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Codevelopmental learning between human and
humanoid robot using a dynamic neural network
model

Jun Tani, Ryunosuke Nishimoto, Jun Namikawa and Masato Ito

Abstract—The paper examines characteristics of interactive Neuroscientific literature suggests that learning of complex
learning between human tutors and a robot having a dynamic gkills—those which enable object and tool manipulations—is
neural network model which ‘is inspired by human parietal = qngolidated in the inferior parietal cortex where internal

cortex functions. A humanoid robot, with a recurrent neural dels for th behavi If >ed It of
network that has a hierarchical structure, learns to manipulate MOodels Tor those behaviors are seli-organized as a resuft o

objects. Robots learn tasks in repeated self-trials with the integrating sensory information from vision and proprioception
assistance of human interaction which provides physical guidance [4], [5], [6], [7]. These findings indicated that task behaviors

until tasks are mastered and learning is consolidated within in robots could be acquired more efficiently through iterative
neural networks. Experimental results and the analyses showed learning rather than programming

that 1) codevelopmental shaping of task behaviors stems from . . .
interactions between the robot and tutor, 2) dynamic structures The decades of research in robot learning have established

for articulating and sequencing of behavior primitives are self- Several different schools of thought. Evolutionary learning [8]
organized in the hierarchically organized network, and 3) such and reinforcement learning [9] are approaches in which robots

structures can afford both generalization and context-dependency acquire behavior skills through self-exploration and reward

in generating skilled behaviors. signals. These are forms of evaluative learning without direct
Index Terms—Humanoid robot, CTRNN, development learn- supervisions. Some researchers found that the self-exploratory
ing, compositionality. behaviors of robots appear to correspond to those human
development processes in which innateness and learning are
I. INTRODUCTION structurally coupled [10], [11], [12]. Although such unsuper-

The tasks required of robots are becoming increasingfi>€d 1€aming schemes might reduce the need for human
more complex. As a result, robot designers must devel@ﬁS'Stance to acquire skills, the robot would require numerous

robotic programs that enable complex task execution. Jdigining trials to be able to execute complex tasks in real robot

imagine what would be needed for a humanoid robot t%tuat_lons. Bgcause the approach is unreal!snc for robot; in
ractical settings [13], we conducted a series of supervised

grab an object it sees. Conventionally, two cameras, plad¥@c!! , . ) : . :
on the robot's "head” would determine an object's g|obé1aarn|ng experiments involving robots equipped with dynamic

position stereo-optically [1] within three dimensional spac&€ural network models [14], [15], [16]. .

Based on that information, the trajectories of arm and handSUPervised learmning has tended to be seen as trivial because
movements are computed so that the object can be graspBf. Optimal trajectories for the desired task behaviors are
The corresponding trajectory of the joint coordinate is theffoVided by human tutors, but this is not always the case
computed using inverse kinematics [2]. These computatios thiS Paper attempts to show. First, the type of learning
are not trivial, because all possible, collision-free trajectorid{® @re interested in is not simple rote learning whereby a

that meet optimal criteria are determined in a combinatoridPot generates a "recording” of all the teaching patterns
manner [3]. without organizing structures. Rather, we see learning as

However, it seems that in our everyday behaviors lim® Process through which implicit rules are extracted from

movements are elegantly coordinated with little conscio@!terns of experience. These rules become the foundations
effort. Such coordinated movements in humans are likely fgr generalizations in the networks that enable the robot to

be the result of inherent constraints from the innate structuf&SPONse appropriately to unlearned situations. Second, it is
determined genetically as well as those structures that emefg@Ortant to note that the networks have biases which prevent

through learning that follows birth. The connections betwedxact learning of teaching patterns. These biases originate from
“ig}nate” structures predefined in the network models. These

the muscular skeletal structures and basic neuronal circuit inelud ] h )
provide the basis for all possible patterns of movemenitructures include various parameters such as time constant

Synaptic changes and re-wiring of neuronal circuits resultidj/d decay coefficient for each neuron's activation dynamics,

from everyday sensory-motor experiences and activity thdjtial synaptic connectivities, and the number of_neurons that
refine our basic movement patterns over time, with practicd® recurrent neural network (RNN) model recruits [17], [18].

For example, the time constant of the network dynamics
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constant is not good at learning quickly changing tempordl. ANTICIPATORY LEARNING OF VISUO-PROPRIOCEPTIVE
patterns. On the other hand, the one with small time constant SENSATION BY CTRNN
iS. not good at Iegrning SIO\.le ch_anging ones. Also, .RNNS The proposed network is designed to learn and to re-
W'th dense syna_tptlc connections with all neurons, mclludmgt Bnerate trained visuo-proprioceptive sensation sequences by
input/output units, tend to generate certain correlation str eans of anticipatory learning mechanisms. In the current
tures among different output dimensions which do not exist |n . . > o

. " . rapot setup, the visual inputs, represent sensation of an
the teaching output patterns. In addition, the characteristics P b puts; rep
generalization in RNN learning yield biases for better Iearningd

o%ject’s position in the retina coordinate of the robot video
. i . ; mera. The proprioceptive inputs; actually represents
with specific teaching patterns [15]. Teaching patterns that can brop P Pt y rep

set of arbitrary teaching patterns to robots will not result i This flow of information is analogous to those suspected in

. - ) . the parietal cortex, albeit abstractly, where the motion vector
successful learning outcomes. In this light, it may be possm? . . ; ..
-~ of visual stimulus enters the parietal cortex from occipital

fobe and proprioceptive information comes from the somatic
sensory cortex. Those two types of sensory information appear
to be integrated at various locations in parietal cortex [20].

: For example, Duhamel et al [21] found some neurons in

The current paper presents a novel robot tutoring scheme . ; . . .
. ventral intraparietal area that are activated bimodally, with
that emphasizes the codevelopment of robots and huma . : . L
. . o either visual or proprioception stimuli.
tutors as they interact to achieve a specific task goal. More

e T We assume that the anticipation of this integrated state of
specifically, when robot learning is immature, human tutors . . : .

. ; . . : Vision and proprioception for the next time step. 1, m:11)
physically interact with the robots in order to guide the rObOtcsould emerge through associative learning that is temporall
to perform the task better. Through the physical interactiorg, 9 9 9 P y

tutors can easily learn which ways the robots tend to move an%und‘ Although no strong physiological evidence has been

which parts of the movements should be modified. The tutgptamed, many have said that this type of anticipation mech-

. . : .ahism can be achieved with a simple forward model [22],
simply exerts intentional forces on to the robots to modi . ) :

. . : X 3], [24] in animal and human brains. Once the next step
some parts of the trajectories which are crucial for the go

achievement in the tasks. On the other hand they do rpprloceptlve state is predicted, an inverse model can generate
) : . . € necessary motor torques to achieve the predicted state.
interfere with the robot intentionally for unnecessary par

. . . . Ethough inverse models are assumed to be in cerebellum or
of the trajectories which do not affect the goal achievemen : . :

. . : o motor cortex in real brains, we just use a PID controller to
directly. It is hypothesized that the re-training of the networks

: . : nerate motor torques to achieve the predicted target joint
with these newly codeveloped trajectories could lead to mugh .. . . o :
. o gsitions in our robot setup. This point is summarized that the
better learning results than cases of training the netwo

with arbitrary determined teaching trajectories. By this meanst, RNN prodgce; next step prediction for the proprioceptive
X - statem, 1 which is sent to the PID controller as the next step

the robot tutoring becomes a process to jointly explore tar et ioint positions of the robot

better training path which can influence the network’s internat 2° ) P '

structure to be gradually organized to an adequate one Ifgri r(())r:T;i ddgrre]:?jm:salasyf;igsss Vt'ng’icthﬁrjn;cépit;r%Clefirnnéggn
achieving the desired task goal. P 4 y

described in the following differential equation.

adequate teaching patterns to be used.

