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ABSTRACT2

When agents interact socially with different intentions (or wills), conflicts are difficult to avoid.3
Although the means by which social agents can resolve such problems autonomously has not4
been determined, dynamic characteristics of agency may shed light on underlying mechanisms.5
Therefore, the current study focused on the sense of agency, a specific aspect of agency referring6
to congruence between the agent’s intention in acting and the outcome, especially in social7
interaction contexts. Employing predictive coding and active inference as theoretical frameworks8
of perception and action generation, we hypothesize that regulation of complexity in the evidence9
lower bound of an agent’s model should affect the strength of the agent’s sense of agency and10
should have a significant impact on social interactions. To evaluate this hypothesis, we built a11
computational model of imitative interaction between a robot and a human via visuo-proprioceptive12
sensation with a variational Bayes recurrent neural network, and simulated the model in the form13
of pseudo-imitative interaction using recorded human body movement data, which serve as the14
counterpart in the interactions. A key feature of the model is that the complexity of each modality15
can be regulated differently by changing the values of a hyperparameter assigned to each local16
module of the model. We first searched for an optimal setting of hyperparameters that endow17
the model with appropriate coordination of multimodal sensation. These searches revealed that18
complexity of the vision module should be more tightly regulated than that of the proprioception19
module because of greater uncertainty in visual information flow. Using this optimally trained20
model as a default model, we investigated how changing the tightness of complexity regulation21
in the entire network after training affects the strength of the sense of agency during imitative22
interactions. The results showed that with looser regulation of complexity, an agent tends to23
act more egocentrically, without adapting to the other. In contrast, with tighter regulation, the24
agent tends to follow the other by adjusting its intention. We conclude that the tightness of25
complexity regulation significantly affects the strength of the sense of agency and the dynamics26
of interactions between agents in social settings.27
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1 INTRODUCTION
Humans are social beings by nature, and each individual regularly interacts with others in various ways.30
Even though individuals act based on their intentions or wills, they sometimes acts in agreement with31
others, doing something collaboratively, while at other times they disagree. Either case may be conscious or32
unconscious. What determines such the type of interaction and how? To evaluate this problem, we consider33
possible relationships between agency of each individual and social interactions between individuals.34
Then, we introduce predictive coding and active inference to formulate the problem in a computational35
framework and we propose a specific hypothesis to predict the type of interaction. We deliver a schematic36
of our computational model and experimental setup to evaluate the hypothesis and conclude the section by37
highlighting some critical findings.38

1.1 Agency in social cognition39

In social interactions, agents sometimes cooperate by sharing intentions so as to derive mutual benefits,40
while at other times they cause conflicts by following their own intentions and ignoring the interests of41
others. Although how such complexities in social interactions emerge is not obvious, we hypothesized42
that dynamic characteristics of agency in social interactions might shed light on underlying mechanisms.43
Recently, the study of agency has attracted considerable attention from researchers in various disciplines,44
including philosophy, psychology, cognitive science, and neuroscience. Specifically, the sense of agency45
(SoA) (Gallagher, 2000; Synofzik et al., 2008; Moore et al., 2009) refers to congruence between an46
agent’s intention or belief in an action and its anticipated outcome, which endows the agent with the47
sense that “I am the one generating this action”. Along with studies in experimental psychology, building48
a computational model of SoA is also important in order to explore the nature of agency (Legaspi and49
Toyoizumi, 2019). In the study of computational models of agents, predictive coding (PC) (Rao and Ballard,50
1999; Tani and Nolfi, 1999; Lee and Mumford, 2003; Friston, 2005; Hohwy, 2013; Clark, 2015; Friston,51
2018) and active inference (AIF) (Friston et al., 2009, 2010; Baltieri and Buckley, 2017; Buckley et al.,52
2017; Pezzulo et al., 2018; Oliver et al., 2019) have recently attracted considerable attention since they53
provide rigid theoretical frameworks for defining perception and action generation. In the framework of54
PC and AIF, an agent’s intention or belief can be formulated as a predictive model, and it is thought that55
congruence between the prediction of action outcomes and observations reinforces the SoA (Friston, 2012).56

In situations involving social interaction, however, where multiple agents interact, it becomes challenging57
for each agent to sustain its SoA, because other agents, having their own intentions, may not act as desired.58
If social agents are required to coordinate actions so as to obtain benefits by minimizing possible conflicts,59
we speculated that the strength of agency should be arbitrated among those agents during some conflicts.60
Let us consider a dyadic synchronized imitation as an example of social interaction, wherein two agents61
attempt to synchronously imitate one another’s movement patterns using predictions based on prior learning.62
In addition, let us assume a setting in which two agents imitate one another in sequences of movement63
patterns based on memorized transition rules, in which unpredictable transitions in movement patterns are64
included. For example, either movement pattern B or C can appear after movement pattern A (see also65
Figure 3.2 (A)). In this setting, agent 1 may opt for movement pattern B after A, acting as a leader with66
strong agency and agent 2 may just follow agent 1 by generating pattern B with weak agency. This can67
result in successful mutual imitation without generating conflict. However, if both agents maintain strong68
agency, each may generate its own pattern (B or C) without compromise, resulting in conflict.69

