical systems approach (Schoner & Kelso,

1988; Beer, 1995; Tani, 1996) in building our cognitive robots. An advantage of this

approach is that it can deal with continuous sensorimotor space directly, whereas other

formula, such as symbol systems or probabilistic modeling, require arbitrary partition-

ing of the original continuous sensorimotor space into a set of discrete states. A feature

of our models that is distinct from most other agent models utilizing the dynamical sys-

tems approach is that our models have top-down pathways based on neural activation

patterns which interact with the bottom-up pathways based on sensorimotor patterns.

These two pathways share the same metric space and thus their interactions can be

dense (Tani, 1996). While there have been some studies (Holland & Goodman, 2003;

Ziemke, Jirenhed, & Hesslow, 2005) on consciousness and selves that have installed

top-down pathways of anticipation, these studies did not necessarily pay close atten-

tion to their dynamic interactions with the bottom-up pathways. In the light of this,

our ultimate expectation is that close investigation of the characteristic nature of such

dynamic interactions between the two pathways might shed light on the continuing

phenomenological discussions about the relationship between the subjective mind and

the objective world.

Let us now review three different robotics experiments that we conducted on the

basis of this notion. The first experiment may account for appearances of ’minimal

selves’ in a simple robot navigation experiment, the second for appearances of ’social

selves’ in an imitation learning experiment between robots and human subjects, and

the third for appearances of ’self-referential selves’ in a more complex skill learning

experiment. In this review, descriptions will be highlighted with observed phenomena

related to problems of selves, but not for details of the adopted models or experimental

setups which the reader may find in (Tani, 1998) for Experiment-1, (Ito & Tani, 2004)

for Experiment-2 and (Tani, 2003) for Experiment-3.

4 Experiment-1: ’Minimal Selves’

A mobile robot with a vision camera mounted on a rotating head shown in Figure 1 (a)

learns to predict landmark sequences it encounters dynamically, while the robot nav-

igates in a closed workspace. After successful learning, the robot should be able to

visually attend to landmarks of colored objects and corners in appropriate timing be-

fore encountering them while traveling around the workspace by following the wall and
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Figure 1: (a) The vision-based mobile robot looks at a colored landmark object. (b)

Neural network architecture employed in the robot.

visually attending to the boundary between the wall and the floor.

4.1 Model and experiment setup

The robot is controlled by the neural network architecture shown in Figure 1 (b).

The entire network consists of prediction by a recurrent neural network (RNN) (Jor-

dan, 1986) and perception, which is divided into the ’what pathway’ and the ’where

pathway‘. In the what pathway, visual patterns of the attended landmarks of colored

objects are processed in a Hopfield network (Hopfield & Tank, 1985). When perception

of a visual pattern converges into one of the learned fixed point attractors, the pattern

is recognized and its categorical output is generated by a Kohonen network (Kohonen,

2001). The learning is conducted for both the Hopfield network and the Kohonen net-

work whenever a visual stimulus is encountered. In the ’where pathway’, accumulated

encoder readings of left and right wheels from the last encountered landmark to the

current one and the direction of detected landmarks in the front view are processed

by a Kohonen network and its categorical outputs are generated. Together with both

pathways, ’what’ categories of visual landmark objects and ’where’ categories of rela-

tive travel distance from the last landmark to the current one as well as its direction

targeted by the camera head are sent for prediction in a bottom-up manner.

For prediction, a Jordan-type RNN (Jordan, 1986) learns to predict the perceptual

categories of ’what’ and ’where’ for landmarks to be encountered next in a top-down

manner. In this model, the bottom-up and the top-down pathways do not merely pro-

vide inputs and outputs to the system. Rather, they exist for their mutual interactions.
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The system is prepared for expected perceptual categories in the top-down pathway

before actually encountering the landmarks. This expectation ensures readiness for the

next arriving pattern in the Hopfield network as well as readiness to direct the camera

head toward the landmark with correct timing and direction. Actual perception is

established by dynamic interactions between the two pathways. This means that if

the top-down prediction of the visual pattern does not match the currently encoun-

tered one, the perception would result in an illusion of a combined pattern of the two.

Moreover, mismatch in the ’where’ perceptual category can result in failure to find any

of the expected landmarks. Such perceptual outcomes are fed into the RNN and the

next prediction is made based on this. Note that the RNN should not be considered as

just an input/output mapping system. The implementation of so-called context units

recurrency (see Figure 1 (b)) makes the RNN an autonomous dynamical system where

the inputs act as perturbations in the ongoing dynamics. At this point, the RNN is

regarded as an implementation of Maturana and Varela’s idea (Maturana & Varela,

1980) that a neuronal network is a ’closed circuitry’ without inputs and outputs. Note

also that the RNN can generate ’mental rehearsing’ of learned sequential images by

feeding the current prediction outputs back to the next inputs, a process referred to as

closed-loop operation.

For the purpose of achieving adequate interactive balance between the top-down

and the bottom-up pathways, a particular mechanism for internal parameter control is

implemented. The mechanism exerts more top-down pressure on the both perceptual

categories of ’what’ and ’where’ as the error between the predicted perception and

its actual outcome is lessened. A shorter time period is also allocated for reading

the perceptual outcomes in the Hopfield network in this case. On the other hand,

when the error between the predicted perception and its actual outcome is larger,

less top-down pressure is exerted and a longer time period is allowed for the dynamic

perception in the Hopfield network. In other words, in the case of fewer errors, top-

down prediction dominates the perception with quick attention to coming expected

landmarks which results in quick convergence in the Hopfield network. Otherwise,

the bottom-up pathway dominates the perception, taking a longer period to look at

landmarks while waiting for convergence in the Hopfield network.

The learning of the RNN is conducted for event sequences of landmark encounter-

ing. More specifically, experienced sequences of the perceptual category outcomes are

utilized as target sequences to be learned. The incremental learning of the RNN is

conducted every 15th landmark encounter by adopting a scheme of ’rehearsing’ and of

’consolidation’, the details of which appear in (Tani, 1998).

