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Abstract. We propose a sub-symbolic connectionist model in which a func-
tionally compositional system self-organizes by learning a provided set of goal-
directed actions. This approach is compatible with an idea taken from usage-
based accounts of the developmental learning of language, especially one theory
of infants’ acquisition process of symbols. The presented model potentially ex-
plains a possible continuous process underlying the transitions from rote knowl-
edge to systematized knowledge by drawing an analogy to the formation process
of a geometric regular arrangement of points. Based on the experimental results,
the essential underlying process is discussed.

1 Introduction

In this study, we try to examine the mechanisms in our mind that are involved in the
shift from unrelated rote knowledge acquired by learning examples of objects or events
into a flexible conceptual system by which we can conceive something not experienced
as a recombination of the examples. Skinner (1957) argued that a reusable unit emerges
as a by-product of the acquisition of multiple examples containing the reusable unit.
He pointed out that a minimal unit seldom appears by itself as whole examples of
stimuli and responses. Tomasello (2003) reported that infants can appropriately use
holophrases, which are indivisible sentences such as “lemme-see,” in a communicative
context before understanding the reusable units, which include phrases and words such
as “let,” “me” and “see.” In his usage-based accounts of language development, each
transition of the performance is explained in terms of the acquisition of a new type of
smaller and more abstract symbolic device.

It is, however, difficult to transfer the idea that the utilization of wholes precedes
the emergence of parts from explanatory to computational models. One of the most
substantial problems is how to implement the acquisition of a composition rule, which
combines smaller units into a whole concept. Cognitive theories often neglect the com-
position rule, since the rule and the units are considered to be two sides of the same
coin (Goldberg, 1995). This belief is plausible only as far as symbolic manipulation
is concerned. However, the realization of an embodied composition rule, which is the
correspondence of the symbolic manipulation in reality, requires much more than the
acquisition of a mere syntactic structure of the symbolic system. Let us consider the
case in which an agent generates an action specified by a target object and an operation
on it. It is quite easy to represent the action in a symbolic system; a pair of symbols rep-
resenting the target and operation is enough. On the contrary, an embodied composition
rule, which is required to generate an action relevant to the pair, is not so trivial. The
problem is that the rule tends to be too abstract to be learned by examples, because the



reach red «
reach blue &

< turn to red
#turn to blue

reach yellow +

+turn to yellow
Fig. 1. Systematic relationships among concepts can be represented based on the regularity of a
geometric structure.

rule needs to capture the anything residual that cannot be collected as symbols, which
are usually grounded to something concrete. In fact, many computational models em-
ploy a pre-programmed composition mechanism, although their objectives are different
from ours (Iwahashi, 2006; Roy, 2002; Cangelosi & Riga, 2006).

In order to avoid the difficulty concerning the abstractness of the explicit compo-
sition rule, this study investigates a novel embodied implementation of a functionally
compositional system in the domain of goal-directed actions of a simulated agent. A
functionally compositional system is one which does not keep any reusable units ex-
plicitly in the form of symbols but works like a conventional compositional system
(van Gelder, 1990). In other words, there are no symbols, and therefore no composition
rules to manipulate them. Instead of dealing with reusable parts explicitly, the func-
tionally compositional system focuses on the systematic relationships among wholes.
Each whole concept is embedded as points in a conceptual space implemented as an
n-dimensional vector space. The geometric arrangement of these points represents the
underlying combinatoriality among them. For example, a system of six actions specified
by every possible combination of one of three objects and one of two operations is rep-
resented as a triangular prism, as shown in Fig. 1. Even if the positions of some actions
are unknown, they can be inferred by utilizing the geometric regularity. Furthermore,
this framework explains the transitions from rote knowledge to systematic knowledge in
terms of a continuous internal process. The emergence of the regularity involved in the
transition can be realized by the continuous motion of each point. It is also remarkable
that each whole concept does not change through the transition. Only their relationships
are altered, whereas the conventional implementation undergoes the replacement of a
holistic symbol with a combination of elemental symbols. Thus, our approach might
provide a dynamical interpretation of conventional usage-based models.