While investigating agency in social interactions, we concluded that it would also be worthwhile to70
consider how agency and mirror neuron systems (MNS) (Rizzolatti and Fogassi, 2014; Kilner et al.,71
2007) might be related, since MNS are thought to contribute to various types of social cognitive behavior,72
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including imitation (Hurley, 2005). MNS was first discovered in area F5 of the monkey premotor cortex73
(Di Pellegrino et al., 1992; Gallese et al., 1996), and it is activated when monkeys execute their own actions,74
as well as when observing those performed by others. Because MNS uses observations of an action to75
generate the same action, it may participate in imitative behaviors, which are thought to be the basis of76
various higher cognitive functions (Aly and Tapus, 2015; Kohler et al., 2002; Oztop et al., 2006, 2013). A77
natural question regarding such an MNS mechanism is how the agency of each individual can be exerted78
if MNS is the default mode. Intention to generate an action could conflict with an automatic response to79
imitate an action demonstrated by others. Although modeling studies of MNS have also been conducted80
from the view point of PC and AIF using Bayesian frameworks (Friston et al., 2011; Kilner et al., 2007)81
and by using deterministic recurrent neural networks (RNNs) (Ito and Tani, 2004; Ahmadi and Tani, 2017;82
Hwang et al., 2020), the aforementioned problem of agency has not been well considered.83

1.2 Predictive coding and active inference84

Next, let us consider how the strength of agency can be modeled using a framework of PC and AIF. For85
this purpose, first we briefly review the concepts of PC and their mathematical properties, as follows. In PC,86
perception is thought to be achieved via iterative interactions between a prior expectation of a sensation87
and a posterior inference from a sensory outcome. The prior expectation of the sensation can be modeled88
by statistical generative models that map the prior of the latent variable to the sensory expectation. The89
posterior inference can be carried out by taking the error between the expected sensation and its outcome90
and by updating the posterior of the latent variable in the direction of minimizing the error, under the91
constraint of minimizing Kullback-Leibler divergence (KL divergence) between the posterior distribution92
and that of the prior. Typically, both the prior and the posterior are represented by Gaussian distributions93
with parameters of mean and variance, as will be described later. This is equal to maximizing the lower94
bound of the logarithm of marginal likelihood (a.k.a evidence lower bound) expressed by two terms:95
accuracy and complexity.96

ln pθ(X) ≥
∫
qφ(z|X) ln

pθ(X, z)

qφ(z|X)
dz︸ ︷︷ ︸

Evidence lower bound

(1)97

= Eqφ(z|X)[ln pθ(X|z)]︸ ︷︷ ︸
Accuracy

−DKL[qφ(z|X)‖p(z)]︸ ︷︷ ︸
Complexity

(2)98

whereX is the observation, z is the latent variable, qφ(z|X) is the approximate posterior, and θ and φ are99
the parameters of the model. Accuracy is the expectation of log-likelihood with respect to the approximate100
posterior, which represents reconstruction of the observation with the approximate posterior. Complexity is101
the KL divergence between the approximate posterior and the prior, which serves to regularize the model.102
Importantly, in maximizing the lower bound, the interplay between these two terms characterizes how103
the model behaves in learning and prediction (Higgins et al., 2017). Maximization of the lower bound is104
equivalent to minimization of free-energy proposed by Friston (Friston, 2005).105

Next, AIF is described briefly. AIF explains that action or motor commands should be generated so that106
their sensory outcomes coincide with expected outcomes. As a simple example, consider how expected107
proprioception in terms of robot joint angles can be achieved by generating sufficient motor torque. This108
can be done with an inverse model that maps expected joint angles to the required motor torques, or by109
employing a PID controller such that necessary motor torque to minimize errors between expected joint110
angles and actual angles can be derived by means of a simple error feedback mechanism. Both PC and AIF111
attempt to minimize error between the expected sensation and the actual outcome; however, in PC this is112
accomplished by changing the intention via the posterior inference and by changing the environment state113

Frontiers 3



Ohata et al. Investigation of the Sense of Agency

through action in AIF. When PC and AIF are performed in tandem, while an agent acts on the environment,114
an agent with a more precise prior (smaller variance) should behave with strong agency, being less likely to115
change its own intention, and more likely to change the environmental state. On the other hand, an agent116
with a less precise prior (with larger variance) should behave with weaker agency, being more likely to117
change its own intention than the environmental state.118

1.3 Related work119

Although PC and AIF have attracted much attention from brain modeling researchers, it is unusual to120
see them used in computational studies employing learnable neural network models, especially those121
that can handle continuous spatio-temporal patterns characterized in multimodal sensory inputs. To this122
intent, Ahmadi and Tani (Ahmadi and Tani, 2019) recently proposed so-called, Predictive-coding-inspired123
Variational Recurrent Neural Network (PV-RNN). PV-RNN is a type of variational recurrent neural network124
that approximates the posterior at each time step in sequential patterns with variational inference, and is125
formalized by employing predictive coding. By making predictions in the form of the sequential prior126
(Chung et al., 2015) with time-varying parameterized Gaussian distribution, PV-RNN enables the model127
to represent strength of intention or agency. Ahmadi and Tani (2019) introduced a hyper parameter w128
called the meta-prior, which weights regulation of the complexity term in the evidence lower bound (the129
second term in equation 2). They found that a model trained with looser regulation of the complexity term,130
achieved by setting the meta-prior to a larger value, develops more deterministic dynamics with higher131
estimated precision in the sequential prior, whereas a model trained with tighter regulation, accomplished132
by setting the meta-prior to a smaller value, develops more probabilistic dynamics with lower estimated133
precision. In another attempt to implement free-energy minimization with an artificial neural network, Pitti134
et al. (Pitti et al., 2020) proposed a spiking neural network architecture that minimizes free-energy to model135
the fronto-striatal system in the brain.136

