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Codevelopmental learning between human and
humanoid robot using a dynamic neural network

model
Jun Tani, Ryunosuke Nishimoto, Jun Namikawa and Masato Ito

Abstract—The paper examines characteristics of interactive
learning between human tutors and a robot having a dynamic
neural network model which is inspired by human parietal
cortex functions. A humanoid robot, with a recurrent neural
network that has a hierarchical structure, learns to manipulate
objects. Robots learn tasks in repeated self-trials with the
assistance of human interaction which provides physical guidance
until tasks are mastered and learning is consolidated within
neural networks. Experimental results and the analyses showed
that 1) codevelopmental shaping of task behaviors stems from
interactions between the robot and tutor, 2) dynamic structures
for articulating and sequencing of behavior primitives are self-
organized in the hierarchically organized network, and 3) such
structures can afford both generalization and context-dependency
in generating skilled behaviors.

Index Terms—Humanoid robot, CTRNN, development learn-
ing, compositionality.

I. I NTRODUCTION

The tasks required of robots are becoming increasingly
more complex. As a result, robot designers must develop
robotic programs that enable complex task execution. Just
imagine what would be needed for a humanoid robot to
grab an object it sees. Conventionally, two cameras, placed
on the robot’s ”head” would determine an object’s global
position stereo-optically [1] within three dimensional space.
Based on that information, the trajectories of arm and hand
movements are computed so that the object can be grasped.
The corresponding trajectory of the joint coordinate is then
computed using inverse kinematics [2]. These computations
are not trivial, because all possible, collision-free trajectories
that meet optimal criteria are determined in a combinatorial
manner [3].

However, it seems that in our everyday behaviors limb
movements are elegantly coordinated with little conscious
effort. Such coordinated movements in humans are likely to
be the result of inherent constraints from the innate structures
determined genetically as well as those structures that emerge
through learning that follows birth. The connections between
the muscular skeletal structures and basic neuronal circuitry
provide the basis for all possible patterns of movement.
Synaptic changes and re-wiring of neuronal circuits resulting
from everyday sensory-motor experiences and activity then
refine our basic movement patterns over time, with practice.
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Neuroscientific literature suggests that learning of complex
skills–those which enable object and tool manipulations–is
consolidated in the inferior parietal cortex where internal
models for those behaviors are self-organized as a result of
integrating sensory information from vision and proprioception
[4], [5], [6], [7]. These findings indicated that task behaviors
in robots could be acquired more efficiently through iterative
learning rather than programming.

The decades of research in robot learning have established
several different schools of thought. Evolutionary learning [8]
and reinforcement learning [9] are approaches in which robots
acquire behavior skills through self-exploration and reward
signals. These are forms of evaluative learning without direct
supervisions. Some researchers found that the self-exploratory
behaviors of robots appear to correspond to those human
development processes in which innateness and learning are
structurally coupled [10], [11], [12]. Although such unsuper-
vised learning schemes might reduce the need for human
assistance to acquire skills, the robot would require numerous
training trials to be able to execute complex tasks in real robot
situations. Because the approach is unrealistic for robots in
practical settings [13], we conducted a series of supervised
learning experiments involving robots equipped with dynamic
neural network models [14], [15], [16].

Supervised learning has tended to be seen as trivial because
the optimal trajectories for the desired task behaviors are
provided by human tutors, but this is not always the case
as this paper attempts to show. First, the type of learning
we are interested in is not simple rote learning whereby a
robot generates a ”recording” of all the teaching patterns
without organizing structures. Rather, we see learning as
a process through which implicit rules are extracted from
patterns of experience. These rules become the foundations
for generalizations in the networks that enable the robot to
response appropriately to unlearned situations. Second, it is
important to note that the networks have biases which prevent
exact learning of teaching patterns. These biases originate from
“innate” structures predefined in the network models. These
structures include various parameters such as time constant
and decay coefficient for each neuron’s activation dynamics,
initial synaptic connectivities, and the number of neurons that
the recurrent neural network (RNN) model recruits [17], [18].

For example, the time constant of the network dynamics
which is determined inherently by parameters of neuron units
affect the goodness of learning for particular profiles of

teaching patterns. The network dynamics with a large time 
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constant is not good at learning quickly changing temporal
patterns. On the other hand, the one with small time constant
is not good at learning slowly changing ones. Also, RNNs
with dense synaptic connections with all neurons, including the
input/output units, tend to generate certain correlation struc-
tures among different output dimensions which do not exist in
the teaching output patterns. In addition, the characteristics of
generalization in RNN learning yield biases for better learning
with specific teaching patterns [15]. Teaching patterns that can
be generalized into a shared structure are learned more easily,
while those patterns that do not share a common structure
with others are more difficult to learn [15]. Just providing a
set of arbitrary teaching patterns to robots will not result in
successful learning outcomes. In this light, it may be possible
to improve task training outcomes by carefully examining
adequate teaching patterns to be used.

The current paper presents a novel robot tutoring scheme
that emphasizes the codevelopment of robots and human
tutors as they interact to achieve a specific task goal. More
specifically, when robot learning is immature, human tutors
physically interact with the robots in order to guide the robots
to perform the task better. Through the physical interactions,
tutors can easily learn which ways the robots tend to move and
which parts of the movements should be modified. The tutor
simply exerts intentional forces on to the robots to modify
some parts of the trajectories which are crucial for the goal
achievement in the tasks. On the other hand they do not
interfere with the robot intentionally for unnecessary parts
of the trajectories which do not affect the goal achievement
directly. It is hypothesized that the re-training of the networks
with these newly codeveloped trajectories could lead to much
better learning results than cases of training the networks
with arbitrary determined teaching trajectories. By this means,
the robot tutoring becomes a process to jointly explore a
better training path which can influence the network’s internal
structure to be gradually organized to an adequate one for
achieving the desired task goal.

Here we describe our proposed neuronal architecture that
uses a continuous time recurrent neural network (CTRNN)
[18], [19] and its implementation in a humanoid robot for
object manipulation tasks. The model focuses on anticipatory
learning [14] of temporal sequences of vision-related signals
for object and proprioception of arm position, which we
assume corresponds to similar activity in the parietal cortex.
Then, two classes of experiments are described in which the
humanoid robot learns schemes of specific object manipula-
tions through the human tutoring. In the discussion section,
the essence of the proposed scheme is discussed with our
special focus on the problem that how complex robot skills
can be developed by self-organizing compositional structures
with having a set of behavior primitives through the interactive
learning. Also the paper will discuss possible correspondences
of our experiments to neuropsychological evidences related to
parietal cortex.

II. A NTICIPATORY LEARNING OF VISUO-PROPRIOCEPTIVE

SENSATION BY CTRNN

The proposed network is designed to learn and to re-
generate trained visuo-proprioceptive sensation sequences by
means of anticipatory learning mechanisms. In the current
robot setup, the visual inputs̄st represent sensation of an
object’s position in the retina coordinate of the robot video
camera. The proprioceptive inputs̄mt actually represents
encoder reading of the arm joint positions. Essentially, this
network takes sensations of different modalities and mingles
them together to generate predictions of their future states.

This flow of information is analogous to those suspected in
the parietal cortex, albeit abstractly, where the motion vector
of visual stimulus enters the parietal cortex from occipital
lobe and proprioceptive information comes from the somatic
sensory cortex. Those two types of sensory information appear
to be integrated at various locations in parietal cortex [20].
For example, Duhamel et al [21] found some neurons in
ventral intraparietal area that are activated bimodally, with
either visual or proprioception stimuli.

