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Abstract

This paper discusses how a behavior-based robot can construct a “symbolic pro-
cess” that accounts for its deliberative thinking processes using models of the envi-
ronment. The paper focuses on two essential problems; one is the symbol grounding
problem and the other is how the internal symbolic processes can be situated with
respect to the behavioral contexts. We investigate these problems by applying a
dynamical system’s approach to the robot navigation learning problem. Our formu-
lation, based on a forward modeling scheme using recurrent neural learning, shows
that the robot is capable of learning grammatical structure hidden in the geometry
of the workspace from the local sensory inputs through its navigational experiences.
Furthermore, the robot is capable of generating diverse action plans to reach an
arbitrary goal using the acquired forward model which incorporates chaotic dynam-
ics. The essential claim is that the internal symbolic process, being embedded in
the attractor, is grounded since it is self-organized solely through interaction with
the physical world. It is also shown that structural stability arises in the interaction
between the neural dynamics and the environmental dynamics, which accounts for
the situatedness of the internal symbolic process. The experimental results using a
mobile robot, equipped with a local sensor consisting of a laser range finder, verify
our claims.
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1 INTRODUCTION

In recent research on autonomous robots, the majority of interest has shifted from the
AI-based approach to so-called behavior-based robotics [5, 31]. A consensus, that the
emphasis on deliberative computation and explicit representation of AI does not provide
satisfactory solutions to the scale-up of toy-problems to real-world complex problems, has
encouraged research in behavior-based robotics. The behavioral functions of these robots
are simple, but their reactive-type action-selection mechanism makes them suitable for
real-world environments. Furthermore, the reaction against explicit coding schemes in AI
resulted in initiating a new approach of so-called adaptive behavior [33]. Adaptive behav-
ior focuses on how an “animal” or “animat” can attain an intrinsic function that coordi-
nates perception and action solely based on its own behavioral experience. It has been
demonstrated that an autonomous robot can acquire simple behavioral functions such as
collision-avoidance, wall-following, or road-following by various adaptation methodologies
including neural learning [28, 37], genetic programming [26], reinforcement learning [8, 22]
and others. These approaches are equivalent in a general sense in that the aim of the
adaptation is to self-organize a direct state-action map which allows situated behaviors
of the agent.

However, there is a suspicion that the absence of representations (modeling of the
world) in these approaches might restrict the robot’s progress in emulating the equiva-
lent cognitive abilities of animals or humans. An intelligent robot should have a certain
“symbolic process”, with which it is capable of simulating its own potential action plans
flexibly using its internal model, before choosing a course of action. Such high-order cog-
nitive activities stand on the combinatorial power of symbol systems [15], which enable
the robot to conduct certain grammatical manipulations of knowledge. We consider that
the Deliberative Thinking Paradigm of AI itself is not misleading at all. However, the
paradigm faces two essential problems. One is the “symbol grounding problem” as Har-
nad [15] has discussed, namely “How can the semantic interpretation of a formal symbol
system be made intrinsic to the system, rather than just parasitic on the meanings in our
heads ?” This problem asks us how to build the internal representations, and how to use
them without generating fatal gaps from the physical data obtained from the environment.
The other problem is how the symbolic processes can be situated in the current behavioral
context—i.e. how the robot can recognize its situation, which has been determined from
the history of its interaction with the environment. The aim of this paper is to provide an
answer to the above problems by presenting our novel approach of model-based learning
in the domain of mobile robot navigation.

The problem of mobile robot navigation has been studied using explicit global repre-
sentation. More specifically, a robot builds an environmental map, represented in global
coordinates, by gathering geometrical information as it travels [2, 10, 13]. Though a vari-
ety of methodologies have been proposed in this context, potential problems still remain
especially in robot localization. The robot’s position is mathematically identifiable by
comparing the current local sensory input (typically range image and dead reckoning)
with the global map. This process is not always robust enough for realistic “noisy” en-
vironments. There is a gap between what the global map represents and what the robot
senses in the real environment.

There have been efforts [27, 48] to construct a direct sensor-situation (position) map
by utilizing the idea of Kohonen’s Self-Organizing-Map [25]. Although this approach,
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which is based on a statistical clustering technique, might be able to generate an intrinsic
representation of the sensory-situation association, it seems to have potential limitations
in its localization capability. The position cannot always be identified solely from the
current sensory input since the sensory input could be the same in different locations.
In order to avoid this problem, Krose [27] utilizes global orientation information from
compass readings, and Zimmer [48] utilizes dead reckoning information. We, however,
speculate that the current situation or position may be identifiable without introducing
global information, but instead from context-dependence: by utilizing the past sensory
sequence acquired during its travel. The problem of how to construct context-dependent
representation seems to be important in this instance.

Kuipers [29], Mataric [32] and others have developed an alternative approach using
landmarks, which is aimed at achieving behavior-based local representation. A mobile
robot acquires a graphical representation of landmark types as it moves in an environ-
ment. This representation is equivalent to a finite state machine (FSM), and comprises a
topological modeling of the environment. Thus, it represents the grammatical structure
of the environment with obstacles. In navigation, the robot can identify its topological
position by anticipating the landmark types in the FSM representation. Although this
behavior-based local representation scheme is likely to improve robustness in navigation,
its stability is not clear if an erroneous landmark-matching happens to take place: a FSM
would halt if fed an illegal symbol. This navigation strategy is susceptible to such a catas-
trophe if the landmark type is misread. Although robustness can be enhanced through
improving the landmark detection scheme by combining, for example, global positioning
(as conducted in [32]) or other sensor-fusion techniques, it would remain limited as long
as the model is represented symbolically.

In this paper, we focus on the dynamical systems approach [3, 19] as an alternative,
with the expectation that its language can be utilized to build an effective representational
and computational framework for behavior-based robots. Although one may speculate
that highly analog representations by dynamical systems lack the combinatorial power of
symbolic systems, a recent study of symbolic dynamics [7] showed otherwise. Crutchfield
[7] clarified the relations between formal language [16] and nonlinear dynamical systems,
in which he showed that chaotic dynamics correspond to a regular or higher language
in the language hierarchy [16]. Furthermore, experimental studies on a recurrent neural
network (RNN) [36, 44] demonstrated that the network can learn primitive grammatical
descriptions from examples by generating deterministic chaos. Therefore, it is quite plau-
sible that symbolic processes, which account for the cognitive tasks of planning or mental
simulation, can be constructed as being embedded in chaotic dynamical systems.