Chame and Tani (Chame and Tani, 2019) used PV-RNN to conduct a human-robot interaction experiment137
using a single perceptual channel of proprioception. Although their analysis of the experiments was138
preliminary, they suggested that when the model is trained under looser regulation of the complexity139
term, the model tends to behave egocentrically, adapting less to proprioceptive inputs, whereas under140
tighter regulation of the complexity term, the network tends to behave more passively, adapting more141
to proprioceptive inputs. However, such network characteristics, once developed through learning under142
particular conditions to regulate the complexity term, cannot be changed thereafter. In social interactions, it143
is natural that agents act differently, depending on the social context at a given moment. Sometimes they144
tend to preserve their prior intention by acting perversely, and at other times they change it more easily by145
adapting to intentions of others. The current study examines whether such shifts in strength of agency can146
be achieved during the interaction phase by changing the value of the meta-prior from the default strength147
set in the learning phase.148

1.4 Imitative interaction using a variational Bayes recurrent neural network149

Here, we explain the general concept underlying our computational model, experimental design, and150
obtained results. We first proposed an artificial neural network model that can be applied to an imitative151
interaction task using multimodal sensation of vision and proprioception by extending PV-RNN. PV-RNN152
is used because to our knowledge this network model is the only RNN-type model that can instantiate153
predictive coding and active inference in a continuous spatio-temporal domain by following a Bayesian154
framework. The proposed model is comprised of a multi-layered PV-RNN with a branching structure, in155
which two branches responsible for perception of vision and proprioception are connected through an156
associative module. In addition, the current model inherits the structure of Multiple Timescale Recurrent157
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Neural Network (MTRNN) (Yamashita and Tani, 2008). MTRNN extracts a temporal hierarchy contained158
in sequential patterns (Yamashita and Tani, 2008; Nishimoto and Tani, 2009; Hwang et al., 2020). By159
assigning faster timescales to the peripheral sensory modules for vision and proprioception and slower160
timescales to the associative module, hierarchical multimodal integration from sensory-motor levels to161
abstract intention levels should be achieved.162

The entire network model is considered a generative model that predicts incoming visual sensation and163
proprioception simultaneously through a generative process along with a top-down pathway from the164
associative module to both of the sensory modules. The resultant prediction error for each sensory modality165
is back-propagated through time (Werbos, 1974; Rumelhart et al., 1985) (BPTT) and through each module166
to the associative module, by which the latent state in each module is modulated so as to maximize the167
evidence lower bound shown in the equation 2. This corresponds to the posterior inference. The network is168
trained through supervised learning by maximizing the evidence lower bound.169

However, coordinating multimodal sensations appropriately is still not an easy problem when intrinsic170
complexity and randomness in spatio-temporal patterns differ in each modality (Ogata et al., 2010; Valentin171
et al., 2019). Studies on cue integration in multimodal sensation have shown that inferences about the172
hidden state of the environment should be accomplished by assigning the greatest weight to information173
obtained from the most reliable sensory modality (Battaglia et al., 2003). In predictive coding, reliability174
can be represented by the accuracy estimated for each modality of the sensory model, provided that its175
generalization is preserved by minimizing model complexity adequately when the amount of training data176
is limited. We speculate that the complexity term should be regulated adequately for each sensory modality177
during training, such that the best generalization can be achieved for each. Since each PV-RNN module can178
be assigned different values of the meta-prior, the above could be achieved by searching for an adequate179
value of each meta-prior though trial and error during the learning phase.180

The proposed model was evaluated by simulating “pseudo” imitative interaction using visuo-181
proprioceptive sequence patterns recorded from human demonstrators. Although human-robot interaction182
should be studied in a physical system to allow the human and the robot to respond to each other in an183
online fashion, it is difficult for the current system to work in real time because inference of the posterior184
using PV-RNN is computationally intensive, especially when pixel-level vision is used as one of the sensory185
modalities. Therefore, the current study focuses on simulation experiments using pre-recorded data.186

First, we investigated how changing the tightness used to regulate the complexity term for each sensory187
module in the learning phase affects the quality of integrating multimodal sensation in an imitative188
interaction. For this purpose, we examined possible effects of assigning different values of the meta-prior to189
the vision module and the proprioceptive module, on performance characteristics in learning, as well as in190
the resulting imitative interaction. Our results suggest that regulating complexity more in the vision module191
than in the proprioception module facilitates better imitation performance in multi-modal sensation after192
learning, because visual sensory information contains more randomness than proprioceptive information.193

Second, as the main motivation of the current study, we investigated how changing the tightness used194
to regulate the complexity term in the entire network after the learning phase affects the strength of195
agency. Using a network trained by tuning the meta-priors assigned to each sensory module in the previous196
experiment, we examined how increasing or decreasing meta-prior values throughout the network compared197
to those used during learning affects imitative behavior. We found that a network that tightly regulates the198
complexity term by setting smaller values of the meta-prior tends to follow human movement patterns by199
adapting its internal states. On the other hand, the network that loosely regulates the complexity term by200
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setting larger values of the meta-prior tends to generate more egocentric/self-centered movement patterns201
with less sensitivity to changes or fluctuations in human movement patterns by adapting its internal state202
less. The current paper presents a detailed analysis of the underlying mechanisms accounting for these203
observed phenomena.204