We assume that the anticipation of this integrated state of
vision and proprioception for the next time step(st+1,mt+1)
could emerge through associative learning that is temporally
bound. Although no strong physiological evidence has been
obtained, many have said that this type of anticipation mech-
anism can be achieved with a simple forward model [22],
[23], [24] in animal and human brains. Once the next step
proprioceptive state is predicted, an inverse model can generate
the necessary motor torques to achieve the predicted state.
Although inverse models are assumed to be in cerebellum or
motor cortex in real brains, we just use a PID controller to
generate motor torques to achieve the predicted target joint
positions in our robot setup. This point is summarized that the
CTRNN produces next step prediction for the proprioceptive
statemt+1 which is sent to the PID controller as the next step
target joint positions of the robot.

From dynamical systems view, the anticipatory learning
is considered as a process to acquire a dynamic function
described in the following differential equation.

(ṡ, ṁ, ċ) = F (s,m, c) (1)

This equation simply means that theδ change of the visuo-
proprioceptive state is function of its current state and the
internal statec. The internal statec is often necessary when
the system dynamics state cannot be well represented by the
observable states ofs andm. The functionF () generates the
δ change of the internal statec also.

It is essential to note that the dynamical system described
by the equation is an autonomous one. This means that the
prediction of (s,m) can be self-generated without having
the actual sensation of(s̄, m̄). This enables so-called the
closed-loop look-ahead prediction [14] which could account
for human capability of the mental simulation of own actions
without having actual sensation from the real world[23]. On
the other hand,(s,m) of the self-generated can be replaced
with (s̄, m̄) of the actual sensation for prediction of itsδ
change. This operation is called as the open-loop prediction
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[14] in which the sensory prediction can be generated with
well utilizing the current sensation. The open-loop mode is
used when the robot actually acts on the environment.

The visuo-proprioceptive anticipatory learning scheme is
implemented with the CTRNN. Why is the CTRNN utilized?
First, the CTRNN is considered as a direct implementa-
tion of Eq.1 into a neural network model which can learn
spatio-temporal structures in a continuous time and space
domain. Second, the CTRNN preserves contextual flow by
self-organizing appropriate internal dynamic state that corre-
sponds toc in Eq.1. In this way, the robot implemented with
the CTRNN can avoid hidden state problems [25]. Third,
the CTRNN learns the temporal correlations of any time
scale by properly setting the time constants for the neuron
activation dynamics, as will be detailed later. (Although in
the current experiment with using supervised learning scheme,
time constants were set manually by trials and errors, they can
be self-adapted if the scheme can be incorporated with genetic
algorithms as shown in [26].) From these three reasons the
CTRNN is employed in the current study. However, it is noted
that the CTRNN architecture does not correspond directly to
the real anatomical neuronal structures in parietal cortex. In the
current study, the CTRNN is used in the connectionist level
abstraction for the purpose of attaining the functions of the
forward model which is assumed especially in inferior parietal
lobe. Also, the usage of the error back propagation learning
scheme [27] which may not represent real neuron synaptic
modulation mechanisms can be accounted by the same reason.

We designed our CTRNN model, shown in Figure 1, by
modifying the Jordan-type RNN–a discrete time model. Before
going to detailed mathematical descriptions of the model, we
explain the basic mechanism in a intuitive manner. As shown
in Figure 1, the network consists of three layers, namely the
bottom layer, the hidden layer and the top layer where there
are reentrance loops from the top layer to the bottom layer.
The bottom layer consists of groups of units in which the
visible unitsaX corresponds to the visuo-proprioceptive state
(s,m) and the context unitsaC does to the internal statec
in Eq.1. The activation states of these units are propagated
into the hidden units in the hidden layer through the synaptic
weightswH

ij and further to groups of the output unitsoX and
oC in the top layer. The output units here are utilized in a
different way from usual perceptron-type networks or RNNs.
oX and oC mostly representδ changes ofaX andaC in the
same way that the time derivative term in the left-hand side
of Eq.1 does. Actually, the time development ofaX and aC

in the bottom layer are obtained by integratingoX and oC

in time through the reentrance loop. This corresponds to the
closed-loop prediction of the visuo-proprioceptive sequences.

Figure 1(a) shows the training mode of the CTRNN. The
goal of the training is to minimize the error between the
teaching sequences(ŝt, m̂t) and the self-generated sequences
(st,mt) by adjusting the synaptic weights ofwH

ij andwO
ij . This

can be achieved by applying the back-propagation through
time algorithm [27] to the errors. Figure 1(b) shows the
open-loop generation mode when the robot actually acts on
the environment. In this mode,aX

t+1 is obtained through the
integration ofoX
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Fig. 1. The CTRNN model employed. (a) training mode and (b) behavior
generation by open-loop mode.

sensed from the external.
Next, the exact computation scheme for the forward dy-

namics of the CTRNN is described. First, the hidden layer
activationaH

t is computed. The potential of theith hidden unit
uH

i,t is obtained by summing the activation propagated from
the bottom layer through the synaptic weightswH

ij . Then its
activation value is computed by applying the sigmoid function
to the potential. This is described as:

uH
i,t =

∑
wH

ij aX,C
j,t + bH

i (2)

aH
i,t = sigmoid(uH

i,t) (3)

where bH
i represents the bias value for theith hidden unit.

Next, the top layer activations ofoX
t andoC

t are computed in
the same way using hidden layer activation values.

oX,C
i,t = sigmoid(

∑
wO

ija
H
j,t + bO

i ) (4)

Then, time development of the potential of the bottom layer
units, uX anduC , are obtained by integratingoX andoC by
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Fig. 2. A humanoid robot made by Sony Corp is at its home position in the
task space. The object to be manipulated is in front of the robot.

following the first order differential equation of Eq.5.

τ u̇i
X,C = −uX,C

i + (oX,C
i − 0.5)/α (5)

where τ and α denote a time constant and amplification
coefficient, respectively. The actual update of these values are
computed with the numerical approximation of Eq.6.

uX,C
i,t+1 = −uX,C

i,t /τ + (oX,C
i,t − 0.5)/(α · τ) + uX,C

i,t (6)

Finally, the next time step activation of the visible units are
obtained by taking the sigmoidal output of the potential.

aX,C
i,t+1 = sigmoid(uX,C

i,t+1) (7)

Here, aX
i,t+1 represents the closed-loop prediction for visuo-

proprioceptive state at the next time step(st+1,mt+1). The
open-loop one-step prediction can be performed by utilizing
the inputs from the external rather than the self-predicted
ones as shown in Figure 1(b). In the open-loop modeuX

i,t

in the right-hand side terms in Eq.6 is replaced withūX
i,t

which is the potential value representation of the actual visuo-
proprioceptive state. Here,̄uX

i,t can be obtained by taking the
inverse sigmoid of̄aX

i,t.

III. T HE 1ST EXPERIMENT

A. Robot platform

A small humanoid robot, shown in Figure2, is utilized for
the experiment. In the current setup only left and right arms
are allowed to move where each arm has 4 DOF. Those joints
have specific maximum rotation ranges from 70 degree to
110 degree depending on the joints and the rotation angles
are mapped to the neuron activation values ranged from 0.0
to 1.0. All other joints except head joints are fixed. The
robot has a vision system mounted on its head and the head
automatically fixates on a red mark on the object to be
manipulated. Eventually, 2 DOF of the head motor positions
will provide a rough estimate for direction of object on the
table. This relative location information for the object is treated

0
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Fig. 3. The initial object positions. 0 to 5 for training and 6, 7 and 8 for
generalization tests (without training).

as the visual inputs for the CTRNN implemented in the robot.
The object is an elastic cube of 5 cubic centimeter which is
located on the task table shown in Figure 2. A human tutor
takes both arms of the robot and guides them to the object
to teach the object manipulation tasks. The control gains for
motors in the arm joints can be changed at each operation
mode of the robot. The gains are set as 100 percentage for
the self-generation, 20 percentage for the teaching after the
network is trained (after the second teaching session), and 0
percentage for the teaching before any training of the network
(in the first teaching session).