In the following, we propose a computational model whereby the geometric reg-
ularity self-organizes through the learning of examples. Our experimental setting and
connectionist architecture is explained in Section 2. In Section 3, the experimental re-
sults, which demonstrate that three different types of combinatorial generalizations are
realized by the same model, are presented. An analysis of the result is shown in Section
4, and a possible underlying dynamical mechanism of the functional compositionality
is explained in Section 5.

2 Experimental Setting

In our experiment, a simulated mobile agent learns incomplete parts of a total of 36
different goal-directed actions; the actions are characterized by combinations of a tar-
get object, an operation on the target, and an optional verb modifier. The learning is
conducted under the supervision of teaching programs written for this study. The agent
is a model of the mobile robot depicted in Fig. 2(a). This robot has a color camera with
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Fig. 3. The architecture of the learning network

Fig. 2. The simulated agent. The agent is is presented. A rectangle represents a layer. The
based on (a) a mobile robot that performs number of nodes contained in the layer is de-
36 types of goal-directed actions on a stage noted by the number in the rectangle. The gray
(b) where a target and an optional dummy layers have a slower time constant than do the
colored object are placed randomly within white layers. PB (parametric bias) storage is a
a dashed square. working area.

a range of view of 120 degrees and two rotating motors driving each of its two wheels.
In each experimental trial, the agent was required to perform either of two operations
reach or turnto one of six colored objects (blue, cyan, green, yellow, orange,
and magenta) in the environment shown in Fig. 2(b), where one or two objects, one of
which is the target, are randomly placed. In actions involving reach, the agent is re-
quired to move toward the target and then to stop just before touching it. In the turnto
actions, it has to pivot to the target. In our experiment, an operation turnto takes a verb
modifier, which designates the offset angles (-30, -18, 0, +18, and +30) of the final po-
sition of the target in the visual field from the agent’s center. A negative offset indicates
the offset to the left, and zero is omitted. In the following, the action is denoted as a
triplet consisting of the operation, target, and offset, for example, turnto-blue+18. It
should be noted that this notation is used only for our convenience and the agent has no
way to access it. In some situations, turnto with an offset is regarded as an operation,
and, for example, is denoted as turnto+18.

As mentioned above, the actions are embedded in the concept vector space through
the learning process. Unlike the conventional associative learning between an action and
a vector, the vector is not provided a priori. Instead, the geometric arrangement of the
vectors self-organizes the structure, reflecting the relationships among the actions, in-
cluding unseen ones. The learning model which acquires this structure-preserving map
is a connectionist network, as shown in Fig. 3. The network consists of two parts, each
of which is tailored to its own functions. One part is a base-level network (base-net)
which takes the visual information from the camera as input and outputs the angular
velocities of the wheels (the left-hand side of Fig. 3). The base-net is basically a con-
ventional layered neural network except that it has second-order connections (Pollack,
1991) between the vrepr and motor layers. This special mechanism enables the base-net
to switch its function. Depending on an action to be performed, the base-net generates
different motor values for identical vision input. The second-order connection is con-
trolled by the meta-level network (meta-net) depicted on the right-hand side of Fig. 3.
The meta-net is also a conventional layered network. As input, it takes a vector en-
coding an action once at the beginning of the action, then, it outputs the weights of the



second-order connections constantly until the action finishes. The input layer works just
like a conventional parametric bias (PB) layer (Tani, Ito, & Sugita, 2004) which has an
infinitely long time constant, and therefore we name this as the PB layer. PB storage is
as the working area during the learning, as will be explained later in detail. It also keeps
the self-organized PB vectors for a later test phase.