Upon describing the internal symbolic processes of the robot using the language of
dynamical systems, we become able to analyse its interactions with the physical environ-
ment. We focus on the coupling between the internal dynamics and the environmental
dynamics made through the sensory-motor feedback, then we investigate how coherence
is made between these two dynamical systems. We speculate that a key to solving the
symbol grounding as well as the situatedness problems lies in the qualitative understand-
ing of the dynamical mechanism of this coherence. Our analysis of this mechanism will
explain the dynamical structure that is essential to building a behavior-based robot that
is characterized by its model-based intelligent activities.

The remainder of this paper is organized as follows. Section II defines the navigation
problem which we study in this paper. In order to clarify the navigational conditions,
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the basic navigation architecture is introduced in Section III. Section IV presents our for-
mulation of model-based learning using the forward modeling scheme [19, 21, 46], which
is implemented using a recurrent neural network (RNN) [18, 35, 36] architecture. We
describe the application of chaotic dynamics to the planning process and discuss its quali-
tative meaning from the view point of deterministic dynamics. Section V presents a series
of experiments using the mobile robot in order to test our approach. Section VI shows
an analysis of the dynamical structure that accounts for the mechanisms of situatedness.
Section VII discusses and summarizes the themes of this paper.

2 THE NAVIGATION PROBLEM

Before presenting the detailed formulation, we describe the navigation problem on which
this paper focuses. We consider that there are two types of approaches to navigation-
learning which are fundamentally different in how the navigational knowledge is repre-
sented and how it is utilized. The first type is skill-based learning. In this approach the
robot learns skills for achieving a fixed goal such as a homing or cyclic routing task. The
robot has to go home or move into a predetermined cyclic loop, starting from an arbitrary
position in the adopted workspace. Our previous work [42, 43] showed that the robot can
achieve these tasks by acquiring an adequate state-action map (a map of sensory-based
internal states to motor commands). The second type is model-based learning, which is
the main subject of this paper. The advantage of model-based learning is that the process
of planning using the internal model enables the robot to adapt flexibly to different goal
tasks. Our model-based learning approach, applied to a real mobile robot, assumes the
following conditions and specifications.

• The robot cannot access its global position, but it should navigate based on its local
sensory (range image) input.

• There are no explicit landmarks accessible to the robot in the adopted workspace.

• No apriori knowledge of the workspace geometry is given. The robot should obtain
it from its travel experience.

• The robot should be capable of planning the shortest route to an arbitrary position.

• The robot should be robust against temporary disturbances including noise and
temporary geometrical changes in the workspace.

3 NAVIGATION ARCHITECTURE

The YAMABICO mobile robot [17] was used as an experimental platform. Figure 1 shows
a picture of YAMABICO. The robot can obtain range images by a range finder consisting
of laser projectors and three CCD cameras. The ranges for 24 directions, covering a 160
degree arc in front of the robot, are measured every 150 milliseconds by triangulation. The
specifiable range is 0.2 m to 5.0 m. The main navigation level computation is conducted
on a host computer via wireless communication. The robot maneuvers by differentiating
the rotation velocity of the left and right wheels, and it normally moves with a speed of
0.3 m/s.
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Figure 1: The YAMABICO mobile robot equipped with a laser range sensor.

In our formulation, maneuvering commands are generated as the output of a compos-
ite system consisting of two levels. The control level generates a collision-free, smooth
trajectory using a variant of the potential field method [24], while the navigation level
directs the control level in a macroscopic sense, responding to the sequential branching
that appears in the sensory flows. The control level is fixed; the navigation level, on the
other hand, can be adapted through learning.

Firstly, let us describe the control level. The robot can sense the forward range readings
of the surrounding environment, given in robot-centered polar coordinates by ri (1 ≤ i ≤
N), as shown in Fig. 2. The angular range profile Ri is obtained by smoothing the original
range readings through applying an appropriate Gaussian filter. The maneuvering focus
of the robot is the maximum (the angular direction of the largest range) in this range
profile. The robot proceeds towards the maximum of the profile (an open space in the
environment). This control scheme is implemented as follows:

Vdif = kp · θf (1)

where Vdif is the differential rotational velocity between the left and right wheels, θf is
the angular displacement of the focus point from the center, and kp is a constant gain.

The navigation level focuses on the topological changes in the range profile as the
robot moves. Fig. 3 (a) shows a robot trajectory measured in an experimental workspace;
Fig. 3 (b) shows the corresponding temporal sensory flow. After starting from the “start”,
the robot moves through the workspace by tracking the maximum. The corresponding
range profile contains a single maximum. (In the shaded sequence, the middle part,
corresponding to a larger range, is darker. The sides having a smaller range are brighter.)
As the robot moves through the workspace, the profile gradually changes until another
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Figure 2: The Range profile is obtained from the frontal side of the robot. The robot
moves by tracking the maximum in the range profile.

local maximum appears when the robot reaches location (1) and it perceives a new open
area to the left. At this moment of branching the navigation level decides whether to
transfer the focus to the new local maximum or to remain with the current one. (In this
implementation, the occurrence of branching is not confirmed until a time lag 4T so that
the sensing of branching may not be perturbed by noise.) In this example, the robot
decides to transfer the focus to the new maximum and proceeds to the left. In the same
manner, the decision process is repeated at point (2) where the focus transfers to a new
local maximum on the left-hand side, and at point (3) where it stays with the current
branch by traveling forwards, and at (4) where it transfers to a new branch to the left.
These binary branching decisions generate the trajectory shown. In some instances, the
robot maneuvers into a concave dead end from which the robot cannot escape with the
above maneuvering scheme. To avoid this, the navigation scheme is enhanced as follows:
when the robot comes extremely close to a dead end, the robot is instructed to turn
through 180 degrees. Thereafter it proceeds as usual. (The concave dead end is easily
detected by monitoring the range values in the forward direction with respect to a certain
threshold.) Hereafter, we denote this dead end point as the “terminal point”.

Although the proposed binary branching scheme simplifies the problem of navigation
substantially, a technical difficulty arises when multiple branching situations take places–
i.e. more than two new branches are sensed simultaneously. In such singular situations,
the robot takes the right most (or the left most) new branch as the new one, thereby losing
the opportunity to select other new branches. Therefore, with the current navigation
scheme, there are cases in which the robot cannot take all the possible paths allowed by
the geometry of the workspace.
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Figure 3: An example of travel and its associated sensory flow.
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Figure 4: The navigation architecture employed here, comprising the control and naviga-
tion levels.