. . (*é? ma C) = F(Sa m, C) (1)

Here we describe our proposed neuronal architecture that
uses a continuous time recurrent neural network (CTRNNhis equation simply means that tldechange of the visuo-
[18], [19] and its implementation in a humanoid robot foproprioceptive state is function of its current state and the
object manipulation tasks. The model focuses on anticipatdngernal statec. The internal state is often necessary when
learning [14] of temporal sequences of vision-related signdtse system dynamics state cannot be well represented by the
for object and proprioception of arm position, which webservable states afandm. The functionF() generates the
assume corresponds to similar activity in the parietal cortexchange of the internal statealso.
Then, two classes of experiments are described in which thdt is essential to note that the dynamical system described
humanoid robot learns schemes of specific object manipulat the equation is an autonomous one. This means that the
tions through the human tutoring. In the discussion sectigmediction of (s,7m) can be self-generated without having
the essence of the proposed scheme is discussed with ther actual sensation ofs,m). This enables so-called the
special focus on the problem that how complex robot skilldosed-loop look-ahead prediction [14] which could account
can be developed by self-organizing compositional structuries human capability of the mental simulation of own actions
with having a set of behavior primitives through the interactivwithout having actual sensation from the real world[23]. On
learning. Also the paper will discuss possible correspondendhe other hand(s, m) of the self-generated can be replaced
of our experiments to neuropsychological evidences relatedvidh (s,m) of the actual sensation for prediction of its
parietal cortex. change. This operation is called as the open-loop prediction
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[14] in which the sensory prediction can be generated with
well utilizing the current sensation. The open-loop mode is
used when the robot actually acts on the environment.

The visuo-proprioceptive anticipatory learning scheme is
implemented with the CTRNN. Why is the CTRNN utilized?
First, the CTRNN is considered as a direct implementa-
tion of Eq.1 into a neural network model which can learn
spatio-temporal structures in a continuous time and space
domain. Second, the CTRNN preserves contextual flow by
self-organizing appropriate internal dynamic state that corre-

X 0 context loop

I::T:W(illj?ll/lvl [ ]
IIKnIVlﬁ yI\IIII

0

sponds tac in Eq.1. In this way, the robot implemented with (s, M) «——— Read out of predicted
the CTRNN can avoid hidden state problems [25]. Third, error R sequences
the CTRNN learns the temporal correlations of any time (s, my) <—— Teaching sequences

scale by properly setting the time constants for the neuron

activation dynamics, as will be detailed later. (Although in

the current experiment with using supervised learning scheme, (a) Teaching
time constants were set manually by trials and errors, they can

be self-adapted if the scheme can be incorporated with genetic

algorithms as shown in [26].) From these three reasons the
CTRNN is employed in the current study. However, it is noted

that the CTRNN architecture does not correspond directly to
the real anatomical neuronal structures in parietal cortex. In the
current study, the CTRNN is used in the connectionist level al [T TT]
abstraction for the purpose of attaining the functions of the
forward model which is assumed especially in inferior parietal
lobe. Also, the usage of the error back propagation learning ax TTT1T1]
scheme [27] which may not represent real neuron synaptic
modulation mechanisms can be accounted by the same reason.

We designed our CTRNN model, shown in Figure 1, by R X
modifying the Jordan-type RNN-a discrete time model. Before t
going to detailed mathematical descriptions of the model, we
explain the basic mechanism in a intuitive manner. As shown
in Figure 1, the network consists of three layers, namely the
bottom layer, the hidden layer and the top layer where there (b) Open-loop generation
are reentrance loops from the top layer to the bottom layer.

The bottom layer consists of groups of units in which theig. 1. The CTRNN model employed. (a) training mode and (b) behavior
visible unitsaX corresponds to the visuo-proprioceptive statgeneration by open-loop mode.

(s,m) and the context unita® does to the internal state

in Eq.1. The activation states of these units are propagated

into the hidden units in the hidden layer through the synapfi€nsed from the external.

weightsw!? and further to groups of the output unit§ and Next, the exact computation scheme for the forward dy-
oC in the top layer. The output units here are utilized in §amics of }Ih,e CTRNN is described. First, the hidden layer
different way from usual perceptron-type networks or RNN?%'V_at'O”at_ is computed. The potential of thigh hidden unit

0¥ andoC mostly represené changes ofX andaC in the Uit IS obtained by summing the act_lvatlop propagated_ from
same way that the time derivative term in the left-hand sid€ bottom layer through the synaptic We'gmﬁ- Then its
of Eq.1 does. Actually, the time developmentof anda® activation valye is ciomputed py applying the sigmoid function
in the bottom layer are obtained by integrating and oC 0 the potential. This is described as:

(sp M) (St41s Miyq)
Sensation  Next step prediction

in time through the reentrance loop. This corresponds to the H _ H _X,C | 1H
o - ; ; uit_E wizaz; +b; (2)
closed-loop prediction of the visuo-proprioceptive sequences. I
Figure 1(a) shows the training mode of the CTRNN. The al, = sigmoid(u/’;) 3)

goal of the training is to minimize the error between the " . . . :
teaching sequences;, m;) and the self-generated sequence"%mere b;” represents t.he .blas value forcthth hidden umF.
(s¢, m:) by adjusting the synaptic weightsmfj andw?j. This NexXt, the top Iaye_r act|_vat|ons of” an(_j of are computed in
can be achieved by applying the back-propagation throuHhe same way using hidden layer activation values.

time algorithm [27] to the errors. Figure 1(b) shows the X,.C _ : o H (e}

open-loop generation mode when the robot actually acts on %t = Szgmmd(z Wiy 00 @)

the environment. In this modeyY ; is obtained through the Then, time development of the potential of the bottom layer
integration ofo; not ona;* of self-generated but oaX of units, ™ andu®, are obtained by integrating® ando® by
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Fig. 3. The initial object positions. 0 to 5 for training and 6, 7 and 8 for
generalization tests (without training).

as the visual inputs for the CTRNN implemented in the robot.
The object is an elastic cube of 5 cubic centimeter which is
located on the task table shown in Figure 2. A human tutor
takes both arms of the robot and guides them to the object
Fig. 2. A humanoid robot made by Sony Corp is at its home position in 1@ téach the object manipulation tasks. The control gains for
task space. The object to be manipulated is in front of the robot. motors in the arm joints can be changed at each operation
mode of the robot. The gains are set as 100 percentage for
] ] ) ) ) the self-generation, 20 percentage for the teaching after the
following the first order differential equation of Eq.5. network is trained (after the second teaching session), and 0
i 0 = _uzx,c + (o;X’C —05)/a (5) percentf_:\ge for th_e teachiljg before any training of the network
(in the first teaching session).
where 7 and o« denote a time constant and amplification
coefficient, respectively. The actual update of these values gre Experiment procedures
computed with the numerical approximation of Eq.6.

We examined the developmental tutoring processes for two
ule$) =~ T+ (075 —05) /(- 1) +u G (6) separate tasks, task-A and task-B. For the purpose of examin-
. . o o . ing the basic characteristics of the performance developments
Finally, the next time step activation of the visible units arg.;oss the tutoring sessions with later described statistical
obtained by taking the sigmoidal output of the potential. 551y ses, the experiment is repeated with three different tutor
af{fl - sigmoid(ufigfl) (7) subjects for each task' case. _
In task-A, the robot is to take the object by both hands from
Here, a;,, , represents the closed-loop prediction for visuaa fixed home position and lift it up. For task-B, the robot first
proprioceptive state at the next time stefp,1,m:41). The touches the object only with the right hand, while the left arm
open-loop one-step prediction can be performed by utilizingmains in the home position. As the right arm returns to the
the inputs from the external rather than the self-predict¢@me position, the left arm begins to approach a mark point at
ones as shown in Figure 1(b). In the open-loop mage a fixed position on the table. In both tasks the object position
in the right-hand side terms in Eq.6 is replaced witfy, on the table is changeable within a fixed range and therefore
which is the potential value representation of the actual visuigs manipulation requires visual feedback. In the tutoring, the
proprioceptive state. Here,", can be obtained by taking therobot is repeatedly guided for the object manipulations with

inverse sigmoid ofi;",. the object located in 6 different positions as indicated by dots
labeled by from 0 to 5 in Figure 3.
I1l. THE 1ST EXPERIMENT Each subject proceeds with three succeeding sessions each

of which consists of the robot teaching phase, the CTRNN off-
] o o line training phase and the robot self-generation phase. Initially
A small humanoid robot, shown in Figure2, is utilized fofhe sypjects are instructed how to guide the robot in teaching
the experiment. In the current setup only left and right arm§; each task behavior. The subjects are reminded that only
are allowed to move where each arm has 4 DOF. Those joiQ{Sscific points during each task behavior are important, not
have specific maximum rotation ranges from 70 degree 1§ getails need reinforcement for task behavior. In task-A it
110 degree depending on the joints and the rotation angle§mnportant that both hands approach precisely to the right
are mapped to the neuron activation values ranged from QQsiion for the object grasping and that the object can be
to 1.0. All ot_hgr joints except head Jo_lnts are fixed. Thﬁfted-up more than 5cm without dropping as the goal. Beyond
robot has a vision system mounted on its head and the h¢gadse specifications, it is not important what sorts of splines are
automatically fixates on a red mark on the object 10 B8,y in the arm trajectories provided that they are smooth. In
manipulated. Eventually, 2 DOF of the head motor positiongey g the subjects should pay attention to both the position
will provide a rough estimate for direction of object on th%recision in touching the object with the right hand and in
table. This relative location information for the object is treater%aching the fixed mark on the table by the left hand. For each