Below, the Model section details the proposed model. It describes an overall system, learning process,205
derivation of the evidence lower bound of the proposed model, how the trained model was tested in pseudo206
imitative interaction, and implementation of the model. The Experiment section explains the experimental207
design, procedures of data preparation, and the results of the two experiments. The Discussion section208
summarizes the experimental results and discusses their implications.209

2 MODEL
2.1 Model overview210

This subsection describes briefly how multimodal imitative interaction of agents perceiving visuo-211
proprioceptive sensory inputs can be modeled using concepts of predictive coding and active inference.212
Among various types of imitation, synchronized imitation is considered in the current study by virtue of213
its simplicity. In synchronized imitation, the agent is required to imitate target patterns demonstrated by214
its counterpart by predicting them on the basis of prior learning. Although target patterns to imitate are215
structurally the same as previously learned patterns, they could involve marginal variations, as in speed,216
amplitude, and shape. Synchronized imitation can be achieved by means of iterative cycling of sensory217
input predictions during the demonstration, generation of corresponding movement, and updating the218
latent state of the network using the resulting sensory prediction error. To generate movement, one step,219
look-ahead prediction of proprioception is fed into an inverse model (Kawato et al., 1987), which is often220
implemented by a PID feedback controller in robots. A PID feedback controller computes an optimal221
motor torque as the motor command to minimize the error between the predicted proprioception (the target222
joint angles) and the actual proprioception (the actual joint angles). This corresponds to active inference223
(Friston et al., 2010, 2011), as described previously. The latent state can be updated using a scheme called224
error regression (Tani and Nolfi, 1999; Ito and Tani, 2004; Hwang et al., 2020; Ahmadi and Tani, 2019), by225
which sensory perception assumed in a predictive coding framework can be performed.226

Now we look at how the PV-RNN (Ahmadi and Tani, 2019) can be used to implement the model for227
multimodal imitative interaction of a robot agent receiving visuo-proprioceptive sensory inputs based on228
frameworks of predictive coding and active inference. Figure 1 shows the overall system view, consisting229
of a PV-RNN, a robot, and a human counterpart. The human demonstrates movement patterns to the robot230
both visually and kinesthetically, guiding the robot’s posture via a motion capture suit. Unfortunately, it231
was infeasible for the proposed system to work stably in real-time because posterior inference using an232
error-regression scheme, detailed in section 2.4, requires intensive computation. Hence, in the current233
study, we simulated the imitative interaction between a human and a robot shown in Figure 1 as a pseudo234
imitative interaction in which pre-recorded body movements sampled from a human serve as the robot235
counterpart using the setting shown in Figure 1 (C).236

PV-RNN is considered a generative model, formulated in a continuous spatio-temporal domain, employing237
a variational Bayes framework, as described previously. It infers the posterior at each time step using238
variational inference, in which the reconstruction error is minimized with regularization of the KL239
divergence between the inferred posterior and the conditional prior. This is implemented by means240
of a so-called error-regression scheme, detailed in section 2.4.241
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A PV-RNN inherits the concept of a Multiple Timescale Recurrent Neural Network (MTRNN)(Yamashita242
and Tani, 2008), which is characterized by its architecture because it allocates different timescale dynamics243
to different layers. Higher layers are endowed with slower timescale dynamics and lower layers with244
faster dynamics, as inspired by recent cognitive neuroscience evidence (Newell et al., 2001; Huys et al.,245
2004; Smith et al., 2006; Kording et al., 2007). Introduction of multiple timescale dynamics can enhance246
abstraction and generalization in learning by extracting action-primitive hierarchies or chunking structures247
from observed multimodal sensory inputs (Yamashita and Tani, 2008; Choi and Tani, 2018; Hwang et al.,248
2020).249

These characteristics of variational Bayes frameworks and MTRNN enable PV-RNN to utilize250
hierarchically organized probabilistic representation, i.e., while the network extracts a hierarchical structure251
from an observation, it also assigns a different degree of uncertainty within the hierarchy. For example,252
given a task in which the network is required to predict a sequence of body movements comprised of a253
small number of primitive patterns, the network can be certain about details of the primitive patterns, but254
less certain about the sequence of the primitives. In such a case, the lower level of the network responsible255
for prediction of details of each primitive movement shows small uncertainty, while the higher level in256
charge of prediction of the order of those primitive patterns shows high uncertainty.257

Sensory modules for proprioception and vision were modeled with multi-layered PV-RNNs and modules258
were connected via an associative module, also based on a PV-RNN. Figure 1 (A) depicts a schematic of259
the proposed model and how it is trained. The associative module generates the prior, conditioned by the260
latent state at the previous time step in this module. The prior is then fed to both the proprioception and261
vision modules along the top-down pathway. Each sensory module also generates a prior at each time step262
conditioned by the previous latent state of the module, computed using top-down information provided by263
the associative module, by which predictions of sensory inputs, proprioception and vision, are generated in264
the subsequent time step. Note that the vision module predicts a low-dimensional vector, which is then265
fed to a CNN-type decoder (LeCun et al., 1989, 1998) to generate actual pixel visual images, in order to266
reduce computational costs.267