The navigation level utilizes two types of sensory inputs at branch or terminal points.
Those are the current range image and the local travel distance from the previous to the
current point as measured by the wheels’ rotational encoders. The filtered range profile
consists of N = 24 range values. Since the pertinent information in the range profile at
a given moment is assumed to be only a small fraction of the total, we employ a vector
quantization technique, known as the Kohonen network [25], so that the information in the
profile may be compressed into specific lower-dimensional data. The Kohonen network
employed here consists of an l-dimensional lattice with m nodes along each dimension
(l=3 and m=6 for the experiments with YAMABICO). The range image consisting of
24 values is input to the lattice, then the most highly activated unit in the lattice, the
“winner” unit, is found. The address of the winner unit in the lattice denotes the output
vector of the network. The virtue of this scheme is that the original topological structure
of the input space is well-preserved in the output space, which assures the generality of
the transformation because the output vector is a smoothly-varying function of the input
profile. Although the real range image exhibits its stochastic distribution at each branch
point, the Kohonen network is capable of clustering such noisy range image information
with a topology-preserving map that is self-organized in the off-line learning phase.

The navigation architecture presented in this section is summarized in Fig. 4. In this
architecture, the navigation problem is simplified to one of determining the branching
sequence. Hereafter, we focus on how the navigation level achieves this. We use the terms
”motor command” and ”motor program” to indicate a branching decision and a sequence
of branching decisions, respectively.

4 MODEL-BASED LEARNING

This section describes how the robot learns the internal model of the environment, and how
such a model can be utilized to generate navigation plans—i.e. what motor programs are
needed in order to reach a given goal. Here, we attempt to apply the scheme of forward
modeling [19, 21, 46] to the problem. Before presenting our formulation, we show the
outline of the robot’s operation in model-based learning.
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First, the robot goes through the learning phase. The robot wanders around an
adopted workspace by collision-free maneuvering, making each branching decision at ran-
dom. Meanwhile the robot collects the sensory-motor sequence—i.e. the sequence of
branching decisions and the resulting sequence of sensory input perceived at the branch
points. Thereafter, the robot attempts to acquire a “topological” model of the workspace
in terms of a forward model through off-line neural learning. After learning has taken
place, we examine how accurately the robot has learned the model of the workspace by
measuring the robot’s capability in lookahead prediction. If the learning of the model is
found to be insufficient, the above learning process is repeated through sampling more
data.

After the learning phase is completed, the navigation phase can be initiated. In the
navigation phase, the robot conducts plan-based navigation. A branch or terminal point
is selected as a goal position, which is specified to the robot by using the sensory input
that would be obtained at that position. The robot has to generate a motor program (the
sequence of branching decisions) to reach the goal by the shortest route.

After completing the off-line learning, initially the robot cannot recognize its situa-
tion/position and therefore it cannot initiate any planning activities. The problem to
consider is how one can situate the robot in the environment. In addressing this problem,
we use two distinct operational modes, namely the open-loop mode and the closed-loop
mode, and introduce a switching mechanism between them. First, the robot travels around
the workspace receiving sensory input at each branch. In the meanwhile the robot begins
to recognize the current situation/position from what it has sensed during its travel. We
call this mode the “open-loop mode” since the internal computation of the robot is cou-
pled to the environment via the sensory-motor loop. When the robot becomes situated, it
is ready for planning activities. By shutting off the sensory-motor loop with respect to the
environment, the robot simulates internally its sensory-motor sequence, then generates a
motor program to reach a given goal point. This is the closed-loop mode. Once a motor
program is generated, it is executed with the robot once again switched to the open-loop
mode.

4.1 Forward modeling

The idea of forward modeling has been used to explain planning and trajectory control
for voluntary human arm movements as well as for industrial manipulators [19, 46]. In
the motor skill learning for an arm, the transformation of proximal coordinate systems
(e.g., joint torques of the arm) to distal coordinate systems (e.g., endpoint coordinates
for the arms) is trained on a feed-forward network which serves as a forward dynamical
model for the arm. Once this forward model is acquired, the necessary temporal joint
torque, for a given specification in distal coordinates such as the arm endpoint, can be
computed by the network through the forward model. This is called “computation of
inverse dynamics”. This framework can be applied to our problem of navigation learning.

By learning the forward model of the workspace, the robot becomes able to conduct
lookahead prediction of the sensory input sequence for an arbitrary motor program—
i.e. it can simulate the resultant travel from a given navigation plan. Also, the acquired
forward model can generate a motor program to reach a goal, specified by its distal sensory
image, through computation using inverse dynamics. This sub-section explains how the
forward model can be used as a predictor of the sensory input sequence, and how such

9



:  context units

pn+1

pn
cn

xn

cn

Figure 5: Forward model using the RNN architecture. The dotted line indicates the closed
sensory loop which is used for lookahead prediction in multiple steps.

a forward model can be learned by means of a recurrent neural network (RNN). The
scheme of generating a motor program using inverse dynamics will be explained in the
next sub-section.

The RNN architecture
The objective forward model is embodied using a standard discrete time RNN architecture
[11, 18] as shown in Figure 5. This RNN architecture receives the current sensory input
pn, the current motor command xn, then outputs the prediction of the next sensory input

ˆpn+1. Here, pn and xn are a vector and a scalar respectively. A standard sigmoid type
function [38] is employed to compute the activation of each neural unit. The sensory input
p consists of the compressed range profile pr obtained from the output of the Kohonen
net and the local travel distance pl. The motor command xn takes a binary value of 0
(corresponding to staying at the current branch) or 1 (corresponding to transit to a new
branch).

We employ the idea of the context loop [11, 18] which enables the network to obtain a
certain temporal internal representation. (In Figure 5, there is a feedback loop from the
context units in the output layer to those in the input layer.) The current context input
cn (a vector) is a copy of the context output at the previous time step: by this means the
context units remember the previous internal state. The navigation problem is an example
of a so-called “hidden state problem” [30]: a given sensory input does not always represent
a unique situation/position of the robot. Therefore, the current situation/position is
identifiable, not by the current sensory input, but by the memory of the sensory-motor
sequence stored during travel. Adequate temporal internal representation of the travel
history, by taking advantage of the context loop, can achieve just such a memory structure.

Here, the mapping function of the RNN can be written as;

cn+1 = fc(pn, xn, cn,Wc) (2)

ˆpn+1 = fp(pn, xn, cn,Wp)
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where fc and fp are the nonlinear maps from the current step to the next step; Wc and
Wp denote their parameter sets of connectivity weights. These connectivity weights are
determined through the training of the RNN, the methodology of which will be described
later.

Using the forward model
As we have described earlier, the forward model represented by this RNN architecture is
switched to the open-loop mode before it is used in the closed-loop mode in the navigation
phase. In the open-loop mode, the robot conducts the one-step lookahead prediction (it
predicts next sensory input as the result of the current motor command) while it travels in
the workspace using an arbitrary motor program. The one-step prediction is obtained by
inputting the current sensory input and the current motor command to the network. The
RNN, at the beginning of travel, cannot predict the next sensory input correctly since the
initial context value is set randomly. However, the context value can become situated as
the RNN continues to receive the sensory-motor sequence. Then the RNN will begin to
predict correctly. (In section VI we will explain the underlying mechanism of situatedness
in detail.) This situatedness also accounts for the auto-recovery mechanism of the robot
from miscellaneous temporary disturbances during its travel. Although the robot might
loose its context by sudden noise or temporary geometrical changes in the workspace, it
can recover the context as long as it continues to travel using the sensory input sequence.