A. Robot platform
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task the experimenter demonstrates an example of adequagt‘-i-'020 5
tutoring. Before the trials, the subjects practice the tutoring2®®"] ° Ead|
patterns with the robot for several times. Because variance§”’"’ R

o
o
o

0.010

joint mean square err
o

in time courses among teaching sequences for each task may” [ ———s— . = ;§. ZZZZ B~ o
. . ~=0.000 ~=0.000¢
confuse the learning processes of the network, the subjectsare ™ + _2 3 T2 3 T
. . . . . session session
asked to guide the robot mostly in the same time period with (a) Subt (b) Sub2 (c) Sub3

asub1Osub2msub3

the example demonstrated. If the time period of a particular 5 0.020

teaching sequence is 5 percentage longer or shorter than the
example one, the sampled sequence is not used for training of
the network. 00051 %
The teaching in the first session and that in subsequent eo —
sessions are different. In the first teaching (before any training (@ Avorage
of the network), the robot is guided without its self-generated
force .bec_ause t_he Comr_OI g-aln lslset to _Zero' Therefore' tIH . 4. The developments of the mean square joint position errors between
teaching in the first session is not interactive while the secofid teaching and the generated through 3 succeeding sessions for (a) subjectl,

and third sessions are. The tutor guidance interacts with tagsubject2 and (c) subject3 in task-A where plots are shown for three object

self-generated movements of the robot with a small gafff3ion cases, denoted by pos0, pos2 and poss. (¢ shows the average among

The movements are based on the network dynamic structures
that were self-organized in the training phase of the previous

session. In this situation, the subjects are instructed to follcgfgerated one are measured because no generalization tests
the movements generated by the robot as much as possiie conducted and the task achievement cannot be measured
while gently forcing the robot arms so that the task can Bg iarms of success or failure in this task.

achieved. A set of the visuo-proprioceptive sequences, in terms, the current experiments, and o of the CTRNN param-

of the head direction and the encoder readings for the afip, s gre set as 10.0 and 0.1, respectively. 12 context units and
motor joints, is obtained from these guided behaviors for b hidden units are allocated in the CTRNN.

object positions. The network is trained with these obtained
visuo-proprioceptive sequences as targets in a parallel manner
with modulating the synaptic weights and the biases obtained Results
in the previous training session. The first training session startsrirstly, the results of task-A is described. Figure 4 shows the
with the synaptic weights and the biases set randomly neRivelopments of the joint position errors between the trained
zero values. The BPTT training is repeated for 10000 epocfisd the generated at the onset of the object grasping in task-A.
for each session with a constant learning rate. Here, the error is taken as the mean square error (MSE) of each
At each self-generation session, robot behaviors are exg@int position (mapped in the neuron activation range from 0.0
ined using three of the trained object position cases (0,1 1.0) averaged for 8 arm joints. The plots are shown for three
and 4 in Figure 3) for both task behaviors as well as fQjpject position cases (position 0, position 2 and position 4)
Fwo .untrained positign cases only fo_r task—A_ (see _6 and {4y the three subjects in Figure 4(a), (b) and (c). Figure 4(d)
in Figure 3). By using untrained object positions in taskshows the development of the MSE averaged over three object
A, we can examine the generalization characteristics of tB%sition cases for each subject.
proposed learning scheme. For the purpose of measuring thgpe resylts indicate that tutoring substantially reduces the
developments of task performances across three Sessions;gii position error between the trained values and the gener-
introduce different measures. In task-A, the joint position €feq ones as the session proceeds for task-A. The randomized
rors between the trained ones (demonstrated ones by subj analysis indicates that the reduction of the MSE is statis-
and the generated ones (replayed ones by the robot afier,y significant (» < 0.00195) both in the second session
learning) at a specific event are measured for the trained obiggh he third session measured across the all subject results
position cases anq the relative pqsition distances between \;\nﬁ,] the three object position cases. The average among three
hands "’“?d the (.)bJeCt aF a specific momer)t are measuredJ erent object position cases shown in Figure 4(d) indicates
the untralneq object position cases. Accord.mg to Atkeson ,ettﬂ t amounts of the error reductions in the 3rd session are less
[28] and Calinon et al [29], there are two different constraintg » ., the ones in the second session. It is also observed that

in generating robot motor trajectories in the imitation Iearningigl.'ere are variances in the errors among three object position

One_ Isan absolu_te position constraint and the otheris a relat Mies for each subject. It seems that the error in some position
position constraint. It is considered that the measure of t

Sses are already minimized even in the first session and others

joint position error applied in the trained object position CaS&¥e not. However, those variances are minimized in the 3rd

corresponds to the former constraint and the one of the relatg/eeSsion
position distance applied in the untrained position cases doe? i o .

. " . . In task-A, the generalization test was conducted with the
to the latter constraint. In addition to these, the failure rate in

terms of the goal achievement (lifting-up the object more thf%:r?ses for the object position 6 and 7. Because there are no

s wihotcroping) i messure 1 sk . a3, on €0 0 0 fese cbietpostons fr e generaiaton
the joint position errors between the trained position and t e . . . . .
hand and the object in the trial of the object grasping. In
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: s 5 Fig. 6. The developments of the failure rates for each subject in task-A.
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Fig. 5. The developments of the mean square hand-object distances for lef z S 0010
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and right hands with the object located in the position 6 and 7 for (a) subject1 £*°'

(b) subject2 and (c) subject3 in task-A where Y axis unit is square decimetergo.oos D: E£0.005| b\_ﬂ:. £0005
50,000 al $0.000 : > Z ©0.000

1 2 3

1 2 3
the current analysis, the distance is measured in the top-view et 0802 o8
lateral direction from the inner surface of each robot hand to gooz0
the object surface of the contact in decimeter. The mean square g0y
average is taken for the left-hand and right-hand distances to 00
the object. Figure 5 shows the developments of the hand-object o008y —

distances across 3 sessions for cases of the object located at T e

position 6 and 7. It is observed that the minimum distance is (d) Average

reduced significantly (p < 0.0156) with randomized test)

from the first session to the 2nd session but not for fromig. 7. The developments of the mean square joint position errors between the

the 2nd session to the 3rd sessi@n< 0.5). The distance teaching and the generated through 3 succeeding sessions for (a) subjectl, (b)
- ect2 and (c) subject3 in task-B where plots are shown for three different

. S . . subj
is minimized .'n the. second s_essmn r_‘nostly where the harﬁ%?ect position cases, denoted by pos0, pos2 and pos4. (d) shows the average
touch the object with zero distance in 3 cases and they &long three object position cases for each subject.

