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Abstract

We present a novel connectionist model for acquiring the semantics of
language through the behavioral experiences of a real robot. We focus
on the “compositionality” of semantics, which is a fundamental char-
acteristic of human language, namely, the fact that we can understand
the meaning of a sentence as a combination of the meanings of words.
The essential claim is that a compositional semantic representation can
be self-organized by generalizing correspondences between sentences
and behavioral patterns. This claim is examined and confirmed through
simple experiments in which a robot generates corresponding behaviors
from unlearned sentences by analogy with the correspondences between
learned sentences and behaviors.

1 Introduction

Implementing language acquisition systems is one of the most difficult problems, since
not only the complexity of the syntactical structure, but also the diversity in the domain
of meaning make this problem complicated and intractable. In particular, how linguistic
meaning can be represented in the system is crucial, and this problem has been investigated
for many years.

In this paper, we introduce a connectionist model to acquire the semantics of language with
respect to the behavioral patterns of a real robot. After successfully learning the semantics,
our model can enable the robot to recognize sentences and generate motor sequences for the
appropriate behaviors, andvice versa. Thus, the linguistic meaning is acquired in terms of
correspondences between sentences and sensory-motor spatio-temporal patterns that form
the robot’s behaviors. A crucial point is that our model can acquire compositional semantics
without introducing any representations of the meaning of a worda priori.

By “compositionality”, we refer to the fundamental fact that we can understand a sentence
from (1) the meanings of its constituents, and (2) the way in which they are put together.
It is possible for a language acquisition system that acquires compositional semantics to
derive the meaning of an unknown sentence from the meanings of known sentences. Con-
sider the unknown sentence: “John likes birds.” It could be understood by learning these
three sentences: “John likes cats.”; “Mary likes birds.”; and “Mary likes cats.”
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Fromthepoint of view of compositionality, thesymbolicrepresentationof word meaning
hasmuchaffinity with processingthe linguistic meaningof sentences[3]. Following this
observation,variouslearningmodelshave beenproposedto acquiretheembodiedseman-
ticsof language.Forexample,somemodelslearnsemanticsin theform of correspondences
betweensentencesandnon-linguisticobjects,i.e., visual images[7] or thesensory-motor
patternsof a robot[5, 10].

In theseworks,thesyntacticaspectof languagewasacquiredthrougha pre-acquiredlex-
icon. Although this separatedlearningapproachseemsto be plausiblefrom the require-
mentsof compositionality, it causesinevitabledifficultiesin representingthemeaningof a
sentence.A priori separationof lexicon andsyntaxrequiresa pre-definedmannerof com-
bining word meaningsinto the meaningof a sentence.In Iwahashi’s model,the classof
a word is assumedto be givenprior to learningits meaningbecausedifferentacquisition
algorithmsarerequiredfor nounsandverbs(c.f., [9]). Moreover, the meaningof a sen-
tenceis obtainedby filling a pre-definedtemplatewith meaningsof words. Roy’s model
doesnot requirea priori knowledgeof word classes,but requiresa strongassumptionof
the representationof meaning,that the meaningof a word canbe assignedto somepre-
definedattributesof non-linguisticobjects.This assumptionis not realisticin morecom-
plex cases,suchaswhenthemeaningof a word needsto beextractedfrom non-linguistic
spatio-temporalpatterns.

In this paper, we discussanessentialmechanismfor self-organizingthecompositionalse-
manticsof language,in whichseparatetreatmentof lexiconandsyntaxis not required.Our
modelimplementscompositionalsemanticsoperationallywithout introducingany explicit
representationsof themeaningsof words.Weregardthemodelasacquiringcompositional
semanticswhenit cangenerateappropriatebehavioral sequencesfrom a novel sentenceas
if the meaningof the sentencewerecomposedof the meaningsof the constituents.We
claim that the generalizationof correspondencesplaysa key role in acquiringcomposi-
tional semantics.In otherwords, the meaningsof wordsemerge from the relationships
amongthemeaningsof sentences(c.f., reversecompositionality[2]).