An experimental session consists of three phases: the creation of training data, the
learning of the data, and the evaluation of the performance. The training data were cre-
ated by sampling sensor-motor time series involving actions generated in an algorithmic
manner. Then, the network learned a part of the data in an offline manner. Four sessions
were conducted with supervised data consisting of a different number of actions: 4 and
21 out of 36 actions in the most sparse and dense cases, respectively. After the training
error of the network decreased sufficiently, the performance was evaluated. A PB vector
of an unseen action was computed by recognizing unused training data, as explained be-
low. The agent, which was controlled by the network, was tested to determine whether
it could make a previously unexperienced action in a novel environment with using the
PB vector. In the remaining sections, each phase is explained in detail.

2.1 Phase 1: Generating Examples by Teaching Programs

For each of the 36 actions, 120 time series were recorded in different environments.
In 20 out of the 120 cases, only a target object was placed in the stage, and in the
remaining 100 cases, a dummy object was placed in addition to the target object. The
dummy object was chosen from 5 objects, and therefore 20 time series were generated
for each. The dummy object was never the same as the target, Both a target and an
optional dummy object were arranged at random positions within the area range shown
by the dashed square in Fig. 2(b). Any arrangement where the target was occluded by
the dummy at the home position of the agent was omitted.

Each exemplar time series consists of pairs of visual information and the corre-
sponding motor value computed by a manually coded teaching program. This approach
may seem inappropriate. However, if the agent learns the exemplars by rote, there would
be no need to learn the action by using the network. The actual objective of the learning
is, therefore, to establish the relationships among the provided exemplars in an unsu-
pervised manner. Also, it should be mentioned again that a PB vector has no exemplar.

The teaching program calculates the desired rotation speed of the two wheels of the
agent from the position of the specified target taken from a camera image at a constant
time interval. At the same time, 27-dimensional visual and 10-dimensional motor in-
formation are recorded for later learning (see Fig. 3). The visual input vector does not
have the position of the target explicitly. From the viewpoint of the network, the visual
field is composed of nine vertically divided regions. Each region is represented by the
fraction of the region covered by colored patches and the dominant hue of the patches
in the region. The hue is encoded by the position (cos 6, sin #) in the color circle, where
pure red, yellow, green, and blue are represented as 8 = 0°,90°, 180°, and 270°, respec-
tively. The desired speed of the wheel takes a real value ranging from -0.2 to 1.0. A
negative value indicates reverse rotation. The motor vector is composed of two five-
dimensional real-valued vectors, each of which represents the speed of the wheel in the
form of [£(0), £(0.25), £(0.5), f(0.75), f(1.0)], where f is a Gaussian distribution with
the mean of the desired speed and a sigma of 0.25. This increases the robustness against
the re-generation error of the network.



2.2 Phase 2: Batch Learning

The network learns incomplete parts of the 36 actions in a batch manner by employing
the data prepared in the previous phase as the supervising signal. The learning process is
formulated as a conventional iterative, steepest descent optimization with respect to the
error function E, defined in (1). The model has two types of parameters to be optimized:
one is the vector W consisting of all the connection weight values of the network; and
the other is the set PB consisting of PB vectors pb; for all supervised actions i € ‘A.

E(W.PB) = ) Ei(W, pby) )
€A
119 lij
Ei(W,pb) = )" > Eif(t: W, pb) )
Jj=0 =0
E;j(t; W, pb;) = i (1) — m(v;(1); W, Pbi)||2 s 3)

where [;; is the length of the j-th training data of an action i, /() is the desired motor

vector corresponding to the visual vector v;;(¢) at the time step ¢ in the training data, and
m(v;;(t); W, pb;) is its actual value generated by the network under the condition that
the connection weight is W, and the PB vector for the action is pb; with the identical
vision input. The parameters W and PB are updated simultaneously by learning all the
provided data in a batch manner. The learning procedure is implemented by using the
conventional back-propagation algorithm. At the beginning, all the connection weight
values are randomized with a small value, and pb;, Vi € A are set to the zero vector. All
the PB vectors reside in the storage since the values of the PB nodes are switched so that
the network can learn all the given actions at the same time. And then, the following
procedure is conducted 30,000 times.

(1) Do the following for each actions i in A:

(1.1) Load the stored pb; to the PB nodes.