After the prediction in the open-loop mode recovers, the RNN can be switched into
the closed-loop mode by stopping the robot at a branch point. A lookahead prediction of
an arbitrary length for a specified motor program can be made by copying the previous
prediction of the sensory input to the current sensory input. (The dotted line in Figure 5
indicates how the closed-loop for sensory input is made.) Let us denote the motor program
by x∗ : (x0x1x2 · ··). Then the lookahead prediction of the sensory input sequence p̂∗ :
(p̂1p̂2p̂3 · ··) can be obtained by recursively applying x∗ to the RNN mapping function,
using the initial values of the context units c0 and the sensory inputs p0 which have been
obtained in the open-loop mode.

Learning the forward model
We will now describe briefly how to determine the connectivity weights by using the
sensory-motor sequence sampled during the actual wandering travel of the robot. The
training of the RNN searches for the optimal Wc and Wp such that the RNN switched to
the closed-loop mode can make a correct lookahead prediction p̂∗ for the sampled sequence
p∗ using the associated motor program x∗. (This search process should also determine the
value of initial context c0 that produces a correct lookahead prediction for the sampled
sequence.) Therefore, the network is trained to minimize the cost function J given by:

J = 1/2
∑
n

(pn − p̂n)T (pn − p̂n) (3)

The optimal connectivity weights and initial context minimizing the cost J in (3) are
computed using the back-propagation through time (BPTT) algorithm [38]. The RNN
is transformed into a cascade network without loops. The forward computation of this
network with the temporal connectivity weights and the temporal initial context value c0

generates the temporal lookahead prediction p̂∗ which corresponds to the motor program
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x∗. Then, the error between the sampled sequence p∗ (as a teacher) and the temporal
lookahead prediction p̂∗ is calculated, which is back-propagated [38] in order to update the
temporal values of Wc, Wp and c0. This computation is repeated until the error (the cost
function J) is minimized. This learning achieves locally optimal mapping functions of fc

and fp in (2) by organizing an adequate temporal internal representation in the context
loop. In the actual training, the sequence of the sampled data is broken into smaller
sub-sequences (15 data units for each sub-sequence in the experiment described later),
each of which is used to train the network simultaneously. This technique is used since
the error due to temporal lookahead prediction over numerous steps can accumulate to a
substantially large value in the middle of training which hampers the smooth convergence
of the learning process.

Numerous studies have been conducted of the problem of learning the sequential be-
havior of agents [6, 30, 47] including our prior work on skill-based learning [43, 42]. These
studies have shown that certain temporal internal representation are indispensable to
the solution. Model-based learning, presented here, differentiates itself in that its learning
comprises not just learning sequences but also extracting grammatical structure hidden in
the sequences. Elman [11] investigated experimentally the capability of RNNs for learning
a simple grammar from certain letter sequences, and examined the internal representation
obtained as a function of time. His study showed that the RNN, after successful learning,
becomes capable of following letter sequences since the activation of the context units
represents the hidden state of the target automaton. Learning the forward model of the
environment is analogous to the learning of a grammar by a finite state machine (FSM).
The robot attempts to extract grammatical regularities hidden in the branching struc-
ture of the environment from the sensory-motor sequences sampled so that they can be
used to generate the lookahead prediction of the sensory sequence for an arbitrary motor
program. This objective is achieved when an adequate memory structure is successfully
self-organized in the RNN.

4.2 Plan generation

The objective of planning is to find a motor program x∗ that generates a path to the
desired branch or terminal points under the condition of minimum travel distance. We
investigate how an optimal motor program can be derived from the obtained forward
model in an autonomous manner. We consider the following cost function for the motor
program.

E = εEg + γEc + µEm (4)

Eg = 1/2(pd − p̂τ )
T (pd − p̂τ )

Ec = 1/2
τ∑

n=1

(p̂l
n)2

Em = −
τ−1∑

n=0

∫ xn

0
[φ((x− 0.5)/T )− x]dx

The total cost E is defined by the summation of three different cost items, Eg, Ec and Em,
with their respective weights, ε, γ, and µ. Eg denotes the norm between the lookahead
prediction of the sensory input at the τth step p̂τ and the desired sensory input pd. Here,
τ represents the number of branching steps from the current to the goal point. This
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cost item indicates how close the current motor program’s prediction of the distal sensory
input is to that of the goal. Ec denotes the cost incurred for the minimum travel distance,

which is the mean-square sum of the local travel distance p̂l
n over τ steps. The term Em

is employed in order to restrict the value of each motor command to a binary value of 0.0
or 1.0. (Note that only binary values are legal for the motor commands.) φ is a standard
sigmoid function, and T is a parameter defining its steepness.

Now, the optimal motor program, which minimizes the cost function, is computed
iteratively. A difficult point is that the number of steps of the motor program τ is also a
variable to be determined, since we cannot tell apriori how many branching steps ahead
the goal point is. In our formulation τ is determined through the iterations. We have
defined the maximum number of future branching points to be considered in the planning
by τmax (we took τmax = 15 steps in the experiment described later). As a result, the RNN
is transformed into a cascaded feed-forward network consisting of τmax steps. The forward
computation is conducted on the cascaded network, in which the lookahead prediction of
τmax steps for the temporal motor program (x0x1x2 · · ·xτmax) is obtained. On determining
the temporal value of τ , the cost E is computed with changing τ from 1 to τmax based
on (4). The τ which shows the minimum cost is taken as the temporal value of τ . This τ
represents the valid length of the temporal motor program. Next, an update of the motor
command at each step is obtained. The gradient of the cost function with respect to each
motor command xn (0 ≤ n ≤ τ − 1) is calculated; this indicates the direction of update
for the motor commands. δxn (0 ≤ n ≤ τ − 1) is given by:

δxn = − δE

δxn

(5)

= −ε
δEg

δxn

− γ
δEc

δxn

+ µ(φ((xn − 0.5)/T )− xn)

In the second line of this equation, the gradient of the cost function is represented as
the sum of the gradient of each cost item. In obtaining δEg

δxn
, the error between the

desired sensory input and the lookahead prediction of the sensory input at the τth step is
calculated, then this error is back-propagated [38] through the cascaded network to the
motor command unit xn so that the contribution of xn to the error can be estimated. This
estimate yields the objective gradient value. The value of δEc