2 Task Design

Theaim of our experimentaltaskis to discussanessentialmechanismfor self-organizing
compositionalsemanticsbasedon thebehavior of a robot. In thetrainingphase,our robot
learnstherelationshipsbetweensentencesandthecorrespondingbehavioral sensory-motor
sequencesof a robot in a supervisedmanner. It is thentestedto generatebehavioral se-
quencesfrom a given sentence.As notedabove, we regardcompositionalsemanticsas
beingacquiredif appropriatebehavioral sequencescanbegeneratedfrom unlearnedsen-
tencesby analogywith learneddata.

Our mobile robot hasthreeactuators,with two wheelsanda joint on the arm; a colored
vision sensor;andtwo torquesensors,on the wheelandthe arm (Figure1a). The robot
operatesin an environmentwherethreecoloredobjects(red,blue, andgreen)areplaced
on thefloor (Figure1b). Thepositionsof theseobjectscanbevariedso long astherobot
seesthe redobjecton the left sideof its field of view, thegreenobjectin themiddle,and
the blue objecton the right at the startof every trial of behavioral sequences.The robot
thuslearnsnine categoriesof behavioral patterns,consistingof pointing at, pushing,and
hitting eachof the threeobjects,in a supervisedmanner. Thesecategoriesaredenotedas
POINT-R, POINT-B, POINT-G, PUSH-R,PUSH-B,PUSH-G,HIT-R, HIT-B, andHIT-G
(Figure1c-e).

Therobotalsolearnssentenceswhich consistof oneof threeverbs(point, push, hit)
followedby oneof 6 nouns(red, left, blue, center, green, right). Themean-
ingsof these18 possiblesentencesaregivenin termsof fixedcorrespondenceswith the9
behavioral categories(Figure2). For example,“point red” and“point left” cor-
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Figure1: Themobilerobot(a)startsfrom afixedpo-
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by (c) pointingat, (d) pushing,or (e) hitting an ob-
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Figure 2: The correspondencebe-
tweensentencesandbehavioral cat-
egories. Each behavioral category
hastwo correspondingsentences.

respondto POINT-R, “point blue” and“point center” to POINT-B, andso on.
We noteherethat the word “left” doesnot meanthe conceptof left asunderstoodby
humansbut is merelyan alternative namefor the red object,andalwaysrefersto the red
object.In thesameway, “center” and“right” arealternativenamesfor thegreenand
blueobjects,respectively.

3 Proposed Model

Our model employs two RNNs with parametricbias nodes(RNNPBs) [12] in order to
implementa linguistic moduleanda behavioral module(Figure3). TheRNNPB,like the
conventionalJordan-typeRNN [6], is a connectionistmodelto learntime sequences.The
linguistic modulelearnsthe above sentencesrepresentedastime sequencesof words[1],
while the behavioral modulelearnsthe behavioral sensory-motorsequencesof the robot.
To acquirethecorrespondencesbetweenthesentencesandbehavioral sequences,thesetwo
modulesareconnectedto eachotherby usingtheparametricbiasbindingmethod.Before
discussingthisbindingmethodin detail,we introducetheoverall architectureof RNNPB.

Linguistic Module

Interaction via parametric binding method

Behavioral Module

words input parametric bias
 nodes

context nodes

word prediction 
output nodes

sensory-motor
 input nodes

parametric bias
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context nodes

sensory-motor
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Figure3: Our model is composedof two RNNs with parametricbiasnodes(RNNPBs),
onefor a linguistic moduleandtheotherfor a behavioral module. Both modulesinteract
with eachotherduring the learningprocessvia the parametricbiasmethodintroducedin
thetext.

3.1 RNNPB

The RNNPB is a connectionistmodel for acquiringa mappingbetweenparametricbias
(PB) vectorsandtime sequences.Like the conventionalJordan-typeRNN, the RNNPB
learnstimesequencesin asupervisedmanner. Thedifferenceis thatin theRNNPB,thePB
vectorsthatencodethetimesequencesareself-organizedduringthelearningprocess.