(1.2) For each of the 120 sensor-motor time series, calculate the delta errors of connection
weights OE;;/dW (t; W(T), pb,(T)) and of PB vector dE;;/dpb; (t; W(T), pb,(T)) by us-
ing the back-propagation algorithm.

(1.3) Update pb; by using the summation of all the delta errors of pb; for all time steps 7 of
all time-series j of the action 7, and store the updated vector to the storage.

(2) Update W by using the summation of all the delta errors of W for all time steps ¢ of all
time-series j of all the provided actions i.

Thus, the connection weights capture the common characteristics among all the
actions and play a background part while each PB vector is specialized to its corre-
sponding vector. In the analysis of the experimental results, we observe the acquired
geometric structure constructed by the PB vectors in the conceptual space.

2.3 Phase 3: Examining the Generalization Capability

Two aspects of the generalization capability of the agent, 1) transfer of the skill to
a novel environment and 2) recombination of the supervised actions into an unexperi-
enced action, were tested. For examining the transfer of skill to a novel environment, the
agent was tested to determine if it could accomplish each known action in 280 novel
environments where a target and dummy object were placed in a systematic manner.
The PB vectors acquired through the second phase were employed. This test reveals the
kind of information kept in the vectors. If the vector codes only specific trajectories of
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Fig. 4. The result of experiments 1, 2, 3, and 4 are shown in (a), (b), (c), and (d), respectively. A
black box represents a trained action, and a gray box represents an action acquired as a recombi-
nation of the provided data.

taught examples without generalization, it is impossible to generate a goal-directed ac-
tion in a different environment. In order to investigate the recombination of supervised
actions into an unexperienced action, the PB vector encoding a novel action i’ ¢ A
should be examined. The vector can be computed by the recognition procedure. The
algorithm is basically identical to the learning procedure except that W is not updated.
By employing 30 out of 120 examples of the action i’ produced in the first phase, pb; is
optimized with regard to the error function for the action i’ defined in (2) of Section 2.2
by using W acquired in the second phase. Once pb; is obtained for each unseen action,
the generation test can be conducted in the same way as in the trained action cases.

3 Results

We next observe the changes of the generalization capability depending on the sparse-
ness of the provided examples. The degrees of generalization are compared for four
sessions of teaching data of different sparseness. In Fig. 4, a trained action is indicated
by a black box. In all the experiments, all the trained actions were regenerated success-
fully; this means the agent could accomplish the goal in more than 80 percent of the test
environments explained above. A gray box shows an action achieved by the combina-
torial generalization without extra teaching. The criteria of success for the novel action
are identical to that for the trained action. In the remaining sections, the results are dis-
cussed only from the viewpoint of the performance. We’ll re-examine issues about the
underlying mechanism in the next section.

Experiment 1: Learning by Rote In this case, no combinatorial generalization was
observed because of very sparse training data (Fig. 4(a)). This suggests that the agent
regarded the provided actions as being holistic; namely, it could not find any re-usable
parts such as an operation and a target.

Experiment 2: A Local Compositional System As training data increases, two novel
actions turnto-yellow-18 and turnto-orange-30 were acquired without learn-
ing exemplars (Fig. 4(b)). This implies that the local compositional system is self-
organized since one of the reusable operations turnto-18 and turnto-30 and one
of the reusable targets yellow, orange, and magenta could be composed in any pos-
sible way, including unseen ones. However, the agent could not acquire reach-green
and turnto-blue.
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Fig.5. Two parts of the concept space self-organized in experiment 2 are presented. Actions
depicted in (a) constitute a geometric regularity as the underlying structure of the compositional
system, whereas the actions depicted in (b) do not, as the agent failed to generate actions marked
by *. Note: PC means principal component.