9



The experiment was conducted in a closed workspace containing five landmarks

(two colored objects and three corners). The experiments were repeated three times,

in each of which the robot traveled for 105 times of landmark encountering (completing

approximately 21 circuits of the workspace).

4.2 Experimental results

For each run, we observed three characteristic features of the robot’s travels: prediction

error, bifurcation process of the RNN dynamics due to its iterative learning, and phase

plots representing attractor dynamics of the RNN at particular times in the bifurcation

process. A typical example is shown in Figure 2 (a).

The prediction error was quite high in the beginning of all three trials because of the

initially random connective weights. After the first learning period, the predictability

was improved to a certain extent in all three trials, but the errors are not minimized

completely. Prediction failures occurred intermittently during the course of the trials.

We can see from the bifurcation diagram that the dynamical structure of the RNN

varies from time to time. In a typical example shown in Figure 2 (a), a fixed point

attractor appearing in the early period of learning iterations as a single point is plotted

at each step in the bifurcation diagram mostly before the 3rd learning period. After

the 3rd learning period, a quasi-periodic or weak chaotic region appears. Then, after

the 4th learning period, it becomes a limit cycle of period 5 as can be seen from the 5

points plotted at each step during this period in the bifurcation diagram. In addition,

its snapshot is seen in the phase plot where 5 points are plotted. After the 5th learning

period, a region of strong chaos appears, as indicated by a strange attractor in the

corresponding phase plot. However, the strange attractor (chaos) and the limit cycle

attractor of period 5 alternate with each other. We observe that limit cycling dynamics

with a periodicity of 5 appear most frequently in the courses of the all trials. The

periodicity of 5 is significant since it corresponds to the 5 landmarks which the robot

encounters in a circuit of the workspace. It should be noted that the observed limit

cycling dynamics with a periodicity of 5 do not remain stationary; the periodicity of 5

disappears intermittently and other dynamical structures emerge.

On the basis of these results, we can surmise that there exist two distinct phases:

the steady phase represented by the limit cycling dynamics with a periodicity of 5,

and the unsteady phase characterized by non-periodic dynamics. It is also seen that

the shifts between these two phases take place arbitrarily in the course of the time

development. Moreover, it was observed that the differences appear in the physical
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Figure 2: (a) Prediction error, bifurcation diagram of RNN dynamics, and phase plot

of two context units at particular times during robot exploration learning. (b) The

robot’s trajectories as measured in the unsteady phase and in the steady phase.
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movements of the robot as well. In order to elucidate this observation, we compared

the actual robot trajectories observed in these two periods. Figure 2 (b) shows the robot

trajectories measured in these two periods by a camera mounted above the workspace.

The trajectory winds more in the unsteady phase than in the steady phase, particularly

in the way objects or corners are approached. It is inferred that the maneuvering of the

robot is more unstable in the unsteady phase because the robot spent a longer period

on the visual recognition of objects due to the higher value of the prediction error.

Thus, the robot faced a higher risk of misdetecting landmarks when its trajectory

meandered during this period. Indeed, it misdetected corners and objects when its

trajectory meandered severely during this period. In the steady phase, however, the

detection sequence of landmarks became more deterministic and travel was smooth

with greater prediction success. Of importance is the observation that the steady and

unsteady dynamics are attributed not only to the internal cognitive processes arising

in the neural network, but also to the physical movements of the robot’s body as it

interacted with the external environment.

Finally, we measured the distribution of interval steps between the catastrophic

error peaks (error > 0.5) observed in three different travels of the robot (Figure 3).
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Figure 3: Distribution of interval steps between the catastrophic prediction error peaks

of greater than 0.5, where the x-axis represents ranges of interval steps and the y-axis

represents the frequency of appearances in the corresponding range with log scales for

both axes.

The graph indicates that the distribution of the breakdown interval has a long-tail

characteristic with near power-law profile. This indicates that the shift from the steady

phase to the unsteady phase takes place in an unpredictable manner without dominant

periodicity.
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4.3 An account of ’minimal self ’

An interesting observation of our experiment was that the steady phase and the un-

steady phase switch with each other spontaneously even though the workspace environ-

ment was constant. Therefore, it can be said that the “inner world” of the robot is not

constant at all. In the steady phase, good coherence is achieved between the internal

dynamics and the environmental dynamics when subjective anticipation agrees well

with observation. All the cognitive and behavioral processes proceed smoothly and au-

tomatically; no distinction can be made between the subjective mind and the objective

world. In the unsteady phase, this distinction becomes rather explicit as the conflicts

are generated between what the subjective mind expects and the outcome generated

in the objective world. Consequently, it is in this moment of incoherence that the

“self-consciousness” of the robot arises, where the system’s attention is directed to the

conflicts to be resolved. On the other hand, in the steady phase, ’self-consciousness’

is diminished substantially since there are no conflicts demanding the system’s atten-

tion. This interpretation of the experimental observations corresponds to the notion

of self-consciousness in Heidegger’s (Heidegger, 1962) hammer example or Gallagher’s

(Gallagher, 2000) minimal self as described in the previous section.

However, a question still remained: why could the coherence in the steady phase

not last and the breakdown into incoherence take place intermittently? It seems that

complex time development of the system emerges from mutual interactions between

multiple local processes. It was observed that the change in the visual attention dy-

namics due to the change in predictability caused drifts in the robot’s maneuvering.

These drifts resulted in misrecognition of the upcoming landmarks, which led to re-

adaptation of the dynamic memory stored in the RNN and a consequent change in

the predictability. The dynamical interactions take place between all of the processes

of attention, prediction, perception, learning and behavior, and a certain criticality

might be built up among them.

This can be explained more intuitively as follows. When the learning error decreases

as the learning proceeds, more strict timing of visual attention to coming landmarks is

required since only a short period of attendance to the objects is allowed proportional

to the amount of the current error. In addition, the top-down image for each coming

landmark pattern is shaped into a fixed one without variances. This is because the

same periodic patterns are learned repeatedly and the robot trajectories tend to repeat

exactly in the steady phase. If all goes completely as is expected, this strictness grows

with further decreasing of the prediction error. Ultimately, at the peak of strictness,
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catastrophic failures in the recognition of landmark sequences can occur even as the

result of minor noise perturbation since the entire system has evolved too rigidly by

building up relatively narrow and sharp top-down images.