The RNNPBhasthe sameneuralarchitectureasthe Jordan-typeRNN exceptfor the PB
nodesin the input layer(c.f., eachmoduleof Figure3). Unlike theotherinput nodes,the
valuesof thesePBnodesareconstantthroughouteachtime sequence.

TheRNNPBhastwo differentmechanismsfor learningmultiple time sequences:connec-
tion weight values,andPB vectors.The commonstructuralpropertiesof all the training
time sequencesareacquiredasconnectionweight valuesby usingthe back-propagation



throughtime (BPTT) algorithm,asusedalsoin theconventionalRNN [6, 8]. Meanwhile,
thespecificpropertiesof eachindividual time sequencearesimultaneouslyencodedasPB
vectors.As a result,theRNNPBself-organizesa mappingbetweenthePBvectorsandthe
timesequences.

The learningalgorithmfor the PB vectorsis a variantof the BPTT algorithm. For each
of � trainingtime sequencesof real-numberedvectors�������������	��
���
 , theback-propagated
errorswith respectto the PB nodesareaccumulatedfor all time stepsto updatethe PB
vectors. Formally, the updaterule for the PB vector ����� encodingthe � -th training time
sequence��� is givenasfollows:

��� ������� �� �
� ����
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In equation(1), theupdateof PBvector
� � � � � isobtainedfrom theaverageback-propagated

error with respectto a PB node #�%&%�'&% ( * � +.-0/ throughall time stepsfrom - �<; to
� �>= �

,
where

� � is the length of ��� . In equation(2), this updateis low-passfiltered to inhibit
frequentrapidchangesin thePB vectors.

After successfullylearningthetime sequences,theRNNPBcangeneratea time sequence��� from its correspondingparametricbias � � � . The actualgenerationprocessof a time
sequence��� is implementedby iteratively utilizing theRNNPBwith thecorrespondingPB
vector � � � , a fixed initial context vector, andinput vectorsfor eachtime step. Depending
on therequiredfunctionality, boththeexternalinformation(e.g.,sensoryinformation)and
theinternalprediction(e.g.,motorcommands)areemployedasinputvectors.

Here,we introducean abstractedoperationalnotationfor the RNNPB to facilitatea later
explanationof ourproposedmethodof bindinglanguageandbehavior. By usinganopera-
tor ?A@B@DCFE , thegenerationof � � from ����� is describedasfollows:

?A@B@DCFE + ����� /HG � � �I���J;K�������)� � = �ML
(4)

Furthermore,theRNNPBcanbeusednot only for sequencegenerationprocessesbut also
for recognitionprocesses.For a givensequence� � , the correspondingPB vector ����� can
be obtainedby using the updaterules for the PB vectors(equations(1) to (3)), without
updatingthe connectionweight values.This inverseoperationfor generationis regarded
asrecognition,andis hencedenotedasfollows:

?A@B@DCFE ��
 + ��� /NG � � �O���>�P;K�������)� � = �ML
(5)

Fromthestandpointof generalization,theRNNPBhastwo importantcapabilities:(1) self-
organizationof a mappingbetweenthe time sequencesandthePB vectors,asmentioned
above; and(2) self-organizationof the structureof PB space,which reflectsthe structure
of thetime sequences.Thesetwo self-organizationcapabilitiescooperateto generalizethe
timesequences.

TheintermediatePB vectorof two time sequencesencodesanintermediatetime sequence
of the two, becausetherelationshipsamonglearnedtime sequencesareintroducedin PB
space.Thus,the RNNPB cangenerateandrecognizenovel sequenceswithout any addi-
tional learning.For instance,by learningtwo cyclic time sequencesof differentfrequency,
novel timesequencesof intermediatefrequency canbegenerated.



3.2 Binding

In theproposedmodel,correspondingsentencesandbehavioral sequencesareconstrained
to have thesamePB vectorsin bothmodules.Underthis condition,correspondingbehav-
ioral sequencescanbegeneratednaturallyfrom sentences.