B. Experiment procedures

We examined the developmental tutoring processes for two
separate tasks, task-A and task-B. For the purpose of examin-
ing the basic characteristics of the performance developments
across the tutoring sessions with later described statistical
analyses, the experiment is repeated with three different tutor
subjects for each task case.

In task-A, the robot is to take the object by both hands from
a fixed home position and lift it up. For task-B, the robot first
touches the object only with the right hand, while the left arm
remains in the home position. As the right arm returns to the
home position, the left arm begins to approach a mark point at
a fixed position on the table. In both tasks the object position
on the table is changeable within a fixed range and therefore
its manipulation requires visual feedback. In the tutoring, the
robot is repeatedly guided for the object manipulations with
the object located in 6 different positions as indicated by dots
labeled by from 0 to 5 in Figure 3.

Each subject proceeds with three succeeding sessions each
of which consists of the robot teaching phase, the CTRNN off-
line training phase and the robot self-generation phase. Initially
the subjects are instructed how to guide the robot in teaching
for each task behavior. The subjects are reminded that only
specific points during each task behavior are important, not
all details need reinforcement for task behavior. In task-A it
is important that both hands approach precisely to the right
position for the object grasping and that the object can be
lifted-up more than 5cm without dropping as the goal. Beyond
these specifications, it is not important what sorts of splines are
made in the arm trajectories provided that they are smooth. In
task-B, the subjects should pay attention to both the position
precision in touching the object with the right hand and in
reaching the fixed mark on the table by the left hand. For each
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task the experimenter demonstrates an example of adequate
tutoring. Before the trials, the subjects practice the tutoring
patterns with the robot for several times. Because variances
in time courses among teaching sequences for each task may
confuse the learning processes of the network, the subjects are
asked to guide the robot mostly in the same time period with
the example demonstrated. If the time period of a particular
teaching sequence is 5 percentage longer or shorter than the
example one, the sampled sequence is not used for training of
the network.

The teaching in the first session and that in subsequent
sessions are different. In the first teaching (before any training
of the network), the robot is guided without its self-generated
force because the control gain is set to Zero. Therefore, the
teaching in the first session is not interactive while the second
and third sessions are. The tutor guidance interacts with the
self-generated movements of the robot with a small gain.
The movements are based on the network dynamic structures
that were self-organized in the training phase of the previous
session. In this situation, the subjects are instructed to follow
the movements generated by the robot as much as possible
while gently forcing the robot arms so that the task can be
achieved. A set of the visuo-proprioceptive sequences, in terms
of the head direction and the encoder readings for the arm
motor joints, is obtained from these guided behaviors for all
object positions. The network is trained with these obtained
visuo-proprioceptive sequences as targets in a parallel manner
with modulating the synaptic weights and the biases obtained
in the previous training session. The first training session starts
with the synaptic weights and the biases set randomly near
zero values. The BPTT training is repeated for 10000 epochs
for each session with a constant learning rate.

At each self-generation session, robot behaviors are exam-
ined using three of the trained object position cases (0, 2
and 4 in Figure 3) for both task behaviors as well as for
two untrained position cases only for task-A (see 6 and 7
in Figure 3). By using untrained object positions in task-
A, we can examine the generalization characteristics of the
proposed learning scheme. For the purpose of measuring the
developments of task performances across three sessions, we
introduce different measures. In task-A, the joint position er-
rors between the trained ones (demonstrated ones by subjects)
and the generated ones (replayed ones by the robot after
learning) at a specific event are measured for the trained object
position cases and the relative position distances between the
hands and the object at a specific moment are measured for
the untrained object position cases. According to Atkeson et al
[28] and Calinon et al [29], there are two different constraints
in generating robot motor trajectories in the imitation learning.
One is an absolute position constraint and the other is a relative
position constraint. It is considered that the measure of the
joint position error applied in the trained object position cases
corresponds to the former constraint and the one of the relative
position distance applied in the untrained position cases does
to the latter constraint. In addition to these, the failure rate in
terms of the goal achievement (lifting-up the object more than
5cm without dropping) is measured in task-A. In task-B, only
the joint position errors between the trained position and the
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Fig. 4. The developments of the mean square joint position errors between
the teaching and the generated through 3 succeeding sessions for (a) subject1,
(b) subject2 and (c) subject3 in task-A where plots are shown for three object
position cases, denoted by pos0, pos2 and pos4. (d) shows the average among
three object position cases for each subject.

generated one are measured because no generalization tests
are conducted and the task achievement cannot be measured
in terms of success or failure in this task.

In the current experiments,τ andα of the CTRNN param-
eters are set as 10.0 and 0.1, respectively. 12 context units and
20 hidden units are allocated in the CTRNN.

C. Results

Firstly, the results of task-A is described. Figure 4 shows the
developments of the joint position errors between the trained
and the generated at the onset of the object grasping in task-A.
Here, the error is taken as the mean square error (MSE) of each
joint position (mapped in the neuron activation range from 0.0
to 1.0) averaged for 8 arm joints. The plots are shown for three
object position cases (position 0, position 2 and position 4)
for the three subjects in Figure 4(a), (b) and (c). Figure 4(d)
shows the development of the MSE averaged over three object
position cases for each subject.

The results indicate that tutoring substantially reduces the
joint position error between the trained values and the gener-
ated ones as the session proceeds for task-A. The randomized
test analysis indicates that the reduction of the MSE is statis-
tically significant (p ≤ 0.00195) both in the second session
and the third session measured across the all subject results
with the three object position cases. The average among three
different object position cases shown in Figure 4(d) indicates
that amounts of the error reductions in the 3rd session are less
than the ones in the second session. It is also observed that
there are variances in the errors among three object position
cases for each subject. It seems that the error in some position
cases are already minimized even in the first session and others
are not. However, those variances are minimized in the 3rd
session.

In task-A, the generalization test was conducted with the
cases for the object position 6 and 7. Because there are no
teaching data for these object positions for the generalization
test, we measured the minimum distances between the robot
hand and the object in the trial of the object grasping. In
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Fig. 5. The developments of the mean square hand-object distances for left
and right hands with the object located in the position 6 and 7 for (a) subject1,
(b) subject2 and (c) subject3 in task-A where Y axis unit is square decimeter.

the current analysis, the distance is measured in the top-view
lateral direction from the inner surface of each robot hand to
the object surface of the contact in decimeter. The mean square
average is taken for the left-hand and right-hand distances to
the object. Figure 5 shows the developments of the hand-object
distances across 3 sessions for cases of the object located at
position 6 and 7. It is observed that the minimum distance is
reduced significantly ((p ≤ 0.0156) with randomized test)
from the first session to the 2nd session but not for from
the 2nd session to the 3rd session(p ≤ 0.5). The distance
is minimized in the second session mostly where the hands
touch the object with zero distance in 3 cases and they do
near miss with distance less than 1cm in 2 cases out of the
total 6 cases. In the third session, zero distance is achieved in 5
cases out of 6 cases. It is also seen that the developments of the
hand-object distance are different between two object position
cases for each subject. Especially in the trials of subject 1
and subject 3, position 7 cases show near-zero distances from
the first session while the position 6 case starts with larger
distances. It is noted that in one case out of 6 cases, namely
the case with subject 1 with position 6, the distance cannot be
reduced enough to achieve the goal of this task. These results
suggest that the generalization for the adopted situations can
be achieved mostly but not in a uniform way.

Now we examine how the task performance in terms of the
goal achievement develops across the sessions. Figure 6 (a)
shows the development of failure rate of each subject sampled
over 5 trials with different object positions of 0, 2, 4, 6 and
7 (If the object is lifted-up more than 5cm, it is regarded
as a success and otherwise as a failure.) It is seen that the
failure rate is reduced largely both in the session 2 and session
3. Figure 6 (b) shows the developments of the failure rates
compared between the cases of the trained positions (0, 2 and
4) and the untrained ones (6 and 7) across three subjects. It
can be seen that the failure rates in the trained position cases
are slightly less than the ones of the untrained.