δxn
is also calculated by using

the back-propagation scheme. The prediction of the local travel distance at each step
is obtained as an output from the cascaded forward network. Then, back-propagation
is applied from the output unit to each motor command unit so that the contribution
of each motor command’s value can be obtained in order to minimize the local travel
distance. The third term is the gradient of Em, which is obtained analytically from (4).
Since the sequence of motor commands after the τth step does not contribute to the cost,
δxn (τ ≤ n ≤ τmax) is set as 0. The exact update for each motor command in the temporal
motor program ∆xn (0 ≤ n ≤ τmax) can be obtained by applying the steepest descent
method to (5) using:

∆xn(t + 1) = ηδxn + α∆xn(t) (6)

where η is the search rate and α is the momentum term. The details for the method of
back-propagation through the forward model are given in ref. [19]. One cycle of forward
and backward computation is completed after updating the temporal motor program.
The temporal motor program as well as its valid length τ change gradually through
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the iteration of this cycle, thereby minimizing the cost. When the cost is minimized,
the sequence of motor commands obtained as xn (0 ≤ n ≤ τ − 1) is the desired motor
program.

4.3 Chaotic search

One might think that the optimal motor program could be obtained easily through it-
erative calculations by the steepest descent method described in the prior subsection.
However, this is not true. Many researchers [23, 24] have studied robot path planning
for the minimum travel in complex obstacle domains, and they have shown that such
planning cannot avoid a combinatorial explosion. This indicates that the landscape of
the defined cost function would be quite “rugged” in our formulation, and that the com-
putation of xn by the method of steepest descent, for which the search dynamics are those
of a typical fixed point because of its positive damping term, can easily be trapped by a
local minimum. Such planning processes would halt after generating a sub-optimal plan.
(The experiments described later will show this explicitly.) In order to realize an au-
tonomous search process which generates various alternatives, it is necessary to introduce
nonequilibrium dynamics which are capable of avoiding the local minimum problem.

In our previous work, we have studied the characteristics of a dynamical system called
the “chaotic steepest descent” model (CSD) that has a nonlinear resistance which varies
periodically [41]. We review this model briefly. Let us consider a dynamical system
defined on a rugged energy landscape by:

mẍ + R(ẋ, ωt) = −κ∇E(x) (7)

R(ẋ, ωt) = [d0sin(ωt) + d1]ẋ + d2ẋ
2sgn(ẋ)

where m is an inertia constant, R is the nonlinear resistance function, ∇E(x) is the
gradient of the energy function, κ is the gradient constant, ω is the periodicity of the
resistance perturbation and d0, d1 and d2 are the nonlinear resistance coefficients. The
resistance may have a positive or negative damping, depending on the ẋ value. As the
resistance characteristics change, by slowly increasing the negative damping part, the
resulting state tends to travel from one energy basin to another. On the other hand,
when the positive damping is increased, the state tends to converge. Repetition of these
unstable and stable phases generates chaotic state transitions among basins. We employ
the CSD model to update xn:

mẍn + R(ẋn, ωt) = −ε
δEg

δxn

− γ
δEc

δxn

+ µ(φ((xn − 0.5)/T )− xn) (8)

The dynamics run for a pre-determined period, during which various motor programs are
generated in a stable phase, and the motor program with the minimum cost is selected
as an optimal solution.

The question may arise as to why the planning search method uses chaotic dynamics
rather than other alternatives. An easy alternative might be an exhaustive random search
in the binary space of the motor programs. Although the random search does work per-
fectly for an application of the current experimental size, it would not be scalable to more
complex tasks. Another alternative is to apply stochastic dynamics to the search process.
External additive noise would prevent a search based on the steepest descent method from
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entering the local minimum traps. Although there is no present mathematical proof to
confirm that the efficiency of a chaotic search is better than that of a stochastic search in
combinatorial search problems, numerous studies, especially in biological systems, have
suggested its plausibility. Sakarada and Freeman [40], Aihara [1], Tsuda, Koerner and
Shimizu [45] have suggested that for effective memory searches the biological brain takes
advantage of internal noise, induced by the deterministic chaos which emerges in natural
neural circuits; Nara and Davis [34] stressed that control of the parameter set can “har-
ness” a chaotic search into an effective subspace far smaller than the problem domain.
They observed that this harnessing of chaos exhibits much more diverse behavior than
that of stochastic systems involving temperature control. The introduction of chaos here
is based on the hypothesis that cognitive tasks of planning in biological brains use the
forward model described by deterministic dynamics. Recent research [39] has found a
biological example of computing the inverse dynamics of eye movement in the cerebel-
lum. This suggests that biological brains actually compute certain simple motor plans
based on deterministic dynamics using internal models. We believe that planning in the
cognitive level utilizes deterministic chaos to solve problems because it must deal with
combinatorial computation.

5 EXPERIMENTS

We conducted experiments on the scheme presented above using the mobile robot YAM-
ABICO. In the learning phase, the robot repeats cycles of the learning trial with increasing
number of samples in the training data until statistical tests of lookahead prediction satisfy
certain criteria. Then experiments of plan-based navigation are conducted.

5.1 Learning and lookahead prediction

The adopted RNN architecture is three-layered, and has 10, 12 and 9 units for the input,
hidden, and output layers respectively including four context units in the input and output
layers. During each learning trial the robot wanders around an adopted workspace for a
certain period, making each branching decision at random, in order to collect an additional
amount of data (sensory-motor sequences). Thereafter, the data set which has been
accumulated so far is used for training the RNN. For each trial, the connectivity weights of
the network are set randomly and trained off-line using the data. The training of the RNN
is conducted for 20,000 iterations, which are repeated if the mean square learning error
per output unit cannot be decreased below 0.01. After the learning error is minimized, the
test of a given lookahead prediction is conducted for 10 different travels. Each travel starts
from an arbitrary position in the workspace using random branching. The robot travels
with the RNN switched in the open-loop mode until the RNN becomes able to predict the
next sensory input (i.e. it becomes situated). The robot is stopped when the prediction
error for all sensory input units becomes less than 0.15 twice in succession. At this
moment, we assume that the robot is situated. Then, lookahead prediction is conducted,
with the RNN switched in the closed-loop mode, for an arbitrary motor program which
comprises seven branching steps. Thereafter, the robot is directed by the motor program
in order to compare the actual sensory input with the lookahead prediction. After 10
travels, the mean square prediction error per sensory input unit (MSPE) is calculated. If
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Table 1: Summary of three trials of learning, which show the number of samples in
the training data set, the iterations required for the training of the RNN, the average
branching steps necessary to become situated, and the mean square prediction error per
sensory input unit (MSPE) during navigation over 10 travels for each trial.

trial number of samples used for training learning iterations avg. steps MSPE
1st. 49 20,000 19.4 0.131
2nd. 102 20,000 9.6 0.072
3rd. 193 40,000 5.2 0.009

the test of lookahead prediction is not satisfactory, we let the robot travel again in order
to sample the data furthermore, which is used to re-train the network.