near miss with distance less than 1cm in 2 cases out of the
total 6 cases. In the third session, zero distance is achieved in 5
cases out of 6 cases. It is also seen that the developments ofailmeng different situations related to object positions. The
hand-object distance are different between two object positivariances are large in the beginning in both measures of the
cases for each subject. Especially in the trials of subjectjdint position error for the trained cases and the hand-object
and subject 3, position 7 cases show near-zero distances frfistance for the untrained cases which are reduced significantly
the first session while the position 6 case starts with largerthe later sessions in most cases. The P-values obtained in our
distances. It is noted that in one case out of 6 cases, namelydomized test analysis indicated that the task performances
the case with subject 1 with position 6, the distance cannot ipethese two measures are improved significantly in the second
reduced enough to achieve the goal of this task. These resghission but less significantly in the third session. However,
suggest that the generalization for the adopted situations ¢he failure rate is significantly improved not only from the
be achieved mostly but not in a uniform way. first session to the second session but also from the second
Now we examine how the task performance in terms of th@ssion to the third session. This implies that the achievement
goal achievement develops across the sessions. Figure 6ofajhe task goal (lifting up the object without dropping it)
shows the development of failure rate of each subject samplgdy not be always accounted only by the measures of the
over 5 trials with different object positions of 0, 2, 4, 6 angbint position error and the hand-object distance. Actually,
7 (If the object is lifted-up more than 5cm, it is regardedkills for precise position adjustment and subtle force control
as a success and otherwise as a failure.) It is seen that pijeutilizing elasticity of the object and the hand surfaces
failure rate is reduced largely both in the session 2 and sessi@nthe very moment of grasping seem to develop from the
3. Figure 6 (b) shows the developments of the failure ratggcond session to the third session with showing only slight
compared between the cases of the trained positions (0, 2 @fAglrovements in these two measures.
4) and the untrained ones (6 and 7) across three subjects. Wextly, the results of task-B is described briefly. Figure 7
can be seen that the failure rates in the trained position cagggws the developments of the joint position errors between
are slightly less than the ones of the untrained. the trained and the generated in task-B. The errors at 4
The above analyses with three different task performanggnt positions in the right arms are obtained as differences
measures indicate some interesting aspects of the developnveen the the guided ones at the moment of the right hand
learning processes in task-A. Firstly, it can be said that thec'iﬁjching the object and the generated ones at the moment
are variances in the development of the task performanggsine same hand approaching to the object in the closest

asublosub2@sub3

int meal
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range. The joint position errors for the left arm are obtained Obj-pos 0 Obj-pos 2 Obj-pos 4
in the same ways with the fixed mark on the table. The MSE

is computed for all joint position errors in both arms. The + B
randomized test analysis indicates that the reductions of th%ea"h'1 O - 05>C
MSE are statistically significant witlp < 0.0078) in the ! EBEEE Enxrxl EEETE

second session but not so significant with < 0.221) in
the third session. The average among three object position
cases shown in Figure 4(d) indicates that amounts of th&ene-!
error reductions in the 3rd session are less than the ones It i o —T———— 0T N
the second session. The errors show relatively large variances EED stee e
among different object position cases in the first session which
are reduced significantly in all subject cases. It can be said that )
the developments of the joint position errors in task-B sharergch.o
similar trends with the ones in task-A. my
Now, let's look at the developments of the exact motor
profiles ,i.e, trajectories of proprioceptive states of generated
as compared with the ones trained at each session. Sudine-2
observation would derive further understanding of how themt S e T
interactive tutoring develops the motor schemes for the tasks ron e oAy oA
through the iterative sessions. Figure 8 and Figure 9 show the
developments of the teaching motor profile (trajectory of 4
representative joint positions in the arms) and the one gen: ..o
erated for a subject case of Task-A and Task-B, respectively,
The 4 DOF motor profiles are plotted for the 0, 2 and 4 U I L
object position from the left, center and right downward for
three sessions in these figures. mLO, mL1, mL2 and mL3 in
Figure 8 denote the joint positions at the pitch, the roll andmt
the yow of the left shoulder and the pitch of the left elbow. (I e o e
mR1 and mR2 in Figure 9 denote the joint positions at the
roll and the yow of the right shoulder. There are significant _ _ o , _
diferences between the teaching profiles and the generafif Mo pofesofjeachng nd generaton n e succeedng iorng
profiles in the first session where teaching profiles jackknitgm. small arrows indicate moments of discontinuous changes in the profiles.
discontinuously at some points in both task-A and task-B.
(The exact moments of discontinuous changes in the profiles
are indicated by small arrows on the plots.) However in ttommon hidden units. Therefore, when the right arm joint
second and third sessions, the teaching profiles become mpohkitions move, the left arm ones tend to move in some degree
smoother and the differences between profiles for teaching dreim the intrinsic correlation hidden in the network. The same
generation are reduced. deviation in the left arm motor profiles can be observed also in
We observed some interesting phenomena during the intire 2nd teaching session as subjects permit left arm deviations
active developmental processes. The subjects reported thdbdt is not against task specification.
was difficult to generate similar or correlated guided behaviorsAn additional experiment was conducted and yielded more
for all the object positions in the first teaching sessionnteresting results. In this experiment, two subjects were asked
However, as the session proceeded they found it became edsifix the left arm rigidly during the first half of the task
since the robot is basically leading the movement. Hendgghavior in the second teaching session. This resulted in
the tutors needed to adjust the arm positions only at precBignificant increases in the joint position errors (averaged
moments such as of grasping and touching the object. among three object position cases) in the 2nd self-generation
Another interesting phenomena can be observed in thession. The error increases from 0.00262 to 0.00436 for one
generated motor profiles for Task-B shown in Figure 9. Isubject and 0.00083 to 0.00168 for the other subject when
the 1st teaching session, 2 DOF motor profiles in the left ag@mpared to the cases where this arm was able to move. These
are flat until 30 time step because the left arm is fixed whil€@sults imply that the CTRNNs are good at learning patterns
the right arm is moved to reach the object in the first half o¥ith more smooth profiles of having more correlations among
this task behavior. However, in the 1st self-generation sessidfferent dimensions. This is natural because the CTRNNs are
after teaching, the left arm joint positions start to changg@ntinuous-time dynamical systems with predefined time con-
slightly from the beginning of the task behavior. This sort gftants and their unit activities of large dimensions are tightly
deviation of motor profiles happens for the all subject caséxupled by means of the dense synaptic connections. When
These deviations may be due to the tendency of the CTRNiINe CTRNN are forced to learn “unnatural” patterns against
to preserve correlations among the profiles of all the outpiiteir intrinsic characteristics, such training could hamper the
dimensions because they are mutually connected through @@mning process severely.

010 230 4 010 20 80 @
step step

ene-3
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Fig. 10. Two-level structured CTRNNSs. The information flow shown in this
1.0 1.0 Loy figure is particularly for the generation phase.
Gene-2 0.5% 0.5;';—/\__,————'// 0.5;;_,’/_7//
mt . ‘ ‘ ‘ ‘ .
o 10 2 30 40 010 20 30 a4 N U ] . .
step step ste been developed from our previous study[32]. This newly
proposed architecture is applied to a developmental tutoring
L 0 - 0 scheme for acquisition of more complex task skill.
Teach-3 wsps 7" asT s
0TI S U O 0TI 3 A. The two-level architecture
1.0 L0 g Figure 10 shows the two-level neural network architecture
Gene-3 05 //\4—:7 0_5}"{% 05é used. Before proc.eeding to_ detailed descriptions of the scheme,
my ' abstract mechanisms in its learning phase and generation

0 10 20 30 & 010 @ 3 @ 0 10 2 30 & . .
step sten step one are introduced. The lower level consists &f & 16)

CTRNNS. Although each local CTRNN in the lower level has
Fig. 9. Motor profiles of teaching and generation in three succeeding tutoritige Same structure with the one used in the first experiment, it
sessions for task-B. mLO and mL3 denote 2 DOF joint positions in the g% associated with a gate in this new architecture. The current
arm and mR1 and mR2 denote those in the right arm. . . .

gate opening for a local CTRNN determines its effect on the
total output in the lower level. The local CTRNN with the
largest gate opening among others at each time step is called
as the winner module. The output of the winner dominates the