The described phenomena might remind the reader of a theoretical study conducted

on sand pile behavior by Bak and colleagues (Bak, Tang, & Wiesenfeld, 1987). In their

simulation study, grains of sand are dropped onto a pile, one at a time. As the pile

grows, its sides become steeper, eventually reaching a critical state. At this very mo-

ment, just one more grain would trigger an avalanche. They found that although it

is unpredictable exactly when the avalanche will occur, the size of the avalanches is

distributed according to a power law. This pile’s natural growth to a critical state is

termed ’self-organized criticality’ (SOC) and it is found to be ubiquitous in various

phenomena such as earthquakes, volcanic activity, the game of life, landscape forma-

tion and stock markets (Bak, 1996). Let us consider a possible analogy of the robot

experiment results with the SOC phenomenon: the strictness or predictability might

correspond to the steepness of the sides of the sand pile. In our robot experiment, as

the strictness increases gradually with improved predictability, the system state ap-

proaches the critical state where breakdown takes place all of a sudden. In fact, our

analysis has shown that the distribution of the breakdown interval has a long-tail char-

acteristic with near power-law profile. Although we might need a larger experimental

dataset to confirm SOC in the observed phenomena, our speculation is that some dy-

namic mechanisms for generating ’criticality’ could account for the autonomous nature

of ’momentary self’ which William James metaphorically spoke of as an alternation of

flights and perchings in a bird’s life.

5 Experiment-2: ’Social Selves’

Our next experiment which concerns the imitative interactions between a humanoid

robot and a human was designed to elucidate some of the social aspects of ’selves’ and

agency.

5.1 Model and experiment setup

In this experiment, a humanoid robot made by Sony learns to imitate multiple move-

ment patterns demonstrated by the experimenter’s hand movements (see Figure 4).

A neural network model, the so-called recurrent neural network with parametric
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Figure 4: The experimenter interacting with a Sony humanoid robot.

biases (RNNPB) (Tani, Ito, & Sugita, 2004) shown in Figure 5, is utilized. The RNNPB

(a) Forward prediction

Sensory-motor prediction

Prediction error back-propagated

externally

set
internally

determined via regression

Actual sensation: st+1

(b) Backward regression

Figure 5: RNNPB model (a) forward prediction and (b) backward regression.

learns to anticipate how the human experimenter’s hands change in time and also

how its own arm postures should change in imitative ways through direct supervised

training. The positions of the experimenter’s hands are sensed by the robot visually

tracking colored balls in his hands. In the interaction phase, when one of the learned

movement patterns is demonstrated by the experimenter, the robot arms are expected

to move by following the pattern. When the hand movement pattern is switched from

one to another, the robot arm movement pattern is expected to switch correspondingly.
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This sort of dynamic switching among a set of memorized spatio-temporal patterns is

made possible by utilizing an online regression-prediction mechanism in RNNPB.

In terms of the RNNPB mechanism, it learns multiple sensorimotor schemes as

embedded distributedly in a single RNN by utilizing additional units called parametric

biases (PB). PB function as bifurcation parameters for the forward dynamics realized

by the RNN. By modulating the values of the PB vectors, the forward dynamics gen-

erates diverse dynamic patterns in terms of sensorimotor sequences (st,mt) by going

through successive bifurcations. The essential idea here is that the PB as a bifurca-

tion parameter works as a switcher among multiple memorized dynamic patterns. The

learning in RNNPB is regarded as a process of determining an optimal synaptic weights

matrix to embed all target dynamic patterns and a set of PB vectors specific to each of

the target dynamic patterns. As the result of learning, mapping between the PB vector

and dynamic patterns is self-organized. This can be performed by back-propagating

(Rumelhart, Hinton, & Williams, 1986) the prediction error in the output units into

synaptic weights as well as into the PB units. Both the synaptic weights and the

PB activation values are updated in the delta error direction (see (Tani et al., 2004)

for details of the implementation.) In the interaction phase, the forward prediction

and the backward regression are iterated repeatedly without changing the synaptic

weights. In the forward prediction shown in Figure 5 (a), the PB values, which had

been self-adapted in the previous regression, as well as the current sensorimotor values

(st,mt) are fed into the input layer and then the next time step sensorimotor values

(st + 1,mt + 1) are predicted. In the backward regression shown in (b), the prediction

error generated in the immediate past window of N steps are back-propagated into the

PB units and then the PB values are updated in the direction of minimizing the error.

In the following subsection, the fundamental mechanism of the RNNPB in a master-

slave type imitation setting is briefly described, and this basic experiment is then

extended to include mutual interactions between human subjects and robots in which

’selves’ in the social context will be discussed.

5.2 Experiments

(A) Basic experiment

After the robot was trained with 4 different cyclic patterns, we examined how it can

follow shifting of the learned patterns demonstrated by the human experimenter. In

repeated trials, it was observed that the robot arm movements adaptively follow each

shift made by the human experimenter. Moreover, the PB vector is modulated in a

16



stepwise fashion at each moment of shift.

The underlying mechanism of the step-wise modulation of the PB can be explained

as follows. When prediction of the human hand movements agree with their reality,

there exists no error to modulate the PB values. However, when the human exper-

imenter suddenly changes the current movement pattern to another learned one, a

prediction error is generated by modulation of the PB values toward the direction of

minimizing the error. This causes the robot shift its movement pattern to the correct

one currently being demonstrated by the experimenter. Here, the prediction error is

the drive to segment continuous sensorimotor flow into sequences of learned primitives

or chunks. It could be said that ’self-consciousness’ might arise at the moment when

conflicts are elicited between the top-down expectation and the bottom-up reality. In

other words, it is suggested that direct experience of continuous sensorimotor flow is

decomposed into sequences of identifiable ’objects’ by accompanying momentary con-

sciousness of them.