The experimental results of the learning are summarized in Table 1. In the first trial,
the robot sampled 49 steps of the sensory-motor sequence, then the training process of
the RNN with the sampled sequence converged after the first 20,000 iterations. This
computation took about 20 minutes using a Sony News workstation with R4000 CPU
(100MHz). In the travel after this training, many steps were required (the average steps
in ten travels were 19.4) until the RNN in the open-loop mode supplied good predictions
(i.e., became situated). In the ensuing lookahead predictions in the closed-loop mode, the
RNN could usually not predict more than three steps ahead. It seemed that the RNN
learned only particular instances of the sampled sequences but not in a more general way.
The MSPE calculated was 0.131. In the second trial, the robot sampled further sensory-
motor pairs, by which the number of samples in the training data set was raised to 102.
The training process of the RNN with the data set converged after 20,000 iterations
(it took about 45 minutes). After the training, the necessary steps to become situated
were shortened (in the average 9.6 steps), and the lookahead prediction often was good
for several steps. However, once the prediction failed in the middle of a sequence, it
continued to fail for subsequent steps. The MSPE was reduced to 0.072. In the third
trial, the RNN was trained with 193 sensory-motor pairs after 89 pairs were sampled.
The training could not converge within the first 20,000 iterations, but it converged after
another 20,000 iterations (it took about 170 minutes as total). After this learning trial, it
was observed that the robot became situated within a few steps (the average steps were
5.2), and also that lookahead predictions became accurate except in cases affected by
noise. The MSPE was reduced to 0.009. Since the RNN could correctly predict sequences
it had never exactly learned, it can be said that the RNN succeeded in extracting the
necessary rules in the form of generalized ones. Figure 5.1 shows the distribution of the
prediction error for all sensory input units in the third trial. It is shown that the fraction
of “good” predictions with an error of less than 0.1 is more than 70 percent. This result
implies that the robot successfully learned the forward model of the workspace.

An example of the comparison between a lookahead prediction and its sensory sequence
during travel is shown in Figure 5.1. In (a) the arrow denotes the branching point where
the robot conducted a lookahead prediction using a motor program given by 1100111. The
robot, after conducting the predictions, traveled following the motor program, generating
an “eight-figure” trajectory, as shown. In (b) the left-hand side shows the sensory input
sequence, while the right-hand side shows the lookahead sequence, the motor program
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Figure 6: Distribution of the prediction error for all sensory input units in the final trial
of the learning phase.

and the context sequence. The values are indicated by the bar heights. This sequence
consists of eight branching steps (from the 0th to the 7th step) including the initial one in
the “start” point. It can be seen that the lookahead for the sensory input agrees very well
with the actual values. It is also observed that the context as well as the prediction of
sensory input at the 0th and the 7th steps are almost same. This indicates that the robot
predicted its return to the initial position at the 7th step in its “mental” simulation. The
robot actually returned back to the “start” point at the 7th step in its test travel.

We have stated that the situatedness accounts for the mechanism of the auto-recovery
from temporary perturbation. The next experiment demonstrates such an example. The
robot traveled in the workspace while predicting the next sensory input with the RNN
switched to the open-loop mode. During this travel, an additional obstacle was introduced.
Figure 8 (a) shows the trajectory of the robot’s travel; Figure 8 (b) shows the comparison
of the actual sensory input and the corresponding one-step lookahead prediction. The
branching sequence number is indexed beside the trajectory; these numbers correspond
to the prediction sequence in Figure 8 (b). The prediction starts to be incorrect once
the robot passes the second branching point, as it encounters the unexpected obstacle.
The robot, however, continued to travel and in the meanwhile we removed the obstacle
from the workspace (when the robot passes the fourth branch). After the sixth branching
point, the prediction returns to the correct value. This indicates that the lost context is
recovered while the RNN receives the regular sensory input sequence. It is noted that the
values of the context units in this branch are almost the same as those of the first branch.
This shows that the robot recognized its return to the same branching point because it
became situated in the behavioral context again.

5.2 Planning

In this section, we demonstrate that our scheme provides a mechanism for the autonomous
generation of motor programs. Consider the following experiment. In Figure 5.2, the robot
was stopped at the branch A after it became situated. Then the robot performed its
planning of the route to the given destination, B. B is one of the dead-end positions, and
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Figure 7: (a) The robot conducted lookahead prediction for a motor program given by
1100111 at the branching point indicated by the arrow, after which it traveled according
to the motor program, generating the trajectory shown. In (b) the left side shows the
actual sensory sequence, and the right side shows the lookahead prediction, the motor
program and the context sequence. The sensory and the context sequences are shown for
eight steps, including their initial values, p0 and c0, at the bottom. The motor program
is shown for seven steps (x0 → x6).
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Figure 8: Auto-recovery from the addition of an obstacle. In (a) the trajectory of the
robot’s travel is shown. The additional obstacle is indicated by an arrow. The numbers
indicate the branching sequence number. (b) shows the sensory sequence on the left and
the one-step lookahead, the motor program and the context sequence on the right.
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Figure 9: The robot planning for specified goal B from the current location A

its sensory input has already been given to the robot. The robot conducted its planning by
following the dynamics described by (8) with the following parameters: ε = 1.0; γ = 0.05;
µ = 20.0; T = 0.05; m = 1.0; d0 = 0.1; d1 = −0.11; d2 = 3.8; ω = 2π/400; and κ = 0.001.

Figure 5.2 shows the resulting time evolution for a planning process involving 2,500
iterations. The temporal motor program (for every 10 iterative steps) is shown in the
lower part, and the cost of each plan is plotted in the upper part. A temporal motor
program is indicated by a column consisting of black and white squares, where a white
square denotes a persistence in the current branch (0) and a black square denotes transit
to a new one (1). Symbol size indicates actual activation value of xn. In this figure, we
only show the valid length (τ steps) of motor commands in the temporal motor program.
Note that the valid length of the temporal motor program changes through the iterations.

From Figure 5.2, it can be seen that multiple motor programs with relatively low cost
are generated at stable phases through successive state transitions. These are 101, 01010,
110 and 00 as indicated by arrows in Figure 5.2.

