
RNNPB Introduction

1 Model overview

This document presents the main ideas behind our proposed model RNNPB. The main

characteristic of the RNNPB is that chunks of spatio-temporal patterns of the sensory-

motor flow can be represented by a vector of small dimensions. This vector plays the

role of the bifurcation parameters of nonlinear dynamical systems. In other words,

different vector values make the system generate different dynamic patterns. In our

modeling, the nonlinear dynamical system is implemented by a Jordan-type recurrent

neural network. The parametric biases (PB) that are allocated in the input layer

function as the bifurcation parameters. The main advantage of utilizing the parameter

bifurcation is that ideally the RNNPB can encode infinite number of dynamic patterns

with modulating analog values of the PB vector.

The role of learning is to self-organize the mapping between the PB vector and

behavioral spatio-temporal patterns. It is important to note that the PB vector for

each learning pattern is self-determined in a non-supervised manner, without teacher

signals. Another feature of the RNNPB is that the system works as both a behavior

recognizer and generator as a mirror system after learning. When given a fixed PB

vector, the RNNPB generates the corresponding dynamic patterns. On the other hand,

when given target patterns to be recognized, the corresponding PB vectors are obtained

through an iterative inverse computation.

In the learning phase, a set of movement patterns are learned through the forward

model of the RNNPB by self-determining both the PB vectors, which are assigned

differently for each movement pattern, and a synaptic weight matrix, which is common

for all the patterns. The information flow of the RNNPB in the learning phase is shown

in Figure 1(a). This learning is conducted using both target sequences of motor values

mt and the sensory values st. When given mt and st in the input layer, the network

predicts their values at the next time step in the output layer as ˆmt+1 and ˆst+1. The

outputs are compared with their target values mt+1 and st+1 and the error generated is
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Figure 1: The system flow of RNNPB in learning phase (a) and testing phase (b).
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back-propagated for the purpose of updating both the synaptic weights and PB vectors.

Note that the determined synaptic weights are common to all learning patterns, but

the PB vector is differently determined for each pattern. The manner of determining

the PB vectors will be detailed in later sections. ct represents the context units where

the self-feedback loop is established from ct+1 in the output layer to ct in the input

layer. The context unit activations represent the internal state of the network.

After the learning is completed, the sensory-motor sequences can be generated by

means of the forward dynamics of the RNNPB with the PB vectors fixed as shown in

Figure 1(b). The PB vectors could be given from another network, as in the behavior-

language association task described later, or self-determined through the recognition

process, as in the imitative interaction task with the humanoid robot. In the genera-

tion phase, the RNNPB can be operated in a closed-loop mode where the next step’s

sensory-motor prediction outputs are fed back to the current step as inputs, as denoted

by a dotted line on the left-hand side in Figure 1(b). Thus, the RNNPB can generate

imaginary sensory-motor sequences without receiving the actual sensory inputs from

the environment.

Figure 1(c) illustrates how the PB vectors can be inversely computed for the given

target sensory sequences in the recognition phase. The RNNPB, when receiving the

current sensory inputs st, attempts to predict their next vectors, ˆst+1, by utilizing the

temporarily obtained PB vectors. The generated prediction error from the target value

st+1 is back-propagated to the PB units and the current PB vectors are updated in

the direction of minimizing the error. The actual computation of the PB vectors is

conducted by using the so-called regression window of the immediate past steps, by

which the PB vectors can be modulated smoothly through the steps. (This mechanism

will be detailed in the next section.) If pre-learned sensory sequence patterns are

perceived, the PB vectors tend to converge to the values that were determined in the

learning phase.

2 Computing the PB values

The PB vectors are determined through regression of the past sequence pattern. In

the recognition phase, the regression is applied for the immediate past window steps L,

by which the temporal profile of the PB, pt from L steps before to the current step ct,

is updated. The window for the regression shifts as time goes by while pt is updated

through the iterations. In the learning phase the regression is conducted for all steps

of the training sequence patterns. (This means that the window contains the whole
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sequence and it does not shift.)

The temporal profile of pt in the sequence is computed via the back-propagation

through time (BPTT) algorithm. In this computation ρt, the internal value of the

parametric bias, is obtained first.

The internal value ρt changes due to the update computed by means of the error

back-propagated to this parametric bias unit, which is integrated for a specific step

length in the sequence. Then the parametric bias, pt, is obtained by a sigmoid function

of the output of the internal value. The utilization of the sigmoid function is just a

way of computationally bounding the value of the parametric bias to a range of 0.0

to 1.0. In this way, the parametric bias is updated to minimize the error between the

target and the output sequence.

For each iteration in the regression of the window, L steps of look-ahead prediction,

starting from the onset step of the window, are computed by the forward dynamics of

the RNN. Once the L steps of the prediction sequence are generated, the errors between

the targets and the prediction outputs are computed and then back-propagated through

time. The error back-propagation updates both the values of the parametric bias at

each step and the synaptic weights. The update equations for the ith unit of the

parametric bias at time t in the sequence are:

δρt
i = kbp ·

t+l/2∑

step=t−l/2

δbp
t

i
+ knb(ρ

i
t+1 − 2ρi

t + ρi
t−1) (1)

4ρi
t(s+1) = ε · δρt

i + η · 4ρt(s) (2)

pi
t = sigmoid(ρt) (3)

In Eq. (1), δρt, the delta component of the internal value of the parametric bias unit, is

obtained from the summation of two terms. The first term represents the summation

of the delta error, δbp
t

i
, in the parametric bias units for a fixed time duration l. δbp

t

i
,

which is the error back-propagated from the output units to the ith parametric bias

unit, is summed over the period from t−l/2 to t+l/2 time steps. By summing the delta

error, the local fluctuations of the output errors will not affect the temporal profile of

the parametric bias significantly. The parametric bias should vary only with structural

changes in the target sequence. Otherwise it should become flat, or constant, over

time.

The second term plays the role of a low pass filter through which frequent rapid

changes of the parametric bias are inhibited. knb is the coefficient for this filtering

effect. ρt is updated based on δρt obtained in Eq. (1). The actual update 4ρt(s+1) at

s + 1 learning step from that at s learning step is computed by utilizing a momentum
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term to accelerate convergence as shown in Eq. (2). Then, the current parametric bias

pt is obtained by means of the sigmoidal outputs of the internal values ρt in Eq. (3).
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