(B) Mutual imitation game

The basic experiment described above involved master-slave type one-directional inter-

action where only the robot side adapts to the human master side, and was developed

to examine mutual interaction by introducing a simple game between the robot and

human. In this new experiment, after the robot learns 4 movement patterns in the

same way as described previously, subjects who are unaware of what the robot learned

are faced with the robot. The subjects are asked to identify as many movement pat-

terns as possible which they and the robot can synchronize together by going through

exploratory interactions. Five subjects participated in the experiment. The settings of

the network and the robot were exactly the same as those in the previous interaction

experiments. Each subject was allowed to explore interactions with the robot for one

hour. Although most of the subjects could eventually identify all of the movement

patterns, the exploration processes were not trivial for the subjects. If they merely

attempted to follow the robot movement patterns, they could not converge in most

instances since the PB values fluctuated when receiving unpredictable subject hand

movement patterns as the inputs. If the subjects attempted to execute their desired

movement patterns regardless of the robot movements, the robot could not follow

them unless the movement patterns of the subjects corresponded to those learned by

the robot.

An example of the interaction in the imitation game is plotted in Figure 6, where

both hands positions of the subject are shown in the upper plot, their prediction by

the robot is shown in the middle plot, and the 4-dimensional PB vector in the lower
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plot. It can be seen that certain coherence in terms of synchronization between the
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Figure 6: Actual sensation of human hand position and its prediction by RNNPB. The

periods denoted by pattern 1 and pattern 2 show certain synchronization between the

two.

human subject’s movements and their prediction by the robot is achieved after some

exploratory phase (see patterns denoted ’pattern 1’ and ’pattern 2’ in the figure). It

was, however, often observed that such coherence was likely to break down before

coherence with another pattern was achieved again.

An interesting observation is that the master-slave relation, which was fixed between

the subjects and the robot in the previous experiments, was spontaneously switched

in the current experiment. In the post-experiment interviews, the subjects reported

that when they felt that the robot movement patterns became close to theirs, they

just kept following the robot movement patterns passively in order to stabilize the

patterns. However, when they felt that their movement and the robot’s movement

could not synchronize, they often initiated new movement patterns, hoping that the

robot would start to follow them and become synchronized. This might account for

the dynamic mechanism of turn-taking (Beebe & Lachmann, 1988; Iizuka & Ikegami,

2004).

Another interesting observation is that autonomous shifts between the coherent

phase and the incoherent phase tended to occur more frequently in the middle of each

session when the subject was familiarized with the robot responses to some extent.

When the subjects happened to find synchronized movement patterns, they tended to
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keep the attained synchronization for a moment in order to memorize the patterns.

However, this coherence could break down after a while due to various uncertainties in

the mutual interactions. Even small perturbations in the synchronization could confuse

the subjects if they were not yet fully confident of the repertoire of the robot’s move-

ment patterns. Moreover, the subject’s explorations of new movement patterns made

it difficult for the robot to predict and follow their movements. It is highly speculated

that such observed complexity originates from the mutually interactive mechanisms of

regressing past and predicting future.

However, these complex situations were rarely seen in the early stage and the late

stage of each trial session. In the early stage, subjects were unable to predict the robot

movements and both the subjects and the robot proceeded with complete incoherence

due to immaturity in learning. In the late stage, however, the subjects become able

to predict robot movements well, where one-directional master-slave type interactions

appeared. The subjects tended to make the robot patterns shift among four learned

patterns at their will, as was seen in the previous experiment. It is in the middle period

that subjects make good as well as bad predictions by chance after they become familiar

with some parts of the patterns. Most of the subjects reported that they occasionally

felt as if the robot had its own ’will’ because of the spontaneity in the generated

interactions in this period. This could be explained again by ’criticality’ that can

emerge only at a specific period with an adequate balance between predictability and

unpredictability in the course of the subjects’ developmental learning in the mutual

imitation game. If we can predict some of the behaviors of others accurately, we may

feel them to be a part of ourselves. However, if there remain some unpredictable aspects

to their behavior, we may perceive agency or their own selves. Ultimately, it is argued

that the theory of mind may not be about knowledge for predicting others’ behaviors

but rather about ’metalevel’ knowledge that others’ behaviors can be predictable at

times and unpredictable at others.

6 Experiment-3: ’Self-Referential Selves’

This study was originally conducted for the purpose of investigating effective neu-

ronal mechanisms for learning complex goal-directed actions by attaining compositional

structures internally. More specifically, our questions concerned how the continuous

sensorimotor flow experienced can be articulated into sequences of reusable behavior

primitives stored in memory and how these primitives can be recombined to generate

desired goal-directed actions. Although there have been some architectural proposals
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utilizing different neurodynamics schemes, including the hierarchical gating network

architecture (Tani & Nolfi, 1999; Haruno, Wolpert, & Kawato, 2003) and neural net-

work model utilizing multiple time scale dynamics (Paine & Tani, 2005; Yamashita

& Tani, 2008), this section reviews our prior studies (Tani, 2003) which extended the

scheme of the RNNPB to incorporate hierarchical structure. It will be shown that the

problem of behavior compositionality is highly related to the question of how subjec-

tive experiences can be objectified with the appearance of structures of ’self-referential

selves’.