A dataset of visuo-proprioceptive patterns demonstrated by human participants is used to train the model.268
To generate these data, a human wearing a motion-capture suit demonstrates body movements while269
simultaneously recording a video. The motion capture suit maps the human’s body configuration into the270
humanoid robot’s joint angle values. These synchronized joint-angle trajectories and videos serve as the271
target of the model. The whole network is optimized simultaneously so as to maximize the evidence lower272
bound of the model via BPTT. The design of body movement patterns used in this study is detailed in273
section 3.2.274

Figure 1 (B) describes how the trained model performs imitative interactions. An imitative interaction275
involves a cycle of predictions with conditional prior and posterior inferences. At each time step, the276
network predicts proprioception pt and a low-dimensional latent representation of vision lt with the prior277
conditioned by the latent variable in each module at the previous time step. The proprioceptive prediction278
pt is supplied to the controller, followed by computation of motor commandsmt to achieve the expected279
joint positions and generation of the movement. Then, a new visual image and proprioception are acquired.280
The raw pixel image is fed to a CNN-type encoder that has been separately trained to obtain the target for281
the low-dimensional latent representation l̄t. Resultant prediction errors elt and ept are computed in vision282
and proprioception, respectively, which are then used to infer the posterior in each PV-RNN layer with283
regulation of the KL divergence between the inferred posterior and the conditional prior so that the lower284
bound is maximized by BPTT. This optimization process to infer the posterior is iterated a fixed number285
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of times at each sensory-motor sampling time step, and the optimized posterior is used to make the best286
prediction with the conditional prior to the succeeding time step.287

Figure 1 (C) denotes how the robot’s network model senses movement patterns demonstrated by the288
human counterpart.289

Figure 1: Overall schematic of the proposed model. Blue and red bell curves represent prior and posterior
distributions, respectively. Blue and red arrows illustrate information flows of the prediction with conditional
prior and posterior inferences, respectively. (A) The training scheme of the proposed network model. (B)
The cycle of prediction with conditional prior and posterior inferences during an interaction with a human.
(C) A diagram of providing the configuration of a human counterpart to the network.

2.2 Derivation of evidence lower bound290

PV-RNN is a generative, inference model based on the graphical representation shown in Figure 2 (this291
figure will be explained in detail in section 2.4). It is comprised of deterministic variables d, i.e., assumed292
to follow Dirac delta distributions, and stochastic variables z. The model includes a prior and infers the293
corresponding posterior by variational inference. We modified the original PV-RNN at four points with294
respect to dependencies of variables. First, in our model, there are no connections between the output of295
the network x and z, which exist in the original PV-RNN. This is for simplification of the model, and it296
was confirmed that removing these connections did not hinder network performance. Second, the current297
network does not have connections from the lower layer to the higher layer, which the original network298
does have. This modification is intended to separate more clearly the information flow between top-down299
generative prediction and bottom-up error propagation. Third, diagonal connections from the higher layer300
during the previous time step to the lower layer during the succeeding time step are changed to vertical301
connections during the same time step. Last, the prior distribution of zt at time step 1 has been changed. In302
the original study, the distribution is simply mapped from d0. In the current study, however, it is assumed303
that p(z1) follows a unit Gaussian distribution to control the initial sensitivity of the model. Following304
derivation of the evidence lower bound in Ahmadi and Tani (2019) and considering the introduction of305
the unit Gaussian at time step 1, the evidence lower bound of the proposed visuo-proprioceptive model is306
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derived as307

ln(p1:T ,v1:T |d
∗
0) ≥

T∑
t=1

{
Eqa,qp [lnP (pt|d

p,1
t )] + Eqa,qv [lnP (vt|dv,1t )]

}
−
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l∈A

DKL[q(zl1|d
l
0, e

p
1:T , e

v
1:T )‖p(zu)]−

∑
l∈P

DKL[q(zl1|d
l
0, e

p
1:T )‖p(zu)]

−
∑
l∈V

DKL[q(zl1|d
l
0, e

v
1:T )‖p(zu)] +

T∑
t=2

{
−
∑
l∈A

DKL[q(zlt|d
l
t−1, e

p
t:T , e

v
t:T )‖p(zlt|d

l
t−1)]

−
∑
l∈P

DKL[q(zlt|d
l
t−1, e

p
t:T )‖p(zlt|d

l
t−1)]−

∑
l∈V

DKL[q(zlt|d
l
t−1, e

v
t:T )‖p(zlt|d

l
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}
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where A, P, and V represent the associative module, the proprioception module, and the vision module,309
respectively, and l indicates the index of a layer in each module. p1:T and v1:T are time series propriocetive310
and visual patterns. d∗0 represents d in all layers at time step 0. Eqa,qp denotes the expectation over all311
distributions of z in the associative module and the proprioception module, and Eqa,qv denotes expectation312

over all distributions of z in the associative module and the vision module. dp,1t is the deterministic variable313

in the lowest layer of the proprioception module at time step t, and dv,1t is that in the lowest layer of the314
vision module. zlt is the stochastic variable at time step t in the lth layer in each module. ept:T and evt:T315
are the prediction errors between the predicted patterns and the target patterns at time step from t to T in316
proprioception and vision, respectively. p(zu) indicates the unit Gaussian distribution serving as the prior317
at time step 1. By introducing the meta-prior, which weights the KL divergence between the approximate318
posterior and the prior in a layer-specific manner, the evidence lower bound of the model is defined as319
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l
t−1, e

p
t:T )‖p(zlt|d

l
t−1)]︸ ︷︷ ︸

Complexity in proprioception module

−
∑
l∈V

wlDKL[q(zlt|d
l
t−1, e

v
t:T )‖p(zlt|d

l
t−1)]︸ ︷︷ ︸

Complexity in vision module

}
(4)320

where wl1 indicates the meta-prior in the lth layer at t = 1 in the associative module, the proprioception321
module, and the vision module, respectively. wl represents the meta-priors in the lth layer after t = 2 in322
each module. Parameters of the model are optimized by maximizing the lower bound, which corresponds323
to minimizing the free energy.324