The above analyses with three different task performance
measures indicate some interesting aspects of the development
learning processes in task-A. Firstly, it can be said that there
are variances in the development of the task performances
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Fig. 7. The developments of the mean square joint position errors between the
teaching and the generated through 3 succeeding sessions for (a) subject1, (b)
subject2 and (c) subject3 in task-B where plots are shown for three different
object position cases, denoted by pos0, pos2 and pos4. (d) shows the average
among three object position cases for each subject.

among different situations related to object positions. The
variances are large in the beginning in both measures of the
joint position error for the trained cases and the hand-object
distance for the untrained cases which are reduced significantly
in the later sessions in most cases. The P-values obtained in our
randomized test analysis indicated that the task performances
in these two measures are improved significantly in the second
session but less significantly in the third session. However,
the failure rate is significantly improved not only from the
first session to the second session but also from the second
session to the third session. This implies that the achievement
of the task goal (lifting up the object without dropping it)
may not be always accounted only by the measures of the
joint position error and the hand-object distance. Actually,
skills for precise position adjustment and subtle force control
by utilizing elasticity of the object and the hand surfaces
at the very moment of grasping seem to develop from the
second session to the third session with showing only slight
improvements in these two measures.

Nextly, the results of task-B is described briefly. Figure 7
shows the developments of the joint position errors between
the trained and the generated in task-B. The errors at 4
joint positions in the right arms are obtained as differences
between the the guided ones at the moment of the right hand
touching the object and the generated ones at the moment
of the same hand approaching to the object in the closest
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range. The joint position errors for the left arm are obtained
in the same ways with the fixed mark on the table. The MSE
is computed for all joint position errors in both arms. The
randomized test analysis indicates that the reductions of the
MSE are statistically significant with(p ≤ 0.0078) in the
second session but not so significant with(p ≤ 0.221) in
the third session. The average among three object position
cases shown in Figure 4(d) indicates that amounts of the
error reductions in the 3rd session are less than the ones in
the second session. The errors show relatively large variances
among different object position cases in the first session which
are reduced significantly in all subject cases. It can be said that
the developments of the joint position errors in task-B share
similar trends with the ones in task-A.

Now, let’s look at the developments of the exact motor
profiles ,i.e, trajectories of proprioceptive states of generated
as compared with the ones trained at each session. Such
observation would derive further understanding of how the
interactive tutoring develops the motor schemes for the tasks
through the iterative sessions. Figure 8 and Figure 9 show the
developments of the teaching motor profile (trajectory of 4
representative joint positions in the arms) and the one gen-
erated for a subject case of Task-A and Task-B, respectively.
The 4 DOF motor profiles are plotted for the 0, 2 and 4

object position from the left, center and right downward for
three sessions in these figures. mL0, mL1, mL2 and mL3 in
Figure 8 denote the joint positions at the pitch, the roll and
the yow of the left shoulder and the pitch of the left elbow.
mR1 and mR2 in Figure 9 denote the joint positions at the
roll and the yow of the right shoulder. There are significant
differences between the teaching profiles and the generated
profiles in the first session where teaching profiles jackknife
discontinuously at some points in both task-A and task-B.
(The exact moments of discontinuous changes in the profiles
are indicated by small arrows on the plots.) However in the
second and third sessions, the teaching profiles become much
smoother and the differences between profiles for teaching and
generation are reduced.

We observed some interesting phenomena during the inter-
active developmental processes. The subjects reported that it
was difficult to generate similar or correlated guided behaviors
for all the object positions in the first teaching session.
However, as the session proceeded they found it became easier
since the robot is basically leading the movement. Hence,
the tutors needed to adjust the arm positions only at precise
moments such as of grasping and touching the object.

Another interesting phenomena can be observed in the
generated motor profiles for Task-B shown in Figure 9. In
the 1st teaching session, 2 DOF motor profiles in the left arm
are flat until 30 time step because the left arm is fixed while
the right arm is moved to reach the object in the first half of
this task behavior. However, in the 1st self-generation session
after teaching, the left arm joint positions start to change
slightly from the beginning of the task behavior. This sort of
deviation of motor profiles happens for the all subject cases.
These deviations may be due to the tendency of the CTRNN
to preserve correlations among the profiles of all the output
dimensions because they are mutually connected through the

Teach-1
mt

Gene-1
mt

Teach-2
mt

Gene-2
mt

Teach-3
mt

Gene-3
mt

Obj-pos 0 Obj-pos 2 Obj-pos 4
mL3
mL2
mL1
mL0

Fig. 8. Motor profiles of teaching and generation in three succeeding tutoring
sessions for task-A. mL0,..mL3 denote the 4 DOF joint positions in the left
arm. Small arrows indicate moments of discontinuous changes in the profiles.

common hidden units. Therefore, when the right arm joint
positions move, the left arm ones tend to move in some degree
from the intrinsic correlation hidden in the network. The same
deviation in the left arm motor profiles can be observed also in
the 2nd teaching session as subjects permit left arm deviations
that is not against task specification.

An additional experiment was conducted and yielded more
interesting results. In this experiment, two subjects were asked
to fix the left arm rigidly during the first half of the task
behavior in the second teaching session. This resulted in
significant increases in the joint position errors (averaged
among three object position cases) in the 2nd self-generation
session. The error increases from 0.00262 to 0.00436 for one
subject and 0.00083 to 0.00168 for the other subject when
compared to the cases where this arm was able to move. These
results imply that the CTRNNs are good at learning patterns
with more smooth profiles of having more correlations among
different dimensions. This is natural because the CTRNNs are
continuous-time dynamical systems with predefined time con-
stants and their unit activities of large dimensions are tightly
coupled by means of the dense synaptic connections. When
the CTRNN are forced to learn “unnatural” patterns against
their intrinsic characteristics, such training could hamper the
learning process severely.
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Fig. 9. Motor profiles of teaching and generation in three succeeding tutoring
sessions for task-B. mL0 and mL3 denote 2 DOF joint positions in the left
arm and mR1 and mR2 denote those in the right arm.

IV. T HE 2ND EXPERIMENT

If a robot is to learn more diverse and complex behav-
iors, introducing level structures to its neuronal architectures
seems inevitable. The problem is how the continuous visuo-
proprioceptive flow of experience can be segmented into
chunks of behavior patterns that can be compositionally used
for other situations [30], [31], [32], [9], [33], [34], [26].
If we suppose a two-level structure, the lower level might
organize a behavior repertoire and the higher level might
select and combine behavior patterns from it. Previous studies
showed that the behavior repertoire can have either local
[24], [32], [35] or distributed representations [34], [26] in
neuro-dynamic systems [36]. Unlike local representations, a
distributed representation has globally shared structures that
can be used to represent whole patterns that could be acquired
in a single network once final generalizations are achieved.
However, any distributed representation scheme would have
difficulty handling increasingly larger numbers of patterns
because catastrophic memory interferences among different
patterns would occur. Therefore, the current study utilizes
a local representation scheme so-called the mixture of local
experts [37]. More specifically, we introduce a model of
hierarchically organized mixture of local experts which has
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Softmax
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MSEt+1

(MSEt+1, MSEt+1, MSE, ....MSE15)
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(st+1, mt+1)1 (st+1, mt+1)2

0 1 2

+
g0

g1
g2

gi

^ ^

^ ^ ^ ^

Fig. 10. Two-level structured CTRNNs. The information flow shown in this
figure is particularly for the generation phase.

been developed from our previous study[32]. This newly
proposed architecture is applied to a developmental tutoring
scheme for acquisition of more complex task skill.