WhenasentenceQ � andits correspondingbehavioral sequenceR � havethesamePBvector,
we canobtain R � from Q � asfollows:?S@D@DCFEST + ?S@D@DCFE ��
U + QM� /V/NG R�� (6)

where ?S@D@BCFE U and ?S@D@BCFEAT areabstractedoperatorsfor the linguistic moduleand
thebehavioral module,respectively.

The PB vector �XWY� is obtainedby recognizingthe sentenceQM� . Becauseof the constraint
that correspondingsentencesandbehavioral sequencesmust have the samePB vectors,�8Z[� is equalto �XWY� . Therefore,we canobtainthecorrespondingbehavioral sequenceR�� by
utilizing thebehavioral modulewith �XZ[� .
The constraintis implementedby introducingan interactionterm into part of the update
rule for thePBvectors(equation(3)).�XWY��� �87 �:9W\� 3 � �XWY��3^] U � + �X7 �:9Z_� =`�X7 �a9WY� / (7)� Z ��� �87 �:9Z[� 3 � � Z ��35] T � + �X7 �:9WY� =`�X7 �a9Z[� / (8)

where] U and ]bT arepositivecoefficientsthatdeterminethestrengthof thebinding.Equa-
tions(7) and(8) aretheconstrainedupdaterulesfor thelinguisticmoduleandthebehavior
module,respectively. Undertheserules,thePBvectorsof acorrespondingsentenceQ � and
behavioral sequenceRc� attracteachother. Actually, thecorrespondingPB vectors�8WY� and�8Z[� neednot becompletelyequalizedto learna correspondence.Theepsilonerrorsof the
PBvectorscanbeneglectedbecauseof thecontinuityof PB spaces.

3.3 Generalization of Correspondences

As mentionedin introduction,ourmodelenablesarobotto understandasentenceby means
of a generatedbehavior asif themeaningof thesentencewerecomposedof themeanings
of theconstituents.Thatis to say, therobotcangenerateappropriatebehavioral sequences
from all sentenceswithout learningall correspondences.To achieve this, an unlearned
sentenceandits correspondingbehavioral sequencesmusthave thesamePB vector. Nev-
ertheless,the PB binding methodonly equalizesthe PB vectorsfor given corresponding
sentencesandbehavioral sequences(c.f., equation(7) and(8)).

Implicit binding, or in other words, inter-modulegeneralizationof correspondences,is
achieved by dynamiccoordinationbetweenthe PB bindingmethodandthe intra-module
generalizationof eachmodule. The local effect of the PB binding methodspreadsover
thewholePB space,becauseeachindividual PB vectordependson theothersin orderto
self-organizePB structuresreflectingtherelationshipsamongtrainingdata.Thus,thePB
structuresof bothmodulesdenselyinteractvia thePB bindingmethods.Finally, bothPB
structuresconvergeinto acommonPBstructure,andtherefore,all correspondingsentences
andbehavioral sequencesthensharethesamePBvectorsautomatically.

4 Experiments

In the learningphase,the robot learned14 of 18 correspondencesbetweensentencesand
behavioral patterns(c.f., Figure 2). It was then testedto generatebehavioral sequences
from eachof the remaining4 sentences(“point green”, “point right”, “push
red”, and“push left”).

To enablea robot to learncorrespondencesrobustly, five correspondingsentencesandbe-
havioral sequenceswereassociatedby using the PB binding methodfor eachof the 14



trainingcorrespondences.Thus,thelinguistic modulelearned70 sentenceswith PB bind-
ing. Meanwhile,the behavioral modulelearnedthe behavioral sequencesof the 9 cate-
gories,including 2 categorieswhich hadno correspondingsentencesin the training set.
Thebehavioral modulelearned10 differentsensory-motorsequencesfor eachbehavioral
category. It thereforelearned70 behavioral sequencescorrespondingto the training sen-
tenceswith PBbindingandtheremaining20sequencesindependently.