2.3 Learning process325

It is noted that unlike other models employing online learning methods (Boucenna et al., 2014, 2016),326
our model is trained offline with pre-recorded dataset. The entire network model is trained by maximizing327
the evidence lower bound. Thus, given the time step length T of proprioceptive patterns p1:T and visual328
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patterns v1:T , the cost function to be minimized is defined as329

cost :=

T∑
t=1

{
1

2Rp
‖pt − p̄t‖

2
+

1

2Rv
‖vt − v̄t‖2

+
∑
l∈A

wl1
Rl
DKL[q(zl1|d

l
0, e

p
1:T , e

v
1:T )‖p(zu)] +

∑
l∈P

wl1
Rl
DKL[q(zl1|d

l
0, e

p
1:T )‖p(zu)]

+
∑
l∈V

wl1
Rl
DKL[q(zl1|d

l
0, e

v
1:T )‖p(zu)]|+

T∑
t=2

{∑
l∈A

wl

Rl
DKL[q(zlt|d

l
t−1, e

p
t:T , e

v
t:T )‖p(zlt|d

l
t−1)]

+
∑
l∈P

wl

Rl
DKL[q(zlt|d

l
t−1, e

p
t:T )‖p(zlt|d

l
t−1)] +

∑
l∈V

wl

Rl
DKL[q(zlt|d

l
t−1, e

v
t:T )‖p(zlt|d

l
t−1)]

}
(5)330

where A, P, and V represent the associative module, the proprioception module, and the vision module. Rp331
and Rv are the dimensions of proprioceptive patterns and visual patterns to normalize prediction errors,332
and Rl is the dimension of the distributions of z to normalize the KL divergence. Each output in the vision333
and proprioceptive modules is represented by a multivariate Gaussian distribution with an estimation of334
the mean for each dimension and covariant matrix as the identity matrix, for simplicity. This leads to335
minimization of the mean squared error, which is an estimator of the log-likelihood in the accuracy term336
when maximizing the lower bound.337

Since the prior and posterior distributions are assumed to follow a multivariate Gaussian distribution with338
a diagonal covariant matrix, the KL divergence in the cost function is analytically computed. Given two n339
dimensional multivariate Gaussian distributions p(z) = N (z;µp,σp) and q(z) = N (z;µq,σq) where340
µ = (µ1, µ2, ..., µn)T and σ = (σ1, σ2, ..., σn)T ,341

DKL[q(z)‖p(z)] =

n∑
i=1

{
ln

(
σpi
σqi

)
+

(µpi − µ
q
i )

2 + (σqi )
2

2(σpi )2
− 1

2

}
(6)342

The parameters of the model, including an adaptive variable a introduced in the following section, are343
optimized using BPTT. To perform error-regression explained in section 2.4, an encoder was also trained344
separately.345

2.4 Error-regression with shifting window346

Ahmadi and Tani (2019) proposed a scheme, the error-regression (ER) with shifting window to test the347
trained model in a way that is consistent with concepts of predictive coding and active inference. In this348
scheme, the trained network attempts to predict sensory inputs in the next time step while inferring the349
posterior in the immediate past window of a fixed length, using the reconstruction error in the window. The350
window is referred to as the ER window in the following. It is essential to note that ER for maximizing the351
evidence lower bound is conducted by iterating two processes of forward computation (Figure 2 (A)) and352
posterior update (Figure 2 (B)) for specific times at each sensory sampling time step.353

PV-RNN has unique variables a that facilitate updating the posterior. a is time step-specific and has354
the same dimension as z in each PV-RNN layer. In other words, when a PV-RNN layer with z with its355
dimensionality n tries to infer the posterior for the last T time steps inside the ER window, the PV-RNN356
layer has n × T a valuables and updates them to modify the representation of the posterior. A detailed357
computation scheme of the posterior using the adaptive variable a is found in section 2.5. Importantly, in358
ER, weights and biases of the network are fixed, and only the adaptive variables a are updated.359
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Let us consider an example of error-regression in which the length of the ER window is two time steps,360
and the network has two layers, as shown in Figure 2. Figure 2 (A) illustrates the forward computation361
at time step t to infer the posterior. In the forward computation, the network computes the conditional362
prior, p(zt−1|dt−2) and p(zt|dt−1), and the posterior, q(zt−1|dt−2, et−1:t) and q(zt|dt−1, et) in each363
layer, and generates the prediction with sampling from the posterior distribution inside the window. Then,364
the reconstruction error et−1 and et, and the KL divergence between respective pairs of the conditional365
prior and posterior are computed.366