If a robot is to learn more diverse and complex behafotal output in the lower level. The gate opening mechanism is

iors, introducing level structures to its neuronal architecturééferent between in the learning phase and in the ganeration
seems inevitable. The problem is how the continuous visuehase.
proprioceptive flow of experience can be segmented intoln the learning phase, each local CTRNN in the lower
chunks of behavior patterns that can be compositionally uskeiiel competes to become an expert for generating outputs
for other situations [30], [31], [32], [9], [33], [34], [26]. With the minimum error compared to the target one among
If we suppose a two-level structure, the lower level mighathers. In sweeping a teaching sequence, the winner CTRNN
organize a behavior repertoire and the higher level mighith the maximum gate opening switches from one to another
select and combine behavior patterns from it. Previous studi#gpending on the error of each CTRNN at each step in the
showed that the behavior repertoire can have either loggquence. On the other hand, a single CTRNN is located in
[24], [32], [35] or distributed representations [34], [26] inthe higher level of which time constant is set larger than
neuro-dynamic systems [36]. Unlike local representations,the one in the lower level networks. This CTRNN learns to
distributed representation has globally shared structures thegdict the winner switching sequence in the lower modules by
can be used to represent whole patterns that could be acquif&morizing how the errors of all modular CTRNNS change
in a single network once final generalizations are achievdtl.the teaching sequence with rough approximation.
However, any distributed representation scheme would havdn the generation phase, the gate opening for each local
difficulty handling increasingly larger numbers of pattern€TRNN in the lower level is determined not by its actual
because catastrophic memory interferences among differermor but by the one predicted by the higher level CTRNN.
patterns would occur. Therefore, the current study utilizésonsequently, the higher level determines switching of expert
a local representation scheme so-called the mixture of logapdules in the lower level by means of the error predic-
experts [37]. More specifically, we introduce a model dfon. The module selected as the winner by the higher level
hierarchically organized mixture of local experts which hagenerates exact visuo-proprioceptive sensation patterns at the

IV. THE 2ND EXPERIMENT
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moment by its forward dynamics. In this way, the proposed K SE is the prediction of the MSE vector generated in the
erarchically organized networks can learn to generate relativétyver level. o units in the top layer are allocated only for
long sequences through their decomposition into segmentsthe M SE vector because the prediction is made only for this
Now, the scheme is described in details with introducingector. The next step predictioMSEtH is fed-back to the

mathematical formula. Each CTRNN in the lower level has @TRNN as the next step inputs. The visual sensation as well
gate anda;X of the overall outputs of this level is computedas the task switcher vector are regarded just as inputs and they
as the gate weighted summation of each network outgfit are not for prediction.
Then, the CTRNN makes a prediction about the MSE vector
aX = Zgi calX? (8) for the next step. For behavior generation, the predidtesiE

= vector is sent to the lower level which is converted to the gate
i . ) X openings with the softmax function in Eq. 9. This pathway
whereg; is the gate opening of thith network. Hereq;:; Cor-  genes as a top-down control by the higher executive level
responds to next time step prediction of visuo-proprioceptiyg,, the lower visuo-proprioceptive level. The time constant
states;+1,my+1. The temporal sequence of is determined - ot the higher level is set as four times that of the lower
by the learning process of the lower level networks. Basically,e| This time constant difference enables the abstraction of
the gate at time step opens larger with the network Of jy¢ormation flow from the lower level to the higher one [26].

generating less error between the target values in trainifle axact value of is 5.0 for the lower level CTRNN and
(¢, ;) and the self-generated ongs, m) at the time step. 5 g for the higher one, correspondingty.is set as 0.1 for
As the softmax function is applied, the gates tend to 0pen inygih of the CTRNNS. 4 context units and 10 hidden units are

winner-take-all (WTA) manner. The gate opening is Computpfﬂlocated for each of 16 CTRNNSs in the lower level. 6 context

as: units and 16 hidden units are allocated in the higher level
i exp(st) CTRNN. These numbers are determined as mostly minimum
9e = S eap(s)) ©) ones required for successful learning of the networks in our
=t tﬁz preliminary experiment.
s = —er; (10) Both of the higher level CTRNN and the lower level
(202) CTRNN can be operated either in the open-loop mode and in
the closed-loop one. In the open-loop mode, the actual visual

o ) ) &nsatiors; is input to the lower level CTRNN and the higher
prediction error (MSE) of theth network at time step. The level CTR;\IN correspondingly. In the closed-loop mode, the
time average is obtained by using a fixed time steps windo ! '

2 denotes the standard variance of the training errors of vfual predictions, ,, from the softmax output is fed-back to
o . . . . .
. ; e both networks through the visual-imaginary loop which is
local CTRNNSs in the lower level. Upon computing the gat 9 ginary foop

. ) h line in Fi 10.
opening for each network, the error vectof generated by the Shown by a dotted line in Figure 10

) . : . : N One of the interesting questions in this experiment is
ith network is weighted by its gate opening which is computed -\~ = visuo-proprioceptive flow of experience could be
aser? .

gt

segmented through the developmental learning processes. If
eri = ert - gl (11) Ssegment patterns learned by local “expert” networks in the

lower level appear as reusable elements that can reconstruct
Then, theith network is trained by back-propagating thehe whole experienced flow by their sequential combinations,
obtained error vectoer; . This means that a network withthey are called as behavior primitives. (Michael Arbib called
less MSE for certain segments of visuo-proprioceptive Sghem as motor schemata in his motor schemata theory [30].) In
quences will learn those segments better since its gate ks sense, our focus in the robot learning is not for learning by
a larger opening. In this way, local “expert” networks develogpte but for achieving certain generalized structures with the
for particular segments that repeatedly appear. The visupmpositionality by adequately organizing a set of behavior
proprioceptive sequence patterns experienced in the loygimitives mentioned in the above.
level are articulated into sequences of segments accompanied
with gate switching sequences[32].

Meanwhile the higher level CTRNN learns to mimic thé®: Setup

gate switching sequences observed in the lower level. Then this experiment, the behavior tasks are more complex
learning of the higher level occurs only after the lower level ihan those in the previous examples. A robot with this two-
trained at each tutoring session. In the current implementatilewel structured CTRNN receives tutoring training for a set of
a single CTRNN is allocated in the higher level. This CTRNNask behaviors. In task-1 the robot must approach the object
learns sequences of the MSE for each lower level CTRNMth both hands coming down from the home position, grasp
instead of the gate opening. The higher level CTRNN hdlse object, let it go, and return to the home position. In task-2,
mostly the same structure as shown in Figure 1. 21 visitlee robot must approach the object, grasp it, bring the object
units X in the bottom layer are allocated for 16 dimensionsp and down three times, release the object, and return to home
of the MSE vector, 2 dimensions of the visual inputs at th@osition. And in task-3 robot must approach the object with its
current step that are the same as those received at the lolgéirhand from the home position, alternately touch the object
level, and 3 dimensions of the task switching vector. Herejth its left and right hands eight times before returning to

where erf denotes the time average of the mean squ
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the home position. We see that these actions required in each *

task consist of a set of behavior primitives. Those ApS:

approaching to the object by both hand3:;: grasping the
object by both handsiim: going back to home positior,i:

lifting up and down the object repeatedBpL : approaching
to the object by left hand antich: touching the object by left d

£ 0.5~

and right hands in turn. However, it is important to note that 1,
the robot is not taught for each behavior primitive explicitly. 5 -

The robot is trained with continuous visuo-proprioceptive flow

il

30 40

50 60 70
step

for each task behavior without seeing any segmentation cues.
One of the central motivations in experiment-2 is to examine
whether these behavior primitives appear in the segmented
flow as the results of the self-organization. If so, we will
examine further how they are internally organized.

A tutor teaches these three task behaviors to the robot in
3 tutoring sessions. (Note that all three different tasks are
taught to the robot at each training session, unlike the first

2030

40
step

50 80

(a) Session1

70 0

10 20

30

40 50 60
step

(b) Session2

experiments in which tasks A and B are trained in different L AR LR
sessions.) Tutoring procedures are similar to the first set of . : y
experiments. Tutors are given instructions for each task. For IR T —
task-1, the subject is asked to ensure that both hands hit R R R
precisely the right position for object touching. In task-2, the (c) Session3

tutor needs to make sure the object is held and brought up
and down three times without dropping it. In task-3 the robef, ;.

number of times. In each tutoring session, the task behaviors
are guided and the initial position of the object changes 6
times for each task (Figure 3).

A . Gate opening, visual inputs and joint positions profiles in (a) the
should touch the object by each hand in turn for the correni session, (b) the 2nd session and (c) the 3rd session for Task-1.

TABLE |

SUMMARY OF BEHAVIOR PERFORMANCES ON TASK1.