6.1 Model and experiment setup

The basic notion of extending RNNPB with hierarchy is described here, but the reader

is referred to (Tani, 2003) for a detailed explanation. When the RNNPB learns to

reconstruct the continuous sensorimotor sequences experienced as training targets, the

PB vector values tend to change in a stepwise fashion at the moment of shift in behavior

primitives in the sequences. Then, the higher level RNN, which is newly introduced,

learns to predict how and when the PB vector in the lower level RNNPB changes by

observing them (see Figure 7 (a).) An important point concerning implementation

is that each PB unit receives additional force other than the back-propagation delta

error which pressures the PB unit value to be modulated toward either extremes of

0.0 or 1.0. Then, the higher level recognizes the exact moment of segmentation as, at

the least, one PB unit value flips by going across its value of 0.5. The higher level

predicts the next timing of when this bit flipping in the PB vector takes place and

to which bit patterns the PB vector changes. In behavior generation in the physical

environment, the higher level RNN attempts to predict how the PB vector will change

in time based on the learning thus far (see Figure 7 (b).) This prediction of the PB

vector extends not only to the immediate future but also to the immediate past. In fact,

the forward prediction sweeps for a temporal window ranging from immediate past to

future iteratively by preserving temporal PB vector sequences in the window memory

buffer as shown in Figure 8. Meanwhile, the PB vector in the immediate past is also

modulated by the bottom-up regression if an error appears in the lower level sensory

prediction. Consequently, the PB vector sequence in the immediate past window is

determined by means of a balance between the pressures from the top-down forward

prediction and from the bottom-up regression, and such balance is attained through

iterative interactions between the two sides. It is, however, noted that experimenters

should set a parameter k which determines the ratio of arbitrating the pressures from
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Figure 7: The RNNPB with hierarchy in which (a) the higher level RNN is trained

using PB vector sequences generated in the lower level as the teaching target and

(b) real-time interaction between the top-down prediction of PB from the higher level
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behavior generation.
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the two sides. The actual balance during the interaction largely depends on the setting

of this parameter (Tani, 2003). On the other hand, the PB vector sequence in the

immediate future window is determined solely by the top-down forward prediction in

the higher level. The reader may ask why this complicated mechanism is necessary.

It is necessary because it is considered that future perspectives are built based on

recognition of the actual behavioral outcomes in the past.

Robot experiments were then conducted for the task of simple object manipulation

using a 4-degrees of freedom arm robot. In this task, the robot perceives with the robot

camera the center position of the object and the arm tip position as the sensory inputs.

The hierarchical RNNPB with two levels is utilized to learn multiple behavior tasks

during supervised teaching. The task sequences consist of compositional sequences of

predefined behavior primitives shown in Figure 9 (a).

Figure 9: (a) Seven behavior primitives to be acquired. (b) The seven target task

sequences which are composed of the seven primitives.

The seven primitives are AO: approach object in the center, PO: push object from

the center to the left-hand side, TO: touch object, IC: perform inverse C shape, HO:

return to home position, CE: move to the center, and C: perform C shape. Seven

task sequences as shown in Figure 9 (b) are used for training of the network. These

sequences contain branching structures such as – AO: approach object can be followed

by either PO: push object or HO: return to home. Although there is no prior knowledge

of the primitives in the network, the experimenter demonstrates them to the robot in

terms of their combinational sequences. As a point of note, there are no explicit cues
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for segmentation of the primitives in the continuous sensorimotor flow which the robot

learns. The network must discover how to segment the flow of the ongoing task by

attempting to decompose the sensorimotor flow into a sequence of segments (behavior

primitives) which are reusable in other sequences to be learned.

6.2 Experiment

We begin by describing how the sensorimotor flow is segmented by self-organizing

behavior primitives in the lower level by examining the PB activation sequences af-

ter the learning. We then present the results of additional experiments on real-time

plan modulation utilizing the trained network for the purpose of examining dynamic

characteristics of interplay between regression and prediction during actual behavior

generation.

(A) Segmentation after learning

Figure 10 (a1-3) shows how the PB is activated during learning for three representative

training sequences. The plots in the top row of this figure show the activation of four PB

units as a function of the time step; the activation values from 0.0 to 1.0 are represented

using a gray scale from white to black, respectively. The plots in the second and

third rows represent the temporal profile of motor and sensor values for each training

sequence. The vertical dotted lines indicate the occurrence of segmentation when the

behavior sequence switches from one primitive to another in generating the training

sequence. The capital letters associated with each segment denote the abbreviation of

the corresponding primitive behavior. In this figure, observe that the switching of bit

patterns in the PB takes place mostly in synchronization with the segmentation points

known from the training sequences, although some segments are fragmented. Observe

also that the bit patterns in the PB correspond uniquely to primitive behaviors in a

one-to-one relationship in most cases.

(B) Online plan modulation

We examined how action plans can be dynamically adapted due to changes in the

environment by going through bottom-up and top-down interactions. In this experi-

ment, the robot learns to generate two different behavior sequences depending on the

position of the object which is perceived as one of the sensory inputs. When the object

is perceived in the center of the task space, the robot must perform task-A in which

the arm repeatedly approaches the object and returns to the home position. This task

can be represented as a primitive sequence of AO (approach object) followed by HO

(return home). When the object is perceived on the left-hand side of the task space,
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Figure 10: (a1-3) are three representative sequences after their training where the

temporal profiles of the PB are plotted in the top row, the motor outputs in the

second row, and the sensor inputs in the third row. The capital letters associated with

each segment denote the abbreviation of the corresponding primitive behavior. (b)

The profile of dynamic switching from task-A (before 13th step) to task-B (after 33rd

step), where the dotted line indicates the moment when the object is moved from the

center to the left-hand side.
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the robot must perform task-B in which the arm repeats a primitive sequence of CE

(move to center), C (make a C-shape), and then HO (return home).

The learning of these two tasks was attempted by training only the higher level while

utilizing the behavior primitives learned in the lower level in the previous experiment.

The lower level was not re-trained in this new experiment. After the learning was

converged, it was shown that the robot could generate either of the behavior sequences

correctly depending on the position of the object, that is, in the center or to the

left-hand side. When the robot starts to move its arm, the PB vector in the initial

event step is inversely computed to account for the sensory inputs representing the

current position of the object as well as the current position of the hand tip. The two

different situations concerning the object position generate two different PB vectors in

the initial event step, which are followed by the corresponding PB sequences learned in

the higher level. However, our current interest is to examine what would happen if the

position of the object were to be switched from the center to the left-hand side in the

middle of task execution. The question is that whether the behavior plans as well their

executions can be dynamically adapted to the sudden situational changes through the

process of the bottom-up and the top-down interactions.