Based on the reconstruction error and KL divergence, the inferred posterior is updated to maximize the367
evidence lower bound. Figure 2 (B) illustrates how the reconstruction error is back-propagated through368
variables and layers to a, which is responsible for updating the posterior. Using the updated posterior, the369
network again performs the forward computation. It should be noted that since the q(zt−1|dt−2, et−1:t) has370
been updated, dt−1 is different from the one before the update; thus, p(z|dt−1) is also changed through the371
posterior update. The reconstruction error and the KL divergence are further computed, and the posterior is372
updated. This iterative process of forward computation and posterior update is repeated a fixed number373
of times to optimize the approximate posterior for maximizing the evidence lower bound computed with374
given meta-prior values.375

After finishing all iterations, the network generates a new sensory prediction xt+1 with a conditional376
prior using the inferred posterior inside the ER window. Then the ER window shifts one time step and the377
next target sensation xt+1 is sampled, and the forward computation and the posterior update are reiterated378
at time step t+ 1. In the proposed model, the ER is performed for both visual sensation and proprioception379
simultaneously, and this scheme of using ER with a shifting window was used to test an imitative interaction380
after training the entire network, as will be described later.381

Figure 2: A graphical representation of error-regression with a shifting window. The gray area represents
the ER window. Black arrows indicate forward computations. Red arrows indicate how reconstruction
errors are propagated to a inside the ER window by BPTT. (A) illustrates the information flow of forward
computation at time step t. (B) shows the update of the posterior inside the ER window at time step t. (C)
shows the window shifting to time step t+ 1.
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2.5 Model implementation382

The proposed model for the imitative interaction via visuo-proprioceptive sensation consists of three383
modules: an associative module, a proprioception module, and a vision module. This subsection describes384
a detailed computation scheme in each module.385

2.5.1 The associative module386
The associative module is comprised of a PV-RNN. Since we adopted an MTRNN computation scheme387

in PV-RNN, its computations are as follows.388

ua,lt =

{
W a,ll

dd d
a,l
t−1 +W a,ll

dz z
a,l
t + ba,l if top layer (7)

W a,ll
dd d

a,l
t−1 +W a,ll+1

dd da,l+1
t +W a,l

dz z
a,l
t + ba,l otherwise (8)

389

ha,lt =

(
1− 1

τa,l

)
ha,lt−1 +

1

τa,l
utl (9)390

da,lt = tanh
(
ha,lt

)
(10)391

where ua,lt is the sum of inputs to lth layer of the associative module. W a,ll
dd , W a,ll

dz , and W a,ll+1
dd are392

weight matrices for recurrent connections, the stochastic variable z, and the input from the higher layer,393
respectively. ba,l is the bias in the lth layer in the associative module, and τa,l is the time constant for394
MTRNN computation in the lth layer of the associative module. tanh is the activation function. The395
stochastic variable z is assumed to follow a multivariate Gaussian distribution with a diagonal covariant396
matrix, and the deterministic variable d predicts mean µ and variance σ of the distribution. That is, for397
computation of the prior,398

p(zp,a,lt ) =

{
N (zu; 0, I) if t=1 (11)

p(zp,a,lt |da,lt−1) = N (zp,a,lt ;µp,a,lt ,σp,a,lt ) otherwise (12)

399

µp,a,lt = tanh(W a,l
µdd

a,l
t−1 + ba,lµ ) (13)400

σp,a,lt = exp(W a,l
σdd

a,l
t−1 + ba,lσ ) (14)401

zp,a,lt = µp,a,lt + σp,a,lt ∗ ε (15)402

where µp,a,lt and σp,a,lt are the mean and variance for the prior distribution of zp,a,lt at time step t in lth403

layer in the associative module. W a,l
µd and W a,l

σd are the weight matrices for da,lt−1. ba,lµ and ba,lσ are the404
biases for each computation. tanh in computation of mean is used for stability of optimization, and exp in405
σ is for variance to be positive. ε is sampled from N (0, I). To approximate the posterior, PV-RNN has406
adaptive variables a that are specific to time step and sequence. a is optimized during learning with the407
prediction error via BPTT. By considering a, the computations of posterior are408

q(zq,a,lt |da,lt−1, e
p
t:T , e

v
t:T ) = N (zq,a,lt ;µq,a,lt ,σq,a,lt ) (16)409

µq,a,lt = tanh(W a,l
µdd

a,l
t−1 + aa,lµ,t + ba,lµ ) (17)410

σq,a,lt = exp(W a,l
σdd

a,l
t−1 + aa,lσ,t + ba,lσ ) (18)411

zq,a,lt = µq,a,lt + σq,a,lt ∗ ε (19)412
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where µq,a,lt and σq,a,lt are mean and variance for the posterior distribution of zq,a,lt at time step t in lth413
layer in the associative module. Note that the weight matrices for d are different from those used to414
compute the prior. In addition, unlike the peripheral sensory modules of proprioception and vision, the415
associative module does not predict the sensory output directly, but rather predicts the latent representation416
of visuo-proprioceptive sequences. Therefore, the weights and biases, as well as the adaptive variable a of417
the associative module are not optimized instantly from the reconstruction error of the sensory outcomes,418
but from the error signals mediated through each sensory module.419

2.5.2 The proprioception module420
Proprioceptive patterns are directly generated from the PV-RNN. The highest layer in the proprioception421

module receives the input from the lowest layer in the associative layer, and its computations are422

up,lt =

{
W pa

ddd
a,1
t +W p,ll

dd d
p,l
t−1 +W p,l

dzz
p,l
t + bp,l if top layer (20)