A. The two-level architecture

Figure 10 shows the two-level neural network architecture
used. Before proceeding to detailed descriptions of the scheme,
abstract mechanisms in its learning phase and generation
one are introduced. The lower level consists of (N = 16)
CTRNNS. Although each local CTRNN in the lower level has
the same structure with the one used in the first experiment, it
is associated with a gate in this new architecture. The current
gate opening for a local CTRNN determines its effect on the
total output in the lower level. The local CTRNN with the
largest gate opening among others at each time step is called
as the winner module. The output of the winner dominates the
total output in the lower level. The gate opening mechanism is
different between in the learning phase and in the ganeration
phase.

In the learning phase, each local CTRNN in the lower
level competes to become an expert for generating outputs
with the minimum error compared to the target one among
others. In sweeping a teaching sequence, the winner CTRNN
with the maximum gate opening switches from one to another
depending on the error of each CTRNN at each step in the
sequence. On the other hand, a single CTRNN is located in
the higher level of which time constant is set larger than
the one in the lower level networks. This CTRNN learns to
predict the winner switching sequence in the lower modules by
memorizing how the errors of all modular CTRNNS change
in the teaching sequence with rough approximation.

In the generation phase, the gate opening for each local
CTRNN in the lower level is determined not by its actual
error but by the one predicted by the higher level CTRNN.
Consequently, the higher level determines switching of expert
modules in the lower level by means of the error predic-
tion. The module selected as the winner by the higher level
generates exact visuo-proprioceptive sensation patterns at the
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moment by its forward dynamics. In this way, the proposed hi-
erarchically organized networks can learn to generate relatively
long sequences through their decomposition into segments.

Now, the scheme is described in details with introducing
mathematical formula. Each CTRNN in the lower level has a
gate andaX

t of the overall outputs of this level is computed
as the gate weighted summation of each network outputaXi

t :

aX
t =

n∑

i=1

gi
t · aXi

t (8)

wheregi
t is the gate opening of theith network. Here,aX

t+1 cor-
responds to next time step prediction of visuo-proprioceptive
statest+1,mt+1. The temporal sequence ofgi

t is determined
by the learning process of the lower level networks. Basically
the gate at time stept opens larger with the network of
generating less error between the target values in training
(ŝt, m̂t) and the self-generated ones(st,mt) at the time step.
As the softmax function is applied, the gates tend to open in a
winner-take-all (WTA) manner. The gate opening is computed
as:

gi
t =

exp(si
t)∑n

j=1 exp(sj
t )

(9)

si
t =

−eri
t
2

(2σ2)
(10)

where eri
t
2

denotes the time average of the mean square
prediction error (MSE) of theith network at time stept. The
time average is obtained by using a fixed time steps window.
σ2 denotes the standard variance of the training errors of all
local CTRNNs in the lower level. Upon computing the gate
opening for each network, the error vectoreri

t generated by the
ith network is weighted by its gate opening which is computed
aseri

gt
.

eri
gt

= eri
t · gi

t (11)

Then, the ith network is trained by back-propagating the
obtained error vectoreri

gt
. This means that a network with

less MSE for certain segments of visuo-proprioceptive se-
quences will learn those segments better since its gate has
a larger opening. In this way, local “expert” networks develop
for particular segments that repeatedly appear. The visuo-
proprioceptive sequence patterns experienced in the lower
level are articulated into sequences of segments accompanied
with gate switching sequences[32].

Meanwhile the higher level CTRNN learns to mimic the
gate switching sequences observed in the lower level. The
learning of the higher level occurs only after the lower level is
trained at each tutoring session. In the current implementation
a single CTRNN is allocated in the higher level. This CTRNN
learns sequences of the MSE for each lower level CTRNN
instead of the gate opening. The higher level CTRNN has
mostly the same structure as shown in Figure 1. 21 visible
units aX in the bottom layer are allocated for 16 dimensions
of the ˆMSE vector, 2 dimensions of the visual inputs at the
current step that are the same as those received at the lower
level, and 3 dimensions of the task switching vector. Here,

ˆMSE is the prediction of the MSE vector generated in the
lower level. oX units in the top layer are allocated only for
the ˆMSE vector because the prediction is made only for this
vector. The next step prediction ˆMSEt+1 is fed-back to the
CTRNN as the next step inputs. The visual sensation as well
as the task switcher vector are regarded just as inputs and they
are not for prediction.

Then, the CTRNN makes a prediction about the MSE vector
for the next step. For behavior generation, the predicted̂MSE
vector is sent to the lower level which is converted to the gate
openings with the softmax function in Eq. 9. This pathway
serves as a top-down control by the higher executive level
onto the lower visuo-proprioceptive level. The time constant
τ of the higher level is set as four times that of the lower
level. This time constant difference enables the abstraction of
information flow from the lower level to the higher one [26].
The exact value ofτ is 5.0 for the lower level CTRNN and
20.0 for the higher one, correspondingly.α is set as 0.1 for
both of the CTRNNs. 4 context units and 10 hidden units are
allocated for each of 16 CTRNNs in the lower level. 6 context
units and 16 hidden units are allocated in the higher level
CTRNN. These numbers are determined as mostly minimum
ones required for successful learning of the networks in our
preliminary experiment.

Both of the higher level CTRNN and the lower level
CTRNN can be operated either in the open-loop mode and in
the closed-loop one. In the open-loop mode, the actual visual
sensation̄st is input to the lower level CTRNN and the higher
level CTRNN, correspondingly. In the closed-loop mode, the
visual predictionst+1 from the softmax output is fed-back to
the both networks through the visual-imaginary loop which is
shown by a dotted line in Figure 10.

One of the interesting questions in this experiment is
that how visuo-proprioceptive flow of experience could be
segmented through the developmental learning processes. If
segment patterns learned by local “expert” networks in the
lower level appear as reusable elements that can reconstruct
the whole experienced flow by their sequential combinations,
they are called as behavior primitives. (Michael Arbib called
them as motor schemata in his motor schemata theory [30].) In
this sense, our focus in the robot learning is not for learning by
rote but for achieving certain generalized structures with the
compositionality by adequately organizing a set of behavior
primitives mentioned in the above.

B. Setup

In this experiment, the behavior tasks are more complex
than those in the previous examples. A robot with this two-
level structured CTRNN receives tutoring training for a set of
task behaviors. In task-1 the robot must approach the object
with both hands coming down from the home position, grasp
the object, let it go, and return to the home position. In task-2,
the robot must approach the object, grasp it, bring the object
up and down three times, release the object, and return to home
position. And in task-3 robot must approach the object with its
left hand from the home position, alternately touch the object
with its left and right hands eight times before returning to
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the home position. We see that these actions required in each
task consist of a set of behavior primitives. Those areApB:
approaching to the object by both hands,Gr : grasping the
object by both hands,Hm: going back to home position,Li :
lifting up and down the object repeatedly,ApL : approaching
to the object by left hand andTch: touching the object by left
and right hands in turn. However, it is important to note that
the robot is not taught for each behavior primitive explicitly.
The robot is trained with continuous visuo-proprioceptive flow
for each task behavior without seeing any segmentation cues.
One of the central motivations in experiment-2 is to examine
whether these behavior primitives appear in the segmented
flow as the results of the self-organization. If so, we will
examine further how they are internally organized.

A tutor teaches these three task behaviors to the robot in
3 tutoring sessions. (Note that all three different tasks are
taught to the robot at each training session, unlike the first
experiments in which tasks A and B are trained in different
sessions.) Tutoring procedures are similar to the first set of
experiments. Tutors are given instructions for each task. For
task-1, the subject is asked to ensure that both hands hit
precisely the right position for object touching. In task-2, the
tutor needs to make sure the object is held and brought up
and down three times without dropping it. In task-3 the robot
should touch the object by each hand in turn for the correct
number of times. In each tutoring session, the task behaviors
are guided and the initial position of the object changes 6
times for each task (Figure 3).