We tested these motor programs by letting the robot activate them. Figure 11 (a)-
(d) shows the resultant travel for each of programs. While program (b) proved to be
redundant, generating a fruitless loop, and program (c) pursued the wrong goal, the other
programs produced acceptable results. Note that the good programs produced slightly
lower costs. We examined the (c) case and determined that a false goal was reached
because the sensory pattern resembled that of the desired goal.
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Figure 10: The chaotic search process of the motor program is shown in the three rows. In
each row, the upper part indicates the cost time history, and the lower part the temporal
motor program. The temporal motor program is indicated by a column consisting of black
and white squares, representing motor commands of 1 and 0 respectively. The motor
programs obtained in the stable phase (101, 01010, 110, 00) are indicated by arrows.
Time flows from row 1 to row 3.
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(a) (b)

(c) (d)

Figure 11: Travels based on various motor programs. (a) and (d) are almost optimal
trajectories, (b) is redundant, and (c) pursues the wrong goal. (a), (b), (c) and (d)
correspond to the motor programs 101, 01010, 110 and 00, respectively.
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Figure 12: The number of identical motor programs generated during the search as a
function of d2.

5.3 Parameter sensitivity of chaotic searching

It is interesting to observe how the parameter settings affect the chaotic search. The
parameter d2 represents a coefficient of positive damping in the CSD dynamics, therefore
it is assumed that its value will affect the dynamical characteristics substantially. In
the following, we focus on this parameter, and investigate how the characteristics of the
chaotic search vary depending on its value. We conducted this experiment using the same
planning task described above.

The parameter d2 was varied between 2.2 and 5.4 with intervals of 0.4, for which the
search process was computed for 40,000 steps. The motor program was sampled at the
most stable phase of each cycle i.e. when ωt = π/2 in (8), which results in 100 samples
of the motor program for each search process. First, we examined how the diversity of
the generated programs varies with d2. Figure 5.3 plots the number of identical motor
programs generated for each parameter value. It is shown that the number of identical
motor programs decreases as the value of d2 increases. When d2 was set to 5.4, only
one motor program was generated — no state transitions took place. Furthermore, we
investigated the cost distribution and the frequency of the state transition in order to
examine the detailed structure of the search process. In Figure 5.3, the left-hand side
shows the cost frequency of the programs generated, and the right-hand side shows the
frequency of repeated occurrences of the same program, for d2 values of 2.2, 3.8, and 5.0.
The figure shows that, for small d2 values, the cost tends to be spread over a wide range,
and the motor program generated is different on almost every cycle. The search proceeds
almost at random in the wide range of the problem’s space. On the other hand, for larger
d2 values, the cost distribution becomes approximately optimal, and the probability of
repeating the same motor program increases. The search tends to proceed more precisely
towards optimal and sub-optimal solutions. However for these cases the search becomes
more likely to be trapped in one of the sub-optimal solutions for long periods (the state
transition takes place only intermittently.) The risk of local minimum traps becomes more
pronounced as d2 is set to larger values.

An important question, therefore, is how to determine the optimal value of d2. We
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Figure 13: Frequency of the cost of generated motor programs (left chart), and the fre-
quency of repeated occurrences of the same motor program (right chart), for d2 values of
(a) 2.2, (b) 3.8, and (c) 5.0.
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believe that it is determined by the trade-off between the time required for planning and
the cost of the motor program thus obtained. If the optimal cost plan is that regardless
of the period of time required, d2 might be set to a small value. The resultant random
search would find the minimum cost plan in the long run, without being captured by
the local minimum traps. On the other hand, if the time spent is crucial, d2 should be
set to a larger value. The resultant search would find a sub-optimal plan quickly, but
the search might not be able to reach the global cost minimum in such a limited time.
We believe that the optimal parameter will be determined by considering the real-time
requirements of the planning process. Although the current paper will not include further
discussion of real-time planning issues, the experimental results convince us that the idea
of “harnessing chaos” is potentially applicable in this context.

6 THE DYNAMICAL MECHANISM OF SITUAT-

EDNESS

Our experimental results have shown that the robot can become situated from an arbi-
trary initial state through interaction with the environment. This section explores the
mechanism underlying this situatedness by investigating the essential dynamical structure
that arises from the coupling of the internal neural system and the environmental system.

First, we define the term “attractor” for both the environmental and the neural dy-
namics. Let us focus on the environmental dynamics F which define how the robot
actually travels in the workspace with respect to the motor command. Suppose the robot
travels in the workspace for an infinite time period, receiving a motor program x∗ which
is generated randomly. Let s∗ : (s0s1 · · · s∞) and p∗ : (p0p1 · · · p∞) be the sequences
of branch positions and the sensory input, respectively, during the resultant travel of the
robot. The branch position sn represents the state of the environmental dynamics F at
the time n. Since s∗ would be limited to a subspace of the entire workspace after an initial
transient period, an invariant set s∗ is formed in s∗. (Hereafter, X∗ and Xn represent the
invariant set and one of its elements, respectively, in an infinite sequence X∗.) We define
this invariant set s∗ as the attractor of F . It is important to note that this attractor is
the global attractor, since the robot’s trajectory in the workspace converges to the same
attractor regardless of its starting position. Also, we define an invariant set p∗ for the
sequence of sensory input which s∗ corresponds to.

For the neural dynamics f , let us consider a lookahead prediction of the RNN (in
the closed-loop mode) with respect to a motor program x∗ of an infinite length which is
generated randomly. This generates an infinite sequence of the transitions of the context
c∗. When this infinite sequence forms an invariant set, this invariant set c∗ is defined
to be the attractor of f . The prediction of sensory sequence which corresponds to c∗ is
indicated as p̂∗. We note that the generation of the global attractor might not be assured
for f , depending on the learning process. A trajectory with a different c0 might reach
a different attractor. Since the objective of learning is to make the neural dynamics f
emulate the environmental dynamics F by means of the sequence of sensory input, f in
the limit of a learning process satisfies:

∃c0, ∃s0 ⇒ p̂∗ = p∗ (9)

for an arbitrary motor program x∗. The notion here is that there is at least one attractor
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Figure 14: The internal dynamics are made coherent by the environmental dynamics
through entrainment using sensory coupling.

for f for which the lookahead prediction of the sensory input can be made correctly, which
will satisfy (9).

Now let us consider the coupling between these two dynamics as shown schematically
in Figure 6. In the open-loop mode, the RNN predicts the next sensory input as ˆpn+1

using the current sensory input pn while the robot travels following the motor program
x∗. In the figure, the sensory return loop exiting from the environmental dynamics and in
input to the neural dynamics is shown. Suppose that both the environmental dynamics
F and the neural dynamics f start to run from their transient states (s0, c0). Initially,
the prediction of the sensory input does not match the measured one. In the meanwhile,
the environmental dynamics F converge onto their global attractor, thereby producing
the regular sequence of sensory input p∗. Upon receiving this regular sequence of sensory
input pn, the neural dynamics f begin to output the next prediction ˆpn+1 correctly, as
being equal to pn+1 while the context values cn converge onto c∗. This convergence is
assured generally for ∀c0 by (9), provided the neural dynamics f are trained to have the
correct global attractor.