The experiment showed that the task-A behavior pattern in the initial period is

generated stably by following the mental plan. When the object is moved from the

center to the left-hand side, there is an error in the anticipation of the sensory in-

puts, making the behavior pattern unstable and deviate from the task-A. However,

this period of unstability is resolved and the task-B behavior pattern initiates and it

continues stably. Figure 10 (b) shows the temporal profile of the behavior generated.

The vertical dotted line denotes the moment when the object is moved from the center

to the left-hand side of the task space. Observe that it takes 20 steps until the task-B

behavior pattern is initiated after the object is moved to the left-hand side. Observe

also that the PB, the motor outputs, and the sensory inputs are distorted with frag-

mentation of the chunks during this transition period. Of particular note is the fact

that the PB vector bit patterns are severely distorted.

A visualization of the fluctuation in video format is available as supplementary

information at “http://www.bdc.brain.riken.go.jp/ tani/realtime”. In this video, the

fluctuation starts with the stepwise change in the sensory inputs which corresponds to

the position change of the object introduced by the experimenter. It can be seen that

the future plan image alternates every second between two possible temporal patterns

of task-A and task-B . The PB vector also fluctuates not only for the current and future

steps, but also for the immediate past steps due to the regression. The fluctuation is
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initiated due to the gap generated between the top-down prediction of the PB values

and their bottom-up estimation through the regression based on the sensory inputs.

Repetition of this experiment 5 times with the same arbitration parameter k revealed

the profiles of the transient motor patterns to be diverse, with the transient period

ranging from 10 steps to more than 30 steps. Because of the unpredictable diversity in

motor behaviors that occurred during this period, on one occasion the robot mistakenly

knocked the object, making it fall from the table, at which time the experiment was

terminated. It was, however, noted that such critical state while maximizing behavioral

diversity appears only in a limited range of parameter k (see details in (Tani, 2003)).

6.3 An account of ’self-referential selves’

Let us now examine possible correspondences of the experimental results to the phe-

nomenology of self-referential selves by firstly revisiting Husserl’s thoughts on time

perception. Husserl (Husserl, 1964) introduced the concepts of “retention” and “pro-

tension” to account for the subjective experience of “nowness”. He explained the idea

using an example of hearing the sound phrase “Do Mi So”. When the note “Mi” is

heard, we would still perceive a lingering impression of “Do”, while at the same time

anticipating hearing the next note of “So”. The former is retention and the latter

protension. These phenomena may also appear in physical behavior generation. For

example, when our hands approach target objects from a resting position, we may have

an impression of from where our hands have started just immediately before as well

as a subtle expectation of touching the target object soon after. The terms retention

and protension are used to designate the experienced sense of the immediate past and

the immediate future, respectively. They should be considered as a part of automatic

processing and thus unable to be controlled consciously. Husserl considered that the

subjective experience of “nowness” is extended to include fringes in the experienced

sense of both the past and the future in terms of retention and protension. Therefore,

this “nowness” is not a point in physical linear time but has duration. The operation

of the RNN shown in the previous experiments can be related to these phenomena of

retention and protension. The reader is reminded that the prediction of the RNN is

not made by an explicit logical computation, but rather proceeds as an autonomous

dynamics while retaining the past context internally. This context-dependent forward

dynamics of the RNN could be one possible realization of the phenomena of retention

and protension (Tani, 2004).

If we understand Husserl’s notion of “nowness” in terms of retention and protension,
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the following question arises. Where is “nowness” bounded? Husserl seems to consider

that the immediate past does not belong to a representational conscious memory, but

merely to an impression. Yet how could the immediate past, experienced just as

an impression, slip into the distant past which can be retrieved through a conscious

memory operation (Varela, 1999)? What kind of mechanism qualitatively changes

an experience from just an impression to a consciously retrievable objective event?

Furthermore, Husserl’s goal was to explain the emergence of the objective time level

from the pre-empirical level of retention and protension (Husserl, 1964). Husserl seems

to consider that the sense of objective time would emerge as a natural consequence

of organizing each experience into one consistent linear sequence. But, what are the

underline mechanisms for this?

The idea of a segmenting flow of experience into objectified reusable units or prim-

itives could be the key to answering these questions. Our main idea is that “nowness”

can be bounded where the smooth flow of experience is truncated by conflicts in terms

of prediction error. The sequential notes of “Do Mi So” constitute a chunk within

which a perfect coherence is organized in the coupling between the neural dynamics of

anticipation and the sound sensation flow. The same can be assumed for behavior gen-

eration such that, inside of the behavior chunk of “approach an object for grasping”,

usually matching between anticipated sensation and actual one runs smoothly and au-

tomatically without giving rise to conflicts or ’consciousness’. However, when we hear

the second phrase “Re Fa La” after “Do Mi So”, a temporal incoherence emerges in

the transition between the two phrases since this second phrase is not necessarily pre-

dictable from the first one. Similarly, after grasping the object, the chunk is truncated

because of a possible immediate multiple branching proceeding to, for example, lift it

up, pull it over, or throw it.

Let us consider this in greater depth by examining what happens in the hierar-

chical RNNPB. In the learning process, the moment of unpredictability arises when

the target training sensorimotor flow encounters a branching where the RNNPB in the

lower level cannot tell which way the flow proceeds. Remember that the training se-

quences contain branchings since they are designed to preserve compositionality. With

this unpredictability, the PB vector is shifted from one value to another by the error

generated. At this very moment, it can be interpreted that the automatic continuous

sensorimotor flow experienced is segmented by the error associated with ’conscious-

ness’. Moreover, it can be said that subjective experience of the sensorimotor flow is

objectified by means of the PB vector which can be manipulatable in the higher level.