In the first session, the network training is iterated for 50000
epochs for the lower level and 5000 epochs for the higher level
networks, respectively. In the second and third sessions, 10000
epochs and 5000 epochs for the lower and the higher level
networks. The experiment was conducted with one subject.

C. Results

The experiment results showed that the robot learns to
perform all the three task behaviors nearly perfectly by the
3rd session, even for untrained positions. Another important
observation was that a set of behavior primitives appear in the
visuo-proprioceptive sequence patterns as segmented by the
gate openings.

In order to visualize how the segmentations proceed in the
developmental learning processes, the developments of the
gate opening are plotted for each task. Figure 11, Figure 12
and Figure 13 show the visuo-proprioceptive profile and the
gate opening across three sessions of self-generation for Task-
1, Task-2 and Task-3, correspondingly. The profiles of the
task-1 are taken for the case of the object position 0, task-2
for the position 2 and task-3 for the object position 2. In these
figures, the time developments for the openings of 16 gates,
4 joint positions in left arm and 2 dimensional camera head
direction corresponding to the vision information are shown in
the upper, the middle and the bottom levels. Each gate opening
is represented by grey level color of a horizontal bar from
white to black as corresponding to its value from 0.0 to 1.0.
Those bars are aligned from the top to the bottom levels as
corresponding to from the0th to the15th gate opening. A set
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Fig. 11. Gate opening, visual inputs and joint positions profiles in (a) the
1st session, (b) the 2nd session and (c) the 3rd session for Task-1.

TABLE I
SUMMARY OF BEHAVIOR PERFORMANCES ON TASK-1.

session pos. 0 pos. 2 pos. 4 pos. 6 pos. 7
1st. Both Both Both Both Both
2nd. Both Left Both Right Left
3rd. Both Both Both Right Both

of labels attached on the gate opening profiles denote behavior
primitives which are identified in the 3rd session for each task.

The general observation for all task developments is that
basic structures for segmentation of the visuo-proprioceptive
flow is organized in the session 1. However, the motor profiles
continue to develop until the session 3 except the task-1 case
in which the motor profile development almost converges in
the first session. The details of this point is described later.

Table I, Table II and Table III summarizes the developments
of the task performances for the task-1, the task-2 and the task-
3, correspondingly. For each task, performance at different
initial positions of the object for each session is described
using abbreviations. For tasks 1 and 2, self-generation is
evaluated for cases with the trained initial object positions of
0, 2 and 4 and untrained ones of 6 and 7. For task-1, “Both”,

TABLE II
SUMMARY OF BEHAVIOR PERFORMANCES ON TASK-2.

session pos. 0 pos. 2 pos. 4 pos. 6 pos. 7
1st. No HoldUp HoldUpLost No HoldUp No HoldUp HoldUpLost
2nd. No HoldUp Updown 1 Updown 1 No HoldUp Updown 1
3rd. Updown 3 Updown 3 Updown 2 Updown 2 Updown 3
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Fig. 12. Gate opening, visual inputs and joint positions profiles in (a) the
1st session, (b) the 2nd session and (c) the 3rd session for Task-2.

TABLE III
SUMMARY OF BEHAVIOR PERFORMANCES ON TASK-3.

session pos. 0 pos. 2 pos. 4
1st. Touch 1 Touch 0 Touch 0
2nd. Touch 1 Touch 1 Touch 1
3rd. Touch 8 Touch 5 Touch 7

(c) Session3

G
at

e

step

step

(b) Session2

(a) Session1

G
at

e

step

step

G
at

e

step

step

ApL Tch Hm

s t
m

t
s t

m
t

s t
m

t

Fig. 13. Gate opening, visual inputs and joint positions profiles in (a) the
1st session, (b) the 2nd session and (c) the 3rd session for Task-3.

“Right” and “Left” denote that the object is touched by both
hands, by only the right hand and by only the left hand,
correspondingly. For task-2, “No HoldUp” means that the
robot cannot hold-up the object at all. “HoldUpLost” means
that the object is held up once and it is dropped soon after.
“UpDown X” denotes that the object is successfully held for
X times. Task-3 performance was evaluated only for trained
object positions 0, 2 and 4. (This was because object was
frequently moved out from the workspace when touched if
the object is initially located at the untrained positions of 6
and 7.) “Touch X” means that the object is touched X times
by either of the right or the left hand. The correct number of
touching is 8.

Now, the details of each task development are examined.
From Table I, Table II and Table III, we can see that, with the
exception of task-1 which were perfectly generated in the first
session, task performances develop gradually in the tutoring
sessions. The task-1 behaviors were generated perfectly even
with untrained object positions. The performances, however,
do falter slightly in the second session but, by the third session,
they are near perfect again. This might be because the task
behavior in task-1 is simpler than those in the others. We also
noted that visuo-proprioceptive profiles and gate openings for
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Fig. 14. Gate opening, visual inputs and joint positions sequences for Task-
2 in the first self-generation session with the object moved manually by an
experimenter.

task-1 do not change drastically across three sessions as shown
in Figure 11(a), (b) and (c). We also saw that the behavior
primitive ApB is encoded by the 13th gate opening andHm
by the joint opening of the 3rd and 10th gates for all the three
sessions.

In the task-2, the object could not be lifted in three of
the five attempts in the first session. While we noted that
the approach trajectories for both hands were almost perfect,
the robot could not squeeze the object suitably with both its
hands in every position. The visuo-proprioceptive profile in
Figure 12(a) shows that the object is first touched around the
20th step, then the arms go up slightly without holding up the
object. They are frozen like that until the 100th step when the
arms start to go back to the home position.

So we conducted an another experiment to examine how
much task-2 behaviors are actually learned in this stage. The
robot repeated the self-generation of the task behaviors while
“fake” visual feedback was made. When the robot fails to lift
the object, the tutor takes the object and moves it up and down.
The robot sees this action as its own. During the experiment,
it is seen that the hands of the robot follow movement of the
object that goes up and down (see Figure 14).

This result indicates that some correlations on the visual
inputs and the proprioceptive inputs are acquired at this stage.
The neural dynamic structure generated by learning initiate
the up and down arm movement patterns via entrainment from
“fake” visual feedback. The proprioception profile in Figure 14
shows coherent oscillation between the proprioception and the
visual inputs. It is possible that the failure in the previous
trial was due to a lack of proper visual feedback when the
object was not grabbed. In fact in the following teaching
session, the tutor felt that the robot can self-generate the
desired movements mostly and only needed a little guidance
to squeeze the object slightly harder. With this guidance, the
robot’s performance improved. In the second self-generation
session, the robot manages to lift the object up and down once
before dropping it, Figure 12(b) but by the third session the
robot executes the task nearly perfectly, see Figure 12(c).

In the first session, the robot cannot touch the object in

task-3 most of the time. In fact, oscillatory motor patterns
for repeated touching decay over time (Figure 13(a)). In the
second session, the robot starts to touch the object at the least
once and initiating oscillations in motor patterns are seen, see
Figure 13(b). By the third session the robot can repeatedly
touch the object in a stable manner as it generates more explicit
cyclic patterns in the motor profile (see Figure 13(c).) In fact,
our further analysis on the networks showed that this cyclic
pattern of Tch is generated by limit cycling attractor self-
organized in the 11th network of which gate is exclusively
open during generation of this pattern. In the analysis it was
observed that this network alone generates this cyclic pattern
with a constant periodicity after its convergence to the steady
oscillation. Similarly, it was found that another cyclic pattern
of Li is generated by limit cycling attractor self-organized in
the 0th network.