In the first session, the network training is iterated for 50000 session| pos. 0] pos. 2] pos. 4] pos. 6] pos. 7
epochs for the lower level and 5000 epochs for the higher level 1st. Both | Both | Both | Both | Both
networks, respectively. In the second and third sessions, 10000 2nd. | Both | Left | Both | Right | Left

’ ) ’ 3rd. Both Both Both | Right | Both

epochs and 5000 epochs for the lower and the higher level
networks. The experiment was conducted with one subject.

C. Results of_la_bfals attaphed on the _g_ate _opening profile_s denote behavior
' primitives which are identified in the 3rd session for each task.
The experiment results showed that the robot learns toThe general observation for all task developments is that

perform all the three task behaviors nearly perfectly by thessic structures for segmentation of the visuo-proprioceptive

3rd session, even for untrained positions. Another importafidw is organized in the session 1. However, the motor profiles
observation was that a set of behavior primitives appear in théntinue to develop until the session 3 except the task-1 case
visuo-proprioceptive sequence patterns as segmented by ith@hich the motor profile development almost converges in
gate openings. the first session. The details of this point is described later.

In order to visualize how the segmentations proceed in theTaple |, Table Il and Table Il summarizes the developments
developmental learning processes, the developments of i€he task performances for the task-1, the task-2 and the task-
gate opening are plotted for each task. Figure 11, Figure 32correspondingly. For each task, performance at different
and Figure 13 show the visuo-proprioceptive profile and thgitial positions of the object for each session is described
gate opening across three sessions of self-generation for Tagkng abbreviations. For tasks 1 and 2, self-generation is
1, Task-2 and Task-3, correspondingly. The profiles of th&aluated for cases with the trained initial object positions of

task-1 are taken for the case of the object position 0, task322 and 4 and untrained ones of 6 and 7. For task-1, “Both”,
for the position 2 and task-3 for the object position 2. In these

figures, the time developments for the openings of 16 gates,
4 joint positions in left arm and 2 dimensional camera head
direction corresponding to the vision information are shown in
the upper, the middle and the bottom levels. Each gate opening

TABLE I
SUMMARY OF BEHAVIOR PERFORMANCES ON TASK2.

is represented by grey level color of a horizontal bar fromS€ssion e dOUp Hoﬁj"jbfost o J‘Up e dGUp HOIFZioljbl_?ost
white to black as gorresponding to its value from 0.0 to 1.0. 5ng. | No HoldUp | Updown 1 | Updown 1 | No HoldUp | Updown 1
Those bars are aligned from the top to the bottom levels as3rd. Updown 3 | Updown 3 | Updown 2 | Updown 2 | Updown 3

corresponding to from theth to the15th gate opening. A set
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Fig. 13. Gate opening, visual inputs and joint positions profiles in (a) the
1st session, (b) the 2nd session and (c) the 3rd session for Task-3.

“Right” and “Left” denote that the object is touched by both
hands, by only the right hand and by only the left hand,
correspondingly. For task-2, “No HoldUp” means that the
robot cannot hold-up the object at all. “HoldUpLost” means
that the object is held up once and it is dropped soon after.
“UpDown X" denotes that the object is successfully held for
X times. Task-3 performance was evaluated only for trained

Fig. 12. Gate opening, visual inputs and joint positions profiles in (a) the, . L. . .
9 gl b o P P @ object positions 0, 2 and 4. (This was because object was

1st session, (b) the 2nd session and (c) the 3rd session for Task-2.

TABLE Il
SUMMARY OF BEHAVIOR PERFORMANCES ON TASK3.

session| pos. 0 pos. 2 pos. 4
1st. Touch 1 | Touch O | Touch O
2nd. Touch 1 | Touch 1| Touch 1
3rd. Touch 8 | Touch 5| Touch 7

frequently moved out from the workspace when touched if
the object is initially located at the untrained positions of 6
and 7.) “Touch X” means that the object is touched X times
by either of the right or the left hand. The correct number of
touching is 8.

Now, the details of each task development are examined.
From Table |, Table Il and Table I, we can see that, with the
exception of task-1 which were perfectly generated in the first
session, task performances develop gradually in the tutoring
sessions. The task-1 behaviors were generated perfectly even
with untrained object positions. The performances, however,
do falter slightly in the second session but, by the third session,
they are near perfect again. This might be because the task
behavior in task-1 is simpler than those in the others. We also
noted that visuo-proprioceptive profiles and gate openings for
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task-3 most of the time. In fact, oscillatory motor patterns
for repeated touching decay over time (Figure 13(a)). In the
second session, the robot starts to touch the object at the least
o once and initiating oscillations in motor patterns are seen, see
Figure 13(b). By the third session the robot can repeatedly
touch the object in a stable manner as it generates more explicit
00 110 120 150 10 Th0 T80 cyclic patterns in the motor profile (see Figure 13(c).) In fact,
our further analysis on the networks showed that this cyclic
pattern of Tch is generated by limit cycling attractor self-
N NS organized in the 11th network of which gate is exclusively
CENRUNRE R O L U OB U R Ch L LU U O L open during generation of this pattern. In the analysis it was
| w observed that this network alone generates this cyclic pattern
m! with a constant periodicity after its convergence to the steady
oscillation. Similarly, it was found that another cyclic pattern

Fig. 14. Gate opening, visual inputs and joint positions sequences for Tagj- Li is generated by limit cycling attractor self-organized in

2 in the first self-generation session with the object moved manually by #ie Oth network.
experimenter. By looking at the gating sequences generated in the third
session, we can see how continuous visuo-proprioceptive se-
quences are articulated through a self-organized set of behav-
task-1 do not change drastically across three sessions as Sh@NI’primitives that emerges in our proposed neural network
in Figure 11(a), (b) and (c). We also saw that the behavigfchitecture. For example, in Figure 11(c), Figure 12(c) and
primitive ApB is encoded by the 13th gate opening dfth  Figure 13(c), we see that the behavior primiti¥®B is
by the joint opening of the 3rd and 10th gates for all the threg,coded by the 13th gate opening for task-1 and tadk-2,
sessions. by the Oth gate opening, anidm by the 3rd gate opening
In the task-2, the object could not be lifted in three ofor the task-1 and the same for the task-2 does by the 10th
the five attempts in the first session. While we noted thgb_te opening. There are differences in the gate opening for
the approach trajectories for both hands were almost perfaefpresentingGr between in task-1 and in task-2. The 12th
the robot could not squeeze the object suitably with both igte opening and the 10th one are mixed in the former case
hands in every position. The visuo-proprioceptive profile ignd the 1st, the 12th and the 13th ones are mixed in the latter
Figure 12(a) shows that the object is first touched around thgse. In task-RpL is encoded by the 1st gate openifgh
20th step, then the arms go up slightly without holding up thfoes by the 11th gate opening arrh by the 2nd gate opening
object. They are frozen like that until the 100th step when thith slight opening of the 3rd one and the 11th one.
arms start to go back to the home position. Here, some questions might come to mind. (1) Why is the
So we conducted an another experiment to examine h@ame behavior primitive encoded by different gate openings
much task-2 behaviors are actually learned in this stage. Tihesome cases?, (2) Are the encodings of behavior primitives
robot repeated the self-generation of the task behaviors whilensitive to the object’s position or are they sufficiently gener-
“fake” visual feedback was made. When the robot fails to lifilized to be insensitive to the object’s position?, and (3) How
the object, the tutor takes the object and moves it up and dowan the timing of switching from one behavior primitive to
The robot sees this action as its own. During the experimeahother in terms of the gate opening be made?
it is seen that the hands of the robot follow movement of the To examine these questions the activation profiles in the
object that goes up and down (see Figure 14). higher level CTRNN are compared for task-2 with different
This result indicates that some correlations on the visuaitial object position cases, namely the position 7, 8 and 6
inputs and the proprioceptive inputs are acquired at this staghown in Figure 15(a), (b) and (c), correspondingly. (Position
The neural dynamic structure generated by learning initisgeis 3.5cm left of position 2 and is newly introduced in
the up and down arm movement patterns via entrainment frahis experiment in order to amplify the effects of position
“fake” visual feedback. The proprioception profile in Figure 14dlifferences.) The profiles consist of context unit activation
shows coherent oscillation between the proprioception and thved the MSE prediction vector of the 16 dimensions in the
visual inputs. It is possible that the failure in the previoukigher level CTRNN and the gate openings and the motor
trial was due to a lack of proper visual feedback when thgrofiles in the lower level CTRNNs. The value of the MSE
object was not grabbed. In fact in the following teachingrediction is represented by grey level color of each horizontal
session, the tutor felt that the robot can self-generate thar where the darker color denotes the smaller MSE prediction.
desired movements mostly and only needed a little guidangist, we see that gate opening profiles and context activation
to squeeze the object slightly harder. With this guidance, theofiles are mostly same overall for all three cases regardless
robot's performance improved. In the second self-generatiof the object position difference. However, there are certain
session, the robot manages to lift the object up and down ontfifferences in the gate opening immediately before the Oth gate
before dropping it, Figure 12(b) but by the third session thepens between the position 8 and 6 cases. The 1st gate opens
robot executes the task nearly perfectly, see Figure 12(c). in the position 8 case in Figure 15(b) and the 12th gate does
In the first session, the robot cannot touch the object in the position 6 case Figure 15(c). It is, however, important
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step
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to see that the MSE prediction vector profiles in these time
windows are similar, as are the context activation profiles
between the two even though the gate openings are explicitly
different in this period. This means that the 1st and 12th local
CTRNNSs in the lower level are equally good at predicting the
visuo-proprioceptive sequences in this segment and therefore
show only slight differences in their errors. Although this may
introduce certain fluctuations in the gate opening between the
two because of the winner-take-all characteristics by means
of the employed softmax function, it does not matter for
the behavior generation because both local nets are good
at generating motor patterns only with small errors. This
explains how redundant encoding of behavior primitives are
self-organized and why behaviors can be generated stably
regardless of such redundancy.