Experiment 3: Two Independent Compositional Systems / Categorization Two sep-
arate local compositional systems emerge when further training data were added. One
is system { turnto, turnto+18, turnto+30 } X { blue, cyan, green }, and the other
is system { reach, turnto-18, turnto-30 } X { yellow, orange, magenta }. They
are independent of each other since the targets of one system cannot be applied to the
operations of the other system. The result can be interpreted as the categorization of
targets based on operations applicable to these targets (Takamuku, Takahashi, & Asada,
2006). It should be noted that it is impossible for a model employing predefined roles of
elemental concepts to realize this type of generalization. If two classes corresponding
to a target and an operation are defined a priori, only one global compositional system
could emerge.

Experiment 4: Operation (Target, Offset) Finally, all the possible actions were ac-
quired when the robot was trained with examples consisting of 21 out of the 36 actions.
At least two incompatible interpretations of the results are possible. One is that all
six operations have an equal relationship with one another. In this case, each opera-
tion is regarded as being a discrete symbol. The other possibility is that the similarity
based on the offset values is understood. If so, the operations concerning turnto could
have the structure turnto X { -30, -18, 0, +18, +30 }, and the reach operation exists
apart of them. The operations should be divided into two classes TURNTO and REACH
in terms of the conceptual structure. The result of an additional experiment proved that
the latter interpretation is correct: the similarity based on the offset values was under-
stood. The agent could re-generate some actions which have intermediate offsets such
as turnto-blue-24 by recognizing newly created examples of the actions. Last but
not least, all six targets form a TARGET class, since they can be applied to all operations
equally. Thus, the roles of TARGET, OPERATION (= TURNTO + REACH), and OFFSET
emerge to organize the argument structure TARGET X (( TURNTO x OFFSET ) + REACH).

4 Analysis
For the analysis of the acquired structure in the PB space, we discuss the underlying
mechanism of the combinatorial generalization proposed in Section 1: the geometric
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Fig. 6. The concept space self-organized in experiment 4. The space is projected to the planes in
which the difference of 36 actions with respect to targets (a) and operations (b) are maximized.

regularity self-organized in the conceptual space. A main objective of the discussion is
to bridge the gap between the symbolic behavior of the system and its sub-symbolic
implementation.

Figure 5(a) shows a concept structure underlying the local compositional system
observed in the second experiment. PB vectors for six actions included in the system are
displayed (see also Fig. 4(b)). The displayed vectors are obtained through the learning
process for a trained action and through the recognition process for an untrained one.
The original 12-dimensional vectors are projected onto a 2-dimensional plane computed
by applying the conventional principal component analysis (PCA) method to the six
vectors. The accumulated contribution rate up to the second principal component (PC)
is 0.79. A regular structure similar to the prism shown in Fig. 1 is observed in the figure,
although the third and subsequent PCs show irregularity. Thus, an unexperienced action
has the “correct” position in the concept space. Two congruent triangles representing
the two elements turnto-18 and turnto-30 are regarded as being equivalent in terms
of their relation to the three elements yellow, orange, and magenta. This is a possible
underlying representation of role-governed categories (Markman & Stilwell, 2001) of
elements: these two groups have the role of an operation and a target, respectively. It
should be noted that both roles emerge at the same time since both are defined in a
circular manner. This is well represented geometrically in that the congruency of two
triangles always accompanies the congruency of three lines corresponding to each of
the targets. Meanwhile, no regularity is found in the plot of actions { reach, turnto
} X { blue, cyan, green } (Fig. 5(b)). This is consistent with the performance that no
combinatorial generalization was realized with regard to the abovementioned actions.
A similar picture is found in the first experiment, where no generalization was realized.

In the third experiment, we can find two separate regular structures in accordance
with the observed performance. They exist on different sub-spaces, although these sub-
spaces are not orthogonal to each other. This explains the incompatibility of elements
between the systems. Each of the systems utilizes its dedicated representation of an
element and a composition mechanism.

A new facet is discovered in the concept structure self-organized in the last exper-
iment. Not only a structure representing the relationships among elements of different



roles but also one representing the similarity among elements within each role are ob-
served clearly. The former is the congruency of sub-units, which is similar to the struc-
ture found in the second and third experiments. The latter, with regard to each role of a
target and an operation, are shown in Figs. 6(a) and (b), respectively.