By looking at the gating sequences generated in the third
session, we can see how continuous visuo-proprioceptive se-
quences are articulated through a self-organized set of behav-
ior primitives that emerges in our proposed neural network
architecture. For example, in Figure 11(c), Figure 12(c) and
Figure 13(c), we see that the behavior primitiveApB is
encoded by the 13th gate opening for task-1 and task-2,Li
by the 0th gate opening, andHm by the 3rd gate opening
for the task-1 and the same for the task-2 does by the 10th
gate opening. There are differences in the gate opening for
representingGr between in task-1 and in task-2. The 12th
gate opening and the 10th one are mixed in the former case
and the 1st, the 12th and the 13th ones are mixed in the latter
case. In task-3ApL is encoded by the 1st gate opening,Tch
does by the 11th gate opening andHm by the 2nd gate opening
with slight opening of the 3rd one and the 11th one.

Here, some questions might come to mind. (1) Why is the
same behavior primitive encoded by different gate openings
in some cases?, (2) Are the encodings of behavior primitives
sensitive to the object’s position or are they sufficiently gener-
alized to be insensitive to the object’s position?, and (3) How
can the timing of switching from one behavior primitive to
another in terms of the gate opening be made?

To examine these questions the activation profiles in the
higher level CTRNN are compared for task-2 with different
initial object position cases, namely the position 7, 8 and 6
shown in Figure 15(a), (b) and (c), correspondingly. (Position
8 is 3.5cm left of position 2 and is newly introduced in
this experiment in order to amplify the effects of position
differences.) The profiles consist of context unit activation
and the MSE prediction vector of the 16 dimensions in the
higher level CTRNN and the gate openings and the motor
profiles in the lower level CTRNNs. The value of the MSE
prediction is represented by grey level color of each horizontal
bar where the darker color denotes the smaller MSE prediction.
First, we see that gate opening profiles and context activation
profiles are mostly same overall for all three cases regardless
of the object position difference. However, there are certain
differences in the gate opening immediately before the 0th gate
opens between the position 8 and 6 cases. The 1st gate opens
in the position 8 case in Figure 15(b) and the 12th gate does
in the position 6 case Figure 15(c). It is, however, important
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Fig. 15. The context unit activation and the mean square error prediction
vector of 16 dimension in the higher level CTRNN and the gate opening and
the motor profile in the lower level CTRNNs in three different initial object
position cases in (a) with position 7, (b) with position 8 and (c) position 6.

to see that the MSE prediction vector profiles in these time
windows are similar, as are the context activation profiles
between the two even though the gate openings are explicitly
different in this period. This means that the 1st and 12th local
CTRNNs in the lower level are equally good at predicting the
visuo-proprioceptive sequences in this segment and therefore
show only slight differences in their errors. Although this may
introduce certain fluctuations in the gate opening between the
two because of the winner-take-all characteristics by means
of the employed softmax function, it does not matter for
the behavior generation because both local nets are good
at generating motor patterns only with small errors. This
explains how redundant encoding of behavior primitives are
self-organized and why behaviors can be generated stably
regardless of such redundancy.

Finally, the question about the timing of switching for
behavior primitives is addressed. The exact question is that,
after grasping the object and stopping there for a moment,
what sorts of cues can initiate next gate opening for lifting up
the object? Also, after lifting up and down the object for three
times, how can the next behavior primitiveHm be triggered?
The underlying mechanisms can be inferred by looking at the
context activation profiles in Figure 15. It is seen that the
context activation states gradually change during each period
of behavior primitive. This means that the internal dynamics
by means of the context unit activations “count” for the learned
period of waiting before lifting up the object and the learned
repetition times of cyclic movements, lifting up and down of
the object or touching the object by alternating left and right
hands. Our preliminary experiments showed that the learning
error in the higher level CTRNN cannot be minimized if
synaptic modulation by means of the error back-propagation is
restrained for the weights connected from/to the context units
(from aC to aH and fromaH to oC). In such cases, the context
activation profiles become mostly flat. It can be said that
adequate contextual flow which can orchestrate sequencing
of behavior primitives in proper timing can be self-organized
through the learning of the network by utilizing the context
dynamics. This part of arguments correspond to an idea of
“kinetic melody” by Luria [38] who discussed importance of
organizing contextual flow in unifying behavior primitives into
skillful smooth actions.

D. Pantomime via the visual imaginary loop

In the last an experiment on pantomime is described. The
robot can pantomime object manipulation behaviors without
accessing an actual object but with accessing its visual imag-
inary. In this experiment, both of the lower level CTRNN and
the higher level one operate in the closed-loop mode with the
actual visual inputs shut off. These results are compared with
the case in which the visual imaginary cannot be accessed (the
robot is operated in the open-loop mode in which the visual
inputs are fixed artificially at constant values of seeing the
object in position 0 in this case.)

Figure 16 shows the comparison of the two cases for
performing Task-2 by pantomime with and without accessing
the visual imaginary. In Figure 16(a) of the case with the visual
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Fig. 16. Comparison of pantomime performances of Task-2 (a) with and (b)
without the visual imaginary loop.

imaginary loop, it is observed that the sequential behavior of
approaching the object, the cyclic movement of holding up
and down the object and homing are well imitated. It is also
seen the visual imaginary is reconstructed well. On the other
hand, in the case without the visual imaginary loop shown
in Figure 16(b), the motor movement is frozen while lifting
the object up and down even though the gating signal from
the higher level is completely the same as the one in the case
with the visual imaginary loop. It is understood that inadequate
visual inputs with fixed values disturb the CTRNN dynamic of
the periodic movement. This explains that the visual inputs and
the proprioceptive inputs are treated in an inseparable manner
in the lower level CTRNN which is analogous to the neu-
roscience observation that visual stimulus and proprioception
are integrated well in parietal cortex [20]. The higher level
CTRNN, on the other hand, is totally insensitive to the external
perturbation. The reason comes from the fact that the higher
level CTRNN does not learn to anticipate the visual inputs
sequences–it just receives the visual input. No anticipation of
those inputs makes the CTRNN dynamics less sensitive to
them. Therefore the robot can pantomime as well as execute
actual behavior by utilizing the visual imaginary loop once the
two levels of CTRNNs has learned the processes.

This result might explain underlying mechanisms for some
apraxia cases related to parietal cortex impairment of human
brains. Left hemisphere damage can result in various types of
apraxia [39], ideomotor apraxia is of particular interest in light

of our results as this form of apraxia shows deficits in skilled
tool use caused by lesions in the inferior parietal cortex [40].
Patients with ideomotor apraxia typically perform worse when
attempting to pantomime gestures than when using actual
objects [39], [40], [41], [42]. The question here is why damage
in inferior parietal cortex would impair pantomimed acts
more than actual activities. As we have described, pantomime
requires the visual-imaginary which can compensate for the
visual input received when actually handling objects. Our
experiments showed that the robot can pantomime when there
is closed-loop feedback of the visual imaginary but not in
the absence of that feedback. Based on this result one may
speculate that the loss of the closed-loop circuit for generating
the visual imaginary inhibits pantomime for the patients with
lesions in the inferior parietal cortex.

V. D ISCUSSION

Our experiments suggest that the innateness of neural
network characteristics cannot be ignored in the learning
processes. The innateness in terms of the network parameters,
the initial connectivity as well as number of neuronal units and
synapses determines the preferences for profiles of patterns
to be learned in the network. In addition, the generalization
characteristics inherent to neural networks of distributed repre-
sentation [43] determine the preferences for the set of patterns
to be learned in a single network. A set of patterns that share
some structures with other profiles are easier to learn than
those with no shared profiles [15].