Finally, the question about the timing of switching for
behavior primitives is addressed. The exact question is that,
after grasping the object and stopping there for a moment,
what sorts of cues can initiate next gate opening for lifting up
the object? Also, after lifting up and down the object for three
times, how can the next behavior primititém be triggered?
The underlying mechanisms can be inferred by looking at the
context activation profiles in Figure 15. It is seen that the
context activation states gradually change during each period
of behavior primitive. This means that the internal dynamics
by means of the context unit activations “count” for the learned
period of waiting before lifting up the object and the learned
repetition times of cyclic movements, lifting up and down of
the object or touching the object by alternating left and right
hands. Our preliminary experiments showed that the learning
error in the higher level CTRNN cannot be minimized if
synaptic modulation by means of the error back-propagation is
restrained for the weights connected from/to the context units
(from o to o and froma to o). In such cases, the context
activation profiles become mostly flat. It can be said that
adequate contextual flow which can orchestrate sequencing
of behavior primitives in proper timing can be self-organized
through the learning of the network by utilizing the context
dynamics. This part of arguments correspond to an idea of
“kinetic melody” by Luria [38] who discussed importance of
organizing contextual flow in unifying behavior primitives into
skillful smooth actions.

D. Pantomime via the visual imaginary loop

In the last an experiment on pantomime is described. The
robot can pantomime object manipulation behaviors without
accessing an actual object but with accessing its visual imag-
inary. In this experiment, both of the lower level CTRNN and
the higher level one operate in the closed-loop mode with the
actual visual inputs shut off. These results are compared with

The context unit activation and the mean square error predictithe case in which the visual imaginary cannot be accessed (the

vector of 16 dimension in the higher level CTRNN and the gate opening apghot is operated in the open-loop mode in which the visual
the motor profile in the lower level CTRNNSs in three different initial object fixed ificiall | f . h
position cases in (a) with position 7, (b) with position 8 and (c) position G.mpUtS are fixed artificially at constant values ot seeing the

object in position 0 in this case.)

Figure 16 shows the comparison of the two cases for
performing Task-2 by pantomime with and without accessing
the visual imaginary. In Figure 16(a) of the case with the visual



JOURNAL OF BTEX CLASS FILES, VOL. X, NO. X, XXX 2008 14

v — of our results as this form of apraxia shows deficits in skilled
3 ° tool use caused by lesions in the inferior parietal cortex [40].
. —= Patients with ideomotor apraxia typically perform worse when
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Lor

attempting to pantomime gestures than when using actual
objects [39], [40], [41], [42]. The question here is why damage
in inferior parietal cortex would impair pantomimed acts
more than actual activities. As we have described, pantomime
requires the visual-imaginary which can compensate for the
visual input received when actually handling objects. Our
: W experiments showed that the robot can pantomime when there
0 T0 20 B0 & 50 B0 70 80 90 100 Jio T THTE0 0T is closed-loop feedback of the visual imaginary but not in
@ the absence of that feedback. Based on this result one may
speculate that the loss of the closed-loop circuit for generating
° = the visual imaginary inhibits pantomime for the patients with
lesions in the inferior parietal cortex.
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© V. DISCUSSION

Our experiments suggest that the innateness of neural
: - network characteristics cannot be ignored in the learning
D TR e T R < R [ R . /7 R T LB 51 processes. The innateness in terms of the network parameters,
1.0 e the initial connectivity as well as number of neuronal units and
synapses determines the preferences for profiles of patterns
to be learned in the network. In addition, the generalization
010 %S @ S s 7 8 % 100 10 T 10 1o 1 1 characteristics inherent to neural networks of distributed repre-

ki

m

®) P 1" sentation [43] determine the preferences for the set of patterns
e ' to be learned in a single network. A set of patterns that share

some structures with other profiles are easier to learn than
Fig. 16. Comparison of pantomime performances of Task-2 (a) with and (mose with n,O_Shé_‘r?d profiles [15].
without the visual imaginary loop. However, it is difficult for tutors to know what any networks

learning preferences could be prior to their actual trials.

Therefore, the tutors need to explore them by interacting
imaginary loop, it is observed that the sequential behavior with the network dynamics. In the first session, the teaching
approaching the object, the cyclic movement of holding upajectories in our experiments were arbitrarily provided to
and down the object and homing are well imitated. It is alshe networks via the tutor’s attempts to satisfy the task
seen the visual imaginary is reconstructed well. On the othggecifications. Such arbitrariness resulted in generating large
hand, in the case without the visual imaginary loop showarrors in the self-generated motor patterns. The tutors feel
in Figure 16(b), the motor movement is frozen while liftinghe “intentionality” of the robot as a force that represents
the object up and down even though the gating signal frothe gap between how the robot intends to move and how the
the higher level is completely the same as the one in the castrs intend to guide. However, these errors were minimized
with the visual imaginary loop. It is understood that inadequaie the subsequent tutoring sessions because the tutor starts
visual inputs with fixed values disturb the CTRNN dynamic ofo follow the self-generated movements of the robot as long
the periodic movement. This explains that the visual inputs aad the task specifications are satisfied. Consequently the joint
the proprioceptive inputs are treated in an inseparable manpesition trajectories satisfy the constraints imposed by the task
in the lower level CTRNN which is analogous to the neuspecifications by accommodating the innate characteristics of
roscience observation that visual stimulus and proprioceptitite network.
are integrated well in parietal cortex [20]. The higher level Although the idea of codevelopment between trainers and
CTRNN, on the other hand, is totally insensitive to the externathinees has been well discussed in the context of develop-
perturbation. The reason comes from the fact that the highmental psychology or education, they have not been applied
level CTRNN does not learn to anticipate the visual inpute issues in robot development. The study done by Nagai
seguences—it just receives the visual input. No anticipation &f al [44] might be one exception. In that study, the robot
those inputs makes the CTRNN dynamics less sensitive was tutored to direct the camera head in the direction that
them. Therefore the robot can pantomime as well as exectlie human tutor is visually attending to. It was shown that
actual behavior by utilizing the visual imaginary loop once ththe learning control by the tutor from easy tasks to difficult
two levels of CTRNNSs has learned the processes. ones by monitoring the performances of the learner makes the

This result might explain underlying mechanisms for somlearning process easier.