In the course of the learning process, the higher level becomes able to describe its own
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experiences in linear sequences of events in terms of the PB vector sequences. In re-

gards to memory retrieval, however, the sensorimotor flow can be reconstructed only in

an abstract way since the original flow is now represented by combining a set of behav-

ior primitives. Although such ways of reconstruction could provide compositionality as

well as generalization in representing the sensorimotor flow experienced, the uniqueness

of each instance of original experience might be lost by abstraction. Consequently, it

is presumed that the sense of objective time may appear when the experience of the

sensorimotor flow is reconstructed in a compositional form while loosing its exactness.

In the previous section, it was conjectured that possible constructs for self-referential

selves might be constituted via objectification of subjective experiences. Indeed, it was

just shown that such objectification of sensorimotor flow experiences can be achieved

through self-organization of the neuronal dynamics in the learning process. However,

such constructs obtained may not yet account for genuine structures of self-referential

selves since they were just constituted in a static way, along a one-directional bottom-up

pathway. Incidentally, our previous experiment regarding the online plan modulation

suggested that the sequencing of primitives in the higher level can become susceptible

to unexpected perturbations, such as when an object is suddenly moved. Such pertur-

bation could initiate complex situations. One aspect of complexity might arise from

the online nature of behavior generation. As has been observed, if the top-down expec-

tation of the PB values conflict with the those from the bottom-up regression based on

the current experience, the PB vector can be fragmented. Even during this fragmen-

tation the robot continues to generate behaviors, but in an abnormal manner due to

distortion of the PB vector. The regression of this sort of abnormal experience causes

further modulation of the current PB vector in a recursive way. During this iteration

within the causal loop, the entire system may face intrinsic criticality, from which the

observed diversity of behaviors might originate. We suggest that genuine constructs

of self-referential selves could finally appear at such criticality accompanied by conflic-

tive interactions with circular causality between the top-down subjective mind and the

bottom-up reality.

7 Discussion

7.1 Minimal self, social self, and self-referential self

The current paper attempts to elucidate the dynamic characteristics of the autonomy of

selves by reviewing a series of synthetic robotics experiments conducted by the author’s
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group.

In the neuro-robotics modeling of Experiment-1, mutual interaction between the

bottom-up pathway of landmark perception and the top-down pathway of its prediction

is arbitrated by internal parameters which are adapted by utilizing the prediction

error. The experimental results revealed that the entire system dynamics proceeds

with intermittent shifting between the coherent phase with good predictability and the

incoherent phase with poor predictability through the incremental learning process.

By referring to Heidegger’s hammer example, it was postulated that the ’minimal

self’ becomes consciously aware by the gap generated between top-down anticipation

and bottom-up reality in the incoherent period. It was also suggested that the entire

system dynamics tends to proceed toward a certain critical state in which a large range

of fluctuations could take place; a mechanism which might be analogous to SOC (Bak

et al., 1987).

Experiment-2 explored characteristics of ’selves’ in the social context by conducting

an imitation game between a humanoid robot controlled by the RNNPB and human

subjects. The RNNPB is characterized by its simultaneous processes of prediction of

future and regression of past. In the middle of the mutual imitation game, sponta-

neous shifts were frequently observed between the states of coherence and incoherence

accompanying turn taking phenomena in the interactions between the two sides. It was

suggested that such complexity may appear at a certain critical period in the course

of developmental learning processes by human subjects when an adequate balance be-

tween predictability and unpredictability is achieved. It was speculated that human

subjects may perceive the autonomy of ’selves’ for robots when they participate in

interactive dynamics with criticality.

Experiment-3 addressed the problem of self-referential selves. Here, the RNNPB

model was further extended with hierarchy. In the learning experiment with an arm

robot manipulating an object, the continuous sensorimotor flow experienced was seg-

mented into a sequence of reusable behavior primitives by accompanying stepwise shifts

in the PB vector caused by the prediction error. Then, the higher level RNN learned

to predict the sequences of behavior primitives in terms of shifts in the PB vector.

The observed phenomena in the experiments could be interpreted as the process of

achieving “self-referential selves”. This is because the subjective experience of sen-

sorimotor flow is objectified into reusable units which are manipulable in the higher

level. Consequently, when the original experiences of sensorimotor flows are recon-

structed with compositional structures, they become consciously describable objects

rather than merely impressions of the original experiences. This might account for
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how self-referential selves can be constituted.

It was, however, argued further that the genuine forms of self-referential selves

should be constituted in causal circular interactions between the bottom-up pathway

and the top-down pathway. In order to preserve rich interactions between the two,

the entire system dynamics should be sustained at certain critical regions, which were

depicted in our experiments of online plan modulations. It turns out that self-referential

selves can evolve in diverse trajectories with their intrinsic autonomy characterized by

such critical dynamics.

These experimental results suggest that although all three types of selves differ from

each other, they also share a similar condition of criticality that emerges in dynamic

interactions between the bottom-up and top-down processes.

7.2 Autonomy of selves

In this subsection, I would like to examine further how the autonomy of selves is

constituted by exploring possible correspondences between phenomenology and the

dynamical systems approach used in some synthetic modeling studies. For this purpose

we firstly revisit Husserl’s thoughts on temporality and Varela’s interpretations of its

dynamical systems (Varela, 1999).

One of the most essential but difficult considerations made by Husserl on tem-

porality is so-called ’double intentionality’ (Husserl, 1964). He attempted to provide

accounts for the paradoxical characteristics of temporality of being both static (stable)

and flowing (dynamic) by using the respective notions of transversal and longitudinal

intentionality. Varela (Varela, 1999) interprets transversal intentionality as the static

constitution of ’trajectories’ appearing as event sequences relating the past, present and

future in the object time level. He regards longitudinal intentionality as the dynamic

property of self-motion, immanence or, said more simply, the continuously changing

dynamic structure of constituting temporality. He argued that these two intentional-

ities are interdependent in the sense that dynamical structures generate trajectories,

which in turn modulates the dynamical structures, and vice versa (Varela, 1999). He

speculated that this sort of mutual bootstrap between trajectories and dynamic struc-

tures could lead to complex dynamics characterized as the edge of chaos (Crutchfield,

1989) or self-organized criticality (Bak et al., 1987).