The projection plane of Fig. 6(a) is chosen by applying PCA to representative vec-
tors of the targets obtained by averaging the PB vectors for all operations for each of the
targets. If a component of a target and an operation in the PB vectors are independent
of each other, this method averages away the operation information. This assumption is
shown to be true later in this paper. The accumulated contribution rate up to the second
PC is more than 0.98, and so almost all the information is displayed in the plot. Six
clusters corresponding to each of the targets are observed in the figure. This implies
that each target has its own representation in the subspace regardless of its surrounding
context; namely, an operation takes the target as its argument. This can also be stated as
follows: a subspace holding information of a specific role, a target in this case, emerges.
Furthermore, the clusters are arranged in a circle like the continuum of color by hue.
This arrangement suggests that the agent understands the similarity of color of the tar-
get. This is indirectly proven by the tendency to choose a target of a closely related but
incorrect color. The more similar a dummy object is to a target with respect to color, the
more easily the agent mistakes the dummy for the target. And so, the generalization of
color is realized. When there is no specified target in the environment, the agent chooses
an object that has a color similar to the target as a substitute.

In Fig. 6(b), the projection plane to see the difference among the operations is cho-
sen by averaging the target information instead of the operation information. The accu-
mulated contribution rate up to the second PC is more than 0.86. Here, both continuous
and discrete sub-structures exist at the same time. In the first PC (x-axis of the figure),
the continuum of operations turntos by offset emerges. Apart from that, the cluster
of the operation reach is positioned. This implies that the second PC (y-axis of the
figure) carries the distinction between reach and turnto. In addition, another contin-
uum of the turnto operations by the absolute value of the offsets is found in the third
PC, of which the contribution rate is approximately 0.12. Thus, the subspace of opera-
tions consists of three orthogonal components. In addition, the subspace of both targets
and operations are also orthogonal to each other, since the cosine between any pair of
vectors taken from both subspaces is less than 0.01.

5 Discussion and Conclusion

We discover at last an underlying analog mechanism of the phenomenologic system of
symbols inferred in Section 3 by considering the following correspondences:

(1) The analog correspondence of an elemental symbol is the center of gravity of a

cluster of actions containing the element as a part (see Figs. 6(a) and (b)).

(2) The composition of symbols is realized by summing up their corresponding vectors.
It should be remembered that the conceptual elements are dependent on each other,
although the vectors representing them are independent of each other. The superficial
independence of elements strongly relies on the structure-preserving map between a PB
vector and an action, which self-organizes in the connections of the network. The map
provides all the fundamental devices to maintain the functional compositionality of the
system, such as the composition rule and the role-governed categorization of elements.



Without them, the conceptual elements cannot constitute an embodied whole action,
just as chess pieces without a chessboard cannot constitute a game.

The above discussion can be transferred to a conventional symbolic system by re-
placing the independence of vectors with the atomicity of symbols. We usually think
that a symbol carries its meaning independently; however, the discussion suggests that
this idea is based on a lack of attention to the existence of the background mecha-
nism. Keeping the connection between a symbol and its referent in the real world is not
enough to maintain the coherency between an internal compositional system and the
reality outside. The symbol grounding problem proposed by Harnad (1990) should be
reconsidered from the broader perspective of a system in which both symbols and their
background are essentially inter-related.

To conclude, a sub-symbolic implementation of the recombination of goal-directed
actions is presented. Three different types of functionally compositional systems emerge
depending on the sparseness of the provided examples by using an identical learning
model. The predefined features are 1) the architecture of the connectionist model and 2)
the categorization of the examples, namely, with which PB vectors the network should
learn each example. The information on the categorization does not provide any rela-
tionships among the categories. In future work, the transition process of the internal
structure involved in the transition from a holistic system to a compositional one will
be presented. Also, associative learning between goal-directed actions and sentences
will be investigated by employing the technique proposed in Sugita and Tani (2005).
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