However, it is difficult for tutors to know what any networks
learning preferences could be prior to their actual trials.
Therefore, the tutors need to explore them by interacting
with the network dynamics. In the first session, the teaching
trajectories in our experiments were arbitrarily provided to
the networks via the tutor’s attempts to satisfy the task
specifications. Such arbitrariness resulted in generating large
errors in the self-generated motor patterns. The tutors feel
the “intentionality” of the robot as a force that represents
the gap between how the robot intends to move and how the
tutors intend to guide. However, these errors were minimized
in the subsequent tutoring sessions because the tutor starts
to follow the self-generated movements of the robot as long
as the task specifications are satisfied. Consequently the joint
position trajectories satisfy the constraints imposed by the task
specifications by accommodating the innate characteristics of
the network.

Although the idea of codevelopment between trainers and
trainees has been well discussed in the context of develop-
mental psychology or education, they have not been applied
to issues in robot development. The study done by Nagai
et al [44] might be one exception. In that study, the robot
was tutored to direct the camera head in the direction that
the human tutor is visually attending to. It was shown that
the learning control by the tutor from easy tasks to difficult
ones by monitoring the performances of the learner makes the
learning process easier.

Some in the field [11], [10] of the developmental robotics
[45] have shown that sensory-motor skills can be devel-
oped efficiently if functions of innate reflex behaviors are
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appropriately coupled with sensory-motor mapping learned
later. Further study might combine the idea of coupling the
innate behaviors and the later learning with our proposed
codevelopment tutoring scheme.

Wolpert and Kawato [24] and Demiris and Hayes [46] have
also proposed mixture of local experts type architectures which
are similar to ours described in the experiment-2. However,
our motivation to utilize this type of architecture has been
different from these studies. Our main motivation has been to
investigate brain-inspired mechanisms for the sensory-motor
flow articulation with utilizing this type of architectures. For
this purpose, Tani and Nolfi [32] proposed that the mixture
of RNN experts with multiple levels can learn to perceive
the sensory-motor flow as hierarchically articulated. Tani [47]
further discussed that the observed mechanism of the articula-
tion could account for the psychological mechanism for event
perception and the phenomenological questions of subjective
time perception by Edmund Husserl [48]. The current study
showed that complex sensory-motor flow experienced through
the tutoring process can be learned by decomposing them into
reusable segments by the gating mechanism.

One interesting discussion here might be that whether
these sensory-motor segments can be regarded as behavior
primitives or not. According to the motor schemata theory
by Arbib [30], behavior primitives should generalize their
functions in various situations. It is considered that in our
experiment the sensory-motor functions acquired as experts
in modular networks have achieved generalization but with
certain limitations. They can generalize position differences
of the object by utilizing the differences in the visual inputs.
But they can do neither for variations in speed of all movement
patterns nor in amplitude in generating cyclic patterns (e.g.,
size of swing-up inLi and that of lateral swing inTch).
A single expert network can generate the movement pattern
only with the same speed and the same displacement. In
order to generate these variations in movements, additional
adaptive parameters which can modulate the sensory-motor
function might be required in each local network. This could
be achieved by introducing the parametric biases (PB) scheme
[15] to the current gating networks model. It is expected that
the PB vector implemented in the input layer of each local
network would play the roles of the adaptive parameters in
order to modulate movement speed or amplitude. Aside from
this, we can recognize other type of generalization in encoding
of cyclic patterns. It is reminded that the expert networks
that acquire cyclic patterns do not encode number of cycle
times demonstrated by tutors. The number of cycle times are
encoded by the higher level network in terms of timing of
gate switching. As have been discussed, the lower level expert
network can generate cyclic patterns with infinite cycle times
as the patterns are embedded in limit cycling attractors. This
mechanism of generating arbitrary number of cycle times by
means of self-organized attractor dynamics incorporated with
the gating mechanism can provide another type of general-
ization in generating cyclic movement patterns. In addition,
it was shown that those segments of learned sensory-motor
patterns can be utilized in a compositional way for the purpose
of reconstructing complex task behaviors. They generalize in

the ways of their appearances in different sequential contexts.
These discussions summarize that a set of sensory-motor flow
segments acquired in the gating networks can be regarded
as behavior primitives but with some limitations in their
generalization competency.

Calinon et al [29] introduced a novel imitation learning
scheme by combining Principal Component Analysis and
Gaussian Mixture Model for extracting correlation structures
among different modalities. The proposed scheme can extract
different types of behavior constraints such as the relative
position constraint and the absolute position constraint from
the data acquired in demonstrations by experimenters. The
relative position constraint corresponds to the positional re-
lationship between robot hands and an object to be grasped
at variable positions. The absolute position constraint does
to absolute values of arm joint positions when reaching to
a specific position. An interesting result in their study is
that these constraints are time dependent during each task
and their scheme can extract such time dependent correlation
structures. On this point, it is considered that the CTRNN
scheme of ours can deal with the same problem. Actually,
the current paper demonstrated that the robot can learn to
touch the object located at variable positions and then to
reach to a specific point. The main difference between two
approaches is that our scheme utilizes attractor characteristics
of deterministic dynamical systems and the scheme by Calinon
and his colleagues does with a probabilistic framework. Future
studies would explore advantages and disadvantages between
the two.

One interesting future study is about incremental learning
of new behavior primitives. Our preliminary experiments on
this topics using the hierarchical networks showed that an
additional learning of a new task containing a novel behavior
primitive often interferes with memories of pre-learned behav-
ior primitives. It seems necessary that the pre-learned behavior
primitives should be retrained by rehearsing the old teaching
data while a new behavior primitive is trained, which is related
to the memory consolidation learning scheme discussed by one
of the authors [49].

In the current paper, the results of experiment-2 were
described for one subject case with one parameter setting.
Future work should conduct some parametric studies on the
development learning processes with having more repeated
experiments. It is especially interesting to examine how num-
ber of local modules and time constant value at each level
affect the processes of self-organization and segmentation for
behavior primitives. Our preliminary study [50] suggested that
number of behavior primitives memorized cannot scale simply
with number of local networks prepared in the system. The
gating becomes unstable with inreasing number of patterns to
be memorized and that of modules. There remains a space for
further investigations for more stable gating mechanisms in
achieving the scaling of memory capacity.

Finally, the issue of the compositionality is revisited. The
current paper discussed that each task behavior is decomposed
into sequences of behavior primitives which are reusable
in different task contexts. It was also discussed that the
behavior primitives should not be regarded as concrete objects



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX 2008 16

of encoding fixed patterns. Instead, each behavior primitive
should be acquired as “elastic” enough such that its profile
can be flexibly modulated as to adapt to various situations. It
is important to understand that behavior primitives and local
networks may not have one-to-one type mappings. They can
be organized with having redundancy as we have described
in the results of experiment-2. It was observed that some
behavior primitives are encoded not by a single corresponding
local network but by multiple ones each of which has a
slightly different internal representation. Such redundancy is
beneficial for representing subtle differences in pattern pro-
files of behavior primitives depending on their ways to be
connected to next ones with fluency. Actually, in the result
of experiment-2, the gate openings for a behavior primitive
Gr were slightly different depending on next primitive (Li or
Hm) to follow. The representation for skilled actions seem
to require two apparently contradictive factors, namely the
decompositionality to elements and the wholeness without
seams. Our proposed model seems to be successful in having
both factors with less conflicts by achieving, what we may call
as, the “organic” compositionality through its self-organization
processes.

VI. SUMMARY

Our experiments show that interactive developmental tutor-
ing can teach complex task behaviors to robots. In addition,
the hierarchically organized CTRNNs was able to successfully
form generalizations of learned experiences by extracting the
compositional structures of behavior primitives in a context-
dependent manner. Our model suggests possible mechanisms
in the inferior parietal cortex for generating pantomimed and
actual behavior for object manipulation. The uniqueness of the
proposed scheme stems from the physical interactions between
the human and robot, the interaction of their intentions, of the
tutoring process. More interestingly, this interaction provides
a novel communication channel between humans and robots at
the phenomenological level through their direct experiences.
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