The above analysis has shown that the creation of the global attractor in the neural
dynamics is essential to achieving the situatedness and the auto-recovery mechanism of
the robot. Here, we examine whether or not the RNN, which was trained in our previous
experiment, has generated the global attractor. The RNN is switched to the closed-loop
mode, then forward computation is conducted with a randomly generated motor program
for two thousand forward steps. The resultant orbit of the context c∗ is plotted in the two-
dimensional space (c1, c2) by using the activation states of two context units (these two
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units are arbitrarily chosen), and excluding the first 100 points which resulted from the
initial transient steps. Fig. 6(a) shows the orbit obtained, while (b) shows an enlargement
of part of (a) where a highly one-dimensional structure is observed. We repeated this
several times with different initial values for the context units, and found that they all
resulted in the same invariant set. (The same qualitative results were obtained for any
pair of the context units.) This confirmed that the neural dynamics, which have been
used in the experiment, are characterized by a global attractor. Although no theory has
been established to explain the creation of a low-dimensional global attractor in recurrent
neural learning, this tendency has been observed in other numerical experiments on the
learning of simple grammatical structures [36, 44].

The mechanism underlying situatedness will now be discussed qualitatively by intro-
ducing the physical term “entrainment” [9, 12]. Entrainment is a dynamical phenomenon
that coupled nonlinear oscillators become synchronized stably. Recently, Beer [3] studied
the self-organization of locomotion controllers in the context of walking motions of insects,
where he observed the entrainment of the intrinsic oscillation of the leg controller by the
environmental dynamics. Similarly, in our case, the internal neural dynamics become
coherent with the environmental dynamics through the sensory loop, where we observe
the entrainment of the internal dynamics by the environmental dynamics. In the initial
transient state, the neural system and the environmental system are “incoherent”, there-
fore the neural system cannot recognize the present situation/position. In the meanwhile,
the two systems start to become coherent by means of entrainment, with the result that
the dynamical state of the entire system is confined to the attractor which has reduced
dimensionality. At this point, it can be said that the internal neural system has been
situated in the environment. This dynamical mechanism which generates the situatedness
is an inherent one as long as the essential dynamical structure of the coupled system is
characterized by the global attractor dynamics.

7 DISCUSSION AND CONCLUSION

A primitive conceptualization of the symbol grounding process is conjectured as the result
of our experiments. Figure 7 illustrates the concept. As the robot travels around the
workspace, clusters of sensory input are collected in the sensory space arising from its
branching sequences. Meanwhile the dynamical mapping is self-organized in the internal
state space such that it accounts for the transitions among the clusters of the collected
sensory inputs. If different symbols are assigned to each cluster of sensory input, the
mental simulation process carried out by the internal chaotic dynamics might be equivalent
to the symbolic process of manipulating a set of symbols: terminal symbols (the sensory
input) and nonterminal symbols (the internal state). Here, our primitive symbols are not
in the arbitrary shape of usual symbol tokens1, but in the nonarbitrary shape arising from
the physical interaction between the robot and the environment.

One might consider that such symbolic processes could be represented more easily in
the form of a FSM. We, however, consider that the internal representation of a FSM is
still “parasitic,” since symbols are manipulated into an arbitrary shape regardless of their

1The discussion inherits Harnad’s [15] claim: “Symbol manipulation would be governed not just by
the arbitrary shapes of the symbol tokens, but by the nonarbitrary shapes of the icons and category
invariants in which they are grounded.”
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Figure 15: (a) shows the orbit c∗ projected in (c1, c2) space using the activation states
of two context units, (b) is an enlargement of the rectangular section in (a), in which a
highly one-dimensional structure is seen.
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meaning in the physical world. A crucial gap exists between the actual physical systems
defined in the metric space and their representation in the non-metric space, which makes
the discussion of the structural stability of the whole system difficult. In contrast to this
state of affairs, the representation in our scheme can be said to be intrinsic to the system
since it is embedded in the attractor dynamics which share the same metric space with
the physical environment. Here, structural stability arises in the interaction between the
internal and environmental systems, which accounts for the situatedness of the internal
process. Although the symbol grounding process, described here, is still primitive, we
believe strongly that this philosophy is indispensable to design intelligent autonomous
robots operating in the physical world.

It is important that we address the issue of the scalability of our scheme. Although
the learning of the forward model, in the adopted simple workspace, successfully gener-
ated the global attractor after some trial and error, this sort of global convergence would
inevitably become more difficult in more complex environments. Facing this problem,
one approach to take is to refine the learning algorithms of the RNNs since the scal-
ability largely depends on the learning capability of the RNNs. Recent research into
the RNNs’ learning processes have shown progress. Giles [14] reported that increasing
the “order” of the connectivity of an RNN enhances remarkably its learning capability.
(The “order” refers to the dimensionality of product terms in the weighted sum, which
reflects the connectivity of the network.) Bengio et al. [4] showed theoretically that
learning the long-term dependencies with a standard gradient-descent method applied to
back-propagation is difficult. They showed the advantages of other non-gradient meth-
ods, such as pseudo-Newton, time-weighted pseudo-Newton, multi-grid random search,
and simulated annealing. The idea of expert nets proposed by Jordan and Jacobs [20] is
also attractive. The essential idea is to divide a complex learning problem into simpler
problems by introducing a “sub-net” architecture. It will be challenging to study whether
the same learning principle can be applied to the learning of large size FSMs by RNNs.
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Although numerous other research projects concerning RNNs are in progress, the learning
capability of RNNs is still an open problem. It is expected that further advances in the
theory of RNNs will lead to the discovery of better learning algorithms.

Another possible research direction consists of the investigation of strategies that could
cope with insufficient learning without fatal degradation of the system performance in
more complex environments. The insufficient learning can arise in three ways. Firstly,
the robot might not be able to obtain all possible input data (sensory-motor sequences),
which is necessary for building a correct model of the environment, through its behavior.
Secondly, even if the robot could obtain all of the possible input data, it might not be
able to “digest” all of it to form a correct model in a limited learning time. Thirdly,
the environment may change after the robot has learned its model. In these situations,
our basic assumption of embedding a correct model in the form of the global attractor is
inevitably constrained, and thereby the mechanisms of situatedness as well as of optimal
planning might not be assured. However it is expected that the robot could recover its
context temporarily if it happened to travel around well-known parts of the workspace,
and then it might be able to generate certain sub-optimal plans from there.

The current paper has formulated a model-based approach based on the assumption
of sufficient learning of the model. It is, however, expected that the theory will have
to be extended further to the problem of insufficient learning which is likely in open
environments associated with more complexity. This field of study is quite attractive to
us since an animal or “animat” often lives under such conditions.
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