A sentenceis representedasa time sequenceof words,which startswith a fixed starting
symbol. Eachword is locally represented,suchthateachinput nodeof themodulecorre-
spondsto a specificword. A singleinput nodetakesa valueof

�ML ; while the otherstake; L ; [1]. Thelinguistic modulehas10 input nodesfor eachof 9 wordsanda startingsym-
bol. Themodulealsohas6 parametricbiasnodes,4 context nodes,50 hiddennodes,and
10 predictionoutputnodes.Thus,no a priori knowledgeaboutthe meaningsof wordsis
pre-programmed.

A training behavioral sequencewascreatedby samplingthreesensory-motorvectorsper
secondduringatrial of therobot’shuman-guidedbehavior. For robustlearningof behavior,
eachtrainingbehavioral sequencewasgeneratedundera slightly differentenvironmentin
which objectpositionswerevaried. Thevariationwasat most20 percentof the distance
betweenthestartingpositionof therobotandtheoriginal positionof eachobjectin every
direction(c.f., Figure1b). Typical behavioral sequencesareabout5 to 25 secondslong,
andthereforehaveabout15 to 75sensory-motorvectors.A sensory-motorvectoris a real-
numbered26-dimensionalvectorconsistingof 3 motorvalues(for 2 wheelsandthearm),
2 torquevalues(of thewheelsandthearm),and21 valuesencodingthevisualimage.The
visual field is divided vertically into 7 regions,andeachregion is representedby (1) the
fractionof theregioncoveredby theobject,(2) thedominanthueof theobjectin theregion,
and(3) thebottomborderof theobjectin theregion,whichis proportionalto thedistanceof
theobjectfrom thecamera.Thebehavioral modulehad26 input nodesfor sensory-motor
input, 6 parametricbiasnodes,6 context nodes,70 hiddennodes,and6 outputnodesfor
motorcommandsandpartialpredictionof thesensoryimageat thenext timestep.

5 Results and Analysis

In this section,we analyzetheresultsof theexperimentpresentedin theprevioussection.
Theanalysisrevealsthattheinter-modulegeneralizationrealizedby thePBbindingmethod
could fill an essentialrole in self-organizingthe compositionalsemanticsof the simple
languagethroughthebehavioral experiencesof therobot.

As mentionedin theprevioussection,thetrainingdatafor this experimentdid not include
all the correspondences.Four sentences(“point green”, “point right”, “push
red”, and“push left”) werenot includedin thetrainingdatafor thelinguisticmodule.
As a result,althoughthebehavioral modulewastrainedwith thebehavioral sequencesof
all behavioral categories,thosein two of the categories,whosecorrespondingsentences
werenot in the linguistic training set(POINT-G andPUSH-R),couldnot be bound(c.f.,
Figure2).

The most importantresultwasthat thesedanglingbehavioral sequencescould be bound
with appropriatesentences.That is to say, the resultingsemanticscould recognizeall
four unlearnedsentencesandproperlygeneratethecorrespondingbehaviors. This implicit
binding wasachieved by the self-organizedcommonstructuresharedby both linguistic
andbehavioral PB spaces(c.f., section3.3). Undertheconditionthatbothmodulesshare
the commonstructure,the PB vectorsof the unlearnedsentencesandthe corresponding
behavioral sequencessuccessfullycoincidedwithoutPB bindingmethod.

ComparingthePBspacesof bothmodulesshowsthatthey indeedsharedacommonstruc-
tureasaresultof binding(Figure4). Theacquiredcorrespondencesbetweensentencesand
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Figure4: Plotsof the boundlinguistic module(a) andthe boundbehavioral module(b).
Both plotsareprojectionsof thePB spacesontothesamesurfacedeterminedby thePCA
method.Here,theaccumulatedcontribution rateis about73%. Unlearnedsentencesand
their correspondingbehavioral categoriesareunderlined.

behavioral sequencescanbeexaminedaccordingto equation(6). In particular, theimplicit
binding of the four unlearnedcorrespondences(“point green” d POINT-G, “point
right” d POINT-G, “push red” d PUSH-R,and“push left” d PUSH-R)demon-
stratesacquisitionof theunderlyingsemantics,or thegeneralizedcorrespondences.