apraxia cases related to parietal cortex impairment of humarSome in the field [11], [10] of the developmental robotics
brains. Left hemisphere damage can result in various types[46] have shown that sensory-motor skills can be devel-
apraxia [39], ideomotor apraxia is of particular interest in lighaped efficiently if functions of innate reflex behaviors are
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appropriately coupled with sensory-motor mapping learngde ways of their appearances in different sequential contexts.
later. Further study might combine the idea of coupling thEhese discussions summarize that a set of sensory-motor flow
innate behaviors and the later learning with our propossdgments acquired in the gating networks can be regarded
codevelopment tutoring scheme. as behavior primitives but with some limitations in their
Wolpert and Kawato [24] and Demiris and Hayes [46] havgeneralization competency.
also proposed mixture of local experts type architectures whichCalinon et al [29] introduced a novel imitation learning
are similar to ours described in the experiment-2. Howevagheme by combining Principal Component Analysis and
our motivation to utilize this type of architecture has bee@aussian Mixture Model for extracting correlation structures
different from these studies. Our main motivation has been among different modalities. The proposed scheme can extract
investigate brain-inspired mechanisms for the sensory-mottifferent types of behavior constraints such as the relative
flow articulation with utilizing this type of architectures. Fomosition constraint and the absolute position constraint from
this purpose, Tani and Nolfi [32] proposed that the mixturdne data acquired in demonstrations by experimenters. The
of RNN experts with multiple levels can learn to perceiveelative position constraint corresponds to the positional re-
the sensory-motor flow as hierarchically articulated. Tani [4Tdtionship between robot hands and an object to be grasped
further discussed that the observed mechanism of the articida-variable positions. The absolute position constraint does
tion could account for the psychological mechanism for evetd absolute values of arm joint positions when reaching to
perception and the phenomenological questions of subjectavespecific position. An interesting result in their study is
time perception by Edmund Husserl [48]. The current studiiat these constraints are time dependent during each task
showed that complex sensory-motor flow experienced throughd their scheme can extract such time dependent correlation
the tutoring process can be learned by decomposing them istauctures. On this point, it is considered that the CTRNN
reusable segments by the gating mechanism. scheme of ours can deal with the same problem. Actually,
One interesting discussion here might be that whethéve current paper demonstrated that the robot can learn to
these sensory-motor segments can be regarded as behawviach the object located at variable positions and then to
primitives or not. According to the motor schemata theomeach to a specific point. The main difference between two
by Arbib [30], behavior primitives should generalize theiapproaches is that our scheme utilizes attractor characteristics
functions in various situations. It is considered that in owf deterministic dynamical systems and the scheme by Calinon
experiment the sensory-motor functions acquired as expeatsd his colleagues does with a probabilistic framework. Future
in modular networks have achieved generalization but wigtudies would explore advantages and disadvantages between
certain limitations. They can generalize position differenceéle two.
of the object by utilizing the differences in the visual inputs. One interesting future study is about incremental learning
But they can do neither for variations in speed of all movemeat new behavior primitives. Our preliminary experiments on
patterns nor in amplitude in generating cyclic patterns (e.ghjs topics using the hierarchical networks showed that an
size of swing-up inLi and that of lateral swing iffch). additional learning of a new task containing a novel behavior
A single expert network can generate the movement pattgmmitive often interferes with memories of pre-learned behav-
only with the same speed and the same displacement.idnprimitives. It seems necessary that the pre-learned behavior
order to generate these variations in movements, additiopaimitives should be retrained by rehearsing the old teaching
adaptive parameters which can modulate the sensory-madata while a new behavior primitive is trained, which is related
function might be required in each local network. This coultb the memory consolidation learning scheme discussed by one
be achieved by introducing the parametric biases (PB) scheaighe authors [49].
[15] to the current gating networks model. It is expected thatIn the current paper, the results of experiment-2 were
the PB vector implemented in the input layer of each locdescribed for one subject case with one parameter setting.
network would play the roles of the adaptive parameters Future work should conduct some parametric studies on the
order to modulate movement speed or amplitude. Aside fraslevelopment learning processes with having more repeated
this, we can recognize other type of generalization in encodiegperiments. It is especially interesting to examine how num-
of cyclic patterns. It is reminded that the expert networkser of local modules and time constant value at each level
that acquire cyclic patterns do not encode number of cyddfect the processes of self-organization and segmentation for
times demonstrated by tutors. The number of cycle times drehavior primitives. Our preliminary study [50] suggested that
encoded by the higher level network in terms of timing afiumber of behavior primitives memorized cannot scale simply
gate switching. As have been discussed, the lower level expeith number of local networks prepared in the system. The
network can generate cyclic patterns with infinite cycle timegating becomes unstable with inreasing number of patterns to
as the patterns are embedded in limit cycling attractors. Thie memorized and that of modules. There remains a space for
mechanism of generating arbitrary number of cycle times lyrther investigations for more stable gating mechanisms in
means of self-organized attractor dynamics incorporated walkhieving the scaling of memory capacity.
the gating mechanism can provide another type of generalfinally, the issue of the compositionality is revisited. The
ization in generating cyclic movement patterns. In additiourrent paper discussed that each task behavior is decomposed
it was shown that those segments of learned sensory-mdtdop sequences of behavior primitives which are reusable
patterns can be utilized in a compositional way for the purpose different task contexts. It was also discussed that the
of reconstructing complex task behaviors. They generalize ehavior primitives should not be regarded as concrete objects
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of encoding fixed patterns. Instead, each behavior primitiveF] H. Yokochi, M. Tanaka, M. Kumashiro, and A. Iriki, “Inferior pari-
should be acquired as “elastic” enough such that its profile etal somatosensory neurons coding face-hand coordination in japanese

. . . . macaques”,Somatosensory and Motor Researehl. 20, pp. 115-125,
can be flexibly modulated as to adapt to various situations. It 2003_q o Y 2 PP

is important to understand that behavior primitives and locgk] R. Bianco and S. Nolfi, “Evolving the neural controller for a robotic arm
networks may not have one-to-one type mappings_ They can able to grasp objects on the basis of tactile sensdéwdgptive Behavigr

. . . . vol. 12, no. 1, pp. 37-45, 2004.
be organized with having redundancy as we have describ K. Doya, K. Samejima, K. Katagiri, and M. Kawato, “Multiple model-

in the results of experiment-2. It was observed that some” pased reinforcement learningKeural Computationvol. 14, pp. 1347—
behavior primitives are encoded not by a single corresponding 1369, 2002. .
local network but by multiple ones each of which has QO] G.Metta, G.Sandini, and J.Konczak, “A developmental approach to

. . . . . visually-guided reaching in artificial systems.Neural networks vol.
slightly different internal representation. Such redundancy is 15 no).l fo, pp. 1413—1227, 1999. ’

beneficial for representing subtle differences in pattern prp4] L. Berthouze and Y. Kuniyoshi, “Emergence and categorization of
files of behavior primitives depending on their ways to be coordi_nated visual behavior through embodied interactioMachine

. . Learning vol. 31, pp. 187-200, 1998.
ConneCte_d to next ones with ﬂl’_lency‘ ACtua”y’ m the_re_s_ullJI.Z] F.Kaplan and P-Y.Oudeyer, “Neuromodulation and open-ended devel-
of experiment-2, the gate openings for a behavior primitive = opment.”, in Proceedings of the Third International Conference on
Gr were slightly different depending on next primitivei (or Devgloflment and Learning (ICDL'04): Developing Social Brai2804,
Hm) to,fouow' The representatlon.fc.)r skilled actions see 3] Egng-.]i Lin, Reinforcement Learning for Robots Using Neural Net-
to require two apparently contradictive factors, namely the " works PhD thesis, Carnegie Mellon University, 1989.
decompositionality to elements and the wholeness withdd#] J. Tani, “Model-Based Learning for Mobile Robot Navigation from the
seams. Our proposed model seems to be successful in having 5y”am‘:r‘£' g T CNGSEE Trains: on SHG (B)ol. 26, no.
both factors with less conflicts by achieving, what we may calis PP ' '

J. Tani and M. lto, “Self-organization of behavioral primitives as
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processes. Man and Cybern. Part Avol. 33, no. 4, pp. 481-488, 2003.
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Our experiments show that interactive developmental tutor- sequential machine”, iRroc. of Eighth Annual Conference of Cognitive
ing can teach complex task behaviors to robots. In addition, Science Societyl986, pp. 531-546, Hillsdale, NJ: Erlbaum.
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