Iizuka and Ikegami (Iizuka & Ikegami, 2004) reported an interesting simulation

study which is relevant to our work. In their study, two mobile agents with RNNs

were evolved with a genetic algorithm (Holland & Reitman, 1978; Nolfi & Floreano,
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2000) to develop their interactive behaviors. They set an intriguing fitness function that

maximizes the product of periods of one agent following and being followed by the other

agent. Interestingly, this scheme resulted in the emergence of turn-taking behaviors

in which the situations of following and being followed are spontaneously switched. It

should be emphasized that the autonomy observed in the behaviors of these coupled

agent are immanent because it self-manifests due to the evolutional pressure that poses

conflictive requirements for the agents to establish complementary actions. The micro-

slip phenomenon modelled by Ogai and Ikegami (Ogai & Ikegami, 2008), again using an

evolutional scheme, might be explainable in the similar way. When agents are required

to conduct two alternative actions with equal probabilities, the evolved behaviors of the

agents show wondering trajectories between the two possible actions. Such conflictive

situations imposed on the agents’ actions lead to self-organization of chaos in the

sensorimotor coupled neurodynamics.

Although the abovementioned studies nicely show an immanent property in the

autonomy of agents in synthetic ways, this may not yet be for autonomy of selves and

consciousness since it does not account for the issue of temporalization. As postulated

by Husserl, selves and consciousness should be considered as inseparable from the

perception of temporality. On this topics, Varela (Varela, 1999) wrote that:

Consciousness does not contain time as a constituted psychological cate-

gory. Instead, temporal consciousness itself constitutes an ultimate sub-

strate of consciousness where no further reduction can be accomplished.

It can be said that conscious selves should be immanent properties in temporalization.

The flow of experience from now to the past is objectified in the bottom-up regression,

while the thoughts objectified are reflected to ongoing experiences in the top-down

anticipation from now to the future by accompanying enaction (see Figure 11.) At the

very moment when these two streams mingle together through dense interactions, no

separation can be made between the subjective mind and the external reality where

unity of the temporal consciousness of selves could appear diversely. Our robotics

experiments introduced above could provide a synthetic analysis of the parts of such

dynamics. The dynamics tends to become critical under certain conditions due to the

generation of conflicts between the regression to “represent” own experiences in the

past objectively and future anticipation of them. It should be understood that “repre-

sent” signifies a fundamental intentionality in phenomenology which directs toward the

objective time level starting from the absolute flow level through pre-empirical level,

as postulated by Husserl. Further, “represent” is thought to be betrayed by new ex-
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Figure 11: The two pathways of the top-down subjective mind of anticipating future

and the bottom-up reality by regressing the past experience mingle together through

their dense interactions.
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periences and thus to be modified consistently. At the maximum of such fluctuations,

conscious selves could emerge. I would suggest that everyday phenomena we encounter

can be characterized as a never-ending race between experience and their objectifica-

tion. Now, it is clear why I cannot find autonomy of ’selves’ in behavior-based robots

– they have no “representation” (Brooks, 1991) that make themselves struggle.

7.3 Criticality and authentic being

Before closing the current discussion, I would like to address one more topic which could

help our understanding of the criticality discussed in the current paper – by viewing

it from Heidegger’s thoughts on existence (Heidegger, 1962), although it is purely

speculative. Heidegger seems to consider that existentiality referred to as “being” or

dasein is the final irreducible element in phenomenology. Therefore, it was suggested

that thoughts on consciousness or selves should start from understanding “being” as

a primordial phenomenon. Firstly, Heidegger considered that all things can “exist”

in relational structures among others, like a hammer exists as a tool for a carpenter.

Similarly, man can “exist” in a coherent relationship with his neighbors, for example,

by engaging daily in “idle talk”. Heidegger considered that the dasein in this mode

is simply an inauthentic being at the most, for man lives his daily life only in the

immediate present, vaguely anticipating the future and mostly forgetting the past.

However, Heidegger also thought that this mode of dasein can be altered to that of

an authentic one when man thinks positively about the possibility of his death, which

can occur at any moment and not necessarily so very long in the future. Death is an

absolutely special event because it is an ultimately individual event which cannot be

shared with others. Although death can be regarded as an absolute impossibility of

dasein which cannot be related to any other kinds of dasein, Heidegger considered that

it can render the possibility of authentic dasein heading toward its absolute impossi-

bility. When man looks ahead toward death as his ownmost possibility (the possibility

of the impossibility of any existence at all) with anticipatory resoluteness (vorlaufende

Entschlossenheit), he also needs to look back at his past with regression (wiederholung)

in order to identify himself. Here, Heidegger’s brilliant notion is that the present is

“born” via dynamic interplay between Zukunft – looking ahead future for possibil-

ity and Gewesenheit – regressing past for reflection where authentic being is finally

rendered. Consequently, Heidegger regards temporality as the ground for authentic

being.

Although it might be regarded as absurd by the reader to relate our robots which
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are technically regardless of their deaths to Heidegger’s thoughts, still we might find

some correspondences by using some metaphor. Heidegger’s notion of authentic and

inauthentic beings could account for the qualitative differences observed between our

robots as reviewed in the current paper and conventional behavior-based robots. As

described previously, the emergence of critical dynamics observed in our experiments

can be accounted for by interactions between lookahead prediction of future and regres-

sion of past, which are parallel to Heidegger’s notion of the dynamic interplay between

Zukunft and Gewesenheit. As the resultant behavioral trajectories during each task

for the robot become diverse while exhibiting near power-law profiles which cannot

be characterized by taking their average, their “being” might be said to be authentic

metaphorically. On the other hand, conventional behavior-based robots simply trying

to maintain a “nice” coherence with their environment cannot show any nontrivial

behaviors because there is no intrinsic mechanism to drive them to criticality. Such

robots might be regarded as “inauthentic beings”. An “authentic being” should be

a primordial phenomenon that can render the genuine autonomy of selves and this

should constitute the ultimate identity required for agency (Barandiaran et al., 2009)

which I addressed in the introduction of the current paper.
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