The acquiredcommonstructurehas two striking characteristics:(1) the combinatorial
structureoriginatedfrom the linguistic module,and(2) themetricbasedon thesimilarity
of behavioral sequencesoriginatedfrom the behavioral module. The interactionbetween
modulesenabledboth PB spacesto simultaneouslyacquireboth of thesetwo structural
properties.

Thecombinatorialstructurereflectstheunderlyingsyntaxstructureof trainingsentences.
For example,it is possibleto estimatethe PB vectorof “point green” from the re-
lationshipamongthePB vectorsof “point blue”, “hit blue” and“hit green.”
This predictablegeometricregularity could be acquiredby independentlearningof the
linguistic module1. However it could not be acquiredby independentlearningof the be-
havioral modulebecausethesebehavioral sequencescannotbedecomposedinto plausible
primitives,unlike thesentenceswhich canbebrokendown into words.

We canalsoseeembodiedstructureintroducedinto the linguistic PB spacethroughthe
similarity of thePB vectorsof sentencesthatcorrespondto thesamebehavioral category.
For example,thetwo sentencescorrespondingto POINT-R (“point red” and“point
left”) areencodedin similar PB vectors.Sucha metricnaturecouldnot beobservedin
theindependentlearningof thelinguisticmodule,in whichall nounswereplottedsymmet-
rically in thePB spaceby meansof thesyntacticalconstraints.

Theaboveobservationthusconfirmsthattheembodiedcompositionalsemanticswasself-
organizedthroughthe unification of both modules,which was implementedby the PB
binding method. We alsomadeexperimentswith differenttestsentences,andconfirmed
thatsimilar resultscouldbeobtained.

6 Discussion and Summary

Oursimpleexperimentsshowedthattheminimalcompositionalsemanticsof our language
couldbeacquiredby generalizingthecorrespondencesbetweensentencesandthebehav-

1You can find a more detailed description of these experiments at the following URL:
http://bdc.brain.riken.go.jp/techreports/riken-bsi-bdc-tr2003-01.pdf.



ioral sensory-motorsequencesof a robot. Our experimentscouldnot examinestrongsys-
tematicity[3], but couldaddressthecombinatorialnatureof sentences.That is to say, the
robot could understandsentencesin a systematicway, andcould understandnovel sen-
tences.Therefore,our resultscanelucidatesomeimportantissuesaboutthecompositional
semanticrepresentation.

We claim that the acquisitionof word meaningandsyntaxcannot be separated.For in-
stance,in our task,it is difficult to explicitly extractthemeaningof “red” from themean-
ing of “point red.” The robot can understand“red” throughits behavioral experi-
ences:pointing at the object,pushingit, andhitting it in a bottom-upway [4, 11]. The
correspondingsentencesmake thesebehavioral experiencesrelateto eachother, andthe
meaningof “red” canemerge.A similarargumentholdstruefor theword “point”. The
robotcanunderstand“point” throughpointingat red,blue,andgreenobjects.Thusthe
meaningof aworddoesnotdependonaparticularsentence,but ontherelationshipsamong
all thepossiblesentences.In particular, themeaningsof nounsandverbsalsodependon
eachother, andwe cannot introducea view thata verbtakesa nounasits objectprior to
theacquisitionof semantics.Theword meaningsandtherulesfor combiningthemmust
beself-organizedin a co-dependentmanner.

In theabove discussion,we showedtheimportanceof thegeneralizedcorrespondencebe-
tweentheform system(i.e.,syntacticstructureof sentences)andthemeaningsystem(i.e.,
relationshipsamongbehavioral spatio-temporalpatternsin thispaper)in theacquisitionof
embodiedlanguage.In futurestudies,we plan to introducemorecomplexity in language
andbehavior in orderto examinetheself-organizationof thecompositionalsemanticrep-
resentationof sentenceswith a nestedsyntacticstructure[13].
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