W p,ll
dd d

p,l
t−1 +W p,l

dzz
p,l
t + bp,l otherwise (21)

423

hp,lt =

(
1− 1

τp,l

)
hp,lt−1 +

1

τp,l
up,lt (22)424

dp,lt = tanh
(
hp,lt

)
(23)425

A proprioceptive pattern at time step t, pt, is generated from the lowest layer of the proprioception module.426

pt = tanh
(
W pdp,1t + bp

)
(24)427

2.5.3 The vision module428
For the vision module, a scheme to reduce the computation time is introduced. As described in section 2.4429

above, in the proposed imitative interaction scheme, the network is required to infer the posterior for the430
immediate past at every sensory sampling time step by repeating forward computation and BPTT, which431
demands intensive computation. Nevertheless, our model is expected to work in actual robots in real-time in432
the future, which necessitates reducing the model’s computational complexity. To reduce the computational433
demand in the posterior inference in visual perception, we consider a composite network combining a434
dynamic PV-RNN and static CNNs for decoding and encoding pixel patterns, instead of introducing full435
recurrent connections in this module. In this composite network, when generating predictive output for436
the visual input, the PV-RNN part predicts the latent state representation with a relatively low dimension,437
which is fed to a CNN decoder to generate the corresponding visual pixel image. On the other hand, when438
receiving the visual input, it is transformed to the latent state representation by a CNN encoder. Then, the439
prediction error can be computed as the discrepancy in the latent state with a low dimension rather than at440
the pixel level with high dimension. This reduces the computational burden significantly for conducting the441
BPTT to infer the posterior during imitative interaction. As in the proprioception module, the highest layer442
of the vision module receives input from the lowest layer of the associative layer, and its computations are443

uv,lt =

{
W va

ddd
a,1
t +W v,ll

dd d
p,l
t−1 +W v,l

dz z
v,l
t + bv,l if top layer (25)

W v,ll
dd d

v,l
t−1 +W v,l

zdz
v,l
t + bv,l otherwise (26)
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444

hv,lt =

(
1− 1

τv,l

)
hv,lt−1 +

1

τv,l
uv,lt (27)445

dv,lt = tanh
(
hv,lt

)
(28)446

Then the lowest layer of the PV-RNN predicts the latent state lt at time step t, and the visual pattern vt is447
generated by the decoder.448

lt = tanh
(
W ldv,1t + bl

)
(29)449

vt = decoder(lt) (30)450

In the imitative interaction, the target of latent dynamics l̄t of visual patterns v̄t at time step t is computed451
by the encoder.452

l̄t = encoder(v̄t) (31)453

To improve the generalization capability of the encoder and decoder, CoordConv architecture(Liu et al.,454
2018) was introduced.455

3 EXPERIMENTS
3.1 Experimental design456

Using the proposed model, imitative interaction experiments considering human-robot interactions were457
conducted. Although human-robot interactions ought to be studied in an online fashion to reflect human458
behavior in response to robot actions, because of the intensive computation required in the error regression459
scheme, we could not conduct such experiments online. Therefore, the current study examined only460
the dynamic response of the model network using recorded sequences of visuo-proprioceptive patterns.461
Therefore, data containing human-demonstrated movement patterns in terms of visuo-proprioceptive462
sequences were collected both for training the network and for later testing of pseudo-synchronized463
imitative interaction. After training, the model was tested for pseudo-imitative interaction using novel464
visuo-proprioceptive patterns with two different scenarios (Experiment 1 and Experiment 2).465

Experiment 1 investigated the issue of coordination and integration of different modalities of sensation466
by changing the tightness used to regulate the complexity term for each sensory module. For this purpose,467
the network was trained by assigning different values of the meta-prior to the proprioception and vision468
modules. We examined the different effects of regulating complexity in the two modules on coordination of469
different modalities by analyzing them in both the learning process and in the pseudo-imitative interaction470
tested after learning.471

Experiment 2 investigated the issue of strength of agency as the main motivation of the current study by472
changing the tightness used to regulate the complexity term for the entire network from that introduced in473
the training phase. Accordingly, we selected a network trained and evaluated as successful in Experiment 1474
and then the characteristics of the pseudo-imitative interaction were examined by equally adjusting the475
meta-priors of each module of this trained network to larger or smaller values.476

In subsequent experiments, some parameters that determine network structure were set as follows. The477
associative module consisted of a one-layer PV-RNN, and the proprioception module and the vision module478
consisted of two layers. These PV-RNN layers were characterized by a time scale imposed on MTRNN479
computation. That is, the higher layer had a larger time constant, producing slow time-scale dynamics,480
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and the lower layer had smaller time constants, generating fast time-scale dynamics. Therefore, in this481
study, the higher layer of the proprioception module and the vision module, which receive input from the482
associative module, are referred to as the slow layer, and the lower layer is referred to as the fast layer. As483
described in section 2.5.3, the visual perception of the model involves an encoder and a decoder. Their484
architectures are summarized in Table 1.485

Layer Kernel size Stride Filter Activation

Encoder

Conv 33×33 1 5 ReLu
Conv 17×17 1 15 ReLu
Conv 16×16 1 30 tanh

Decoder

Conv transpose 16×16 1 15 ReLu
Conv transpose 17×17 1 5 ReLu
Conv transpose 33×33 1 1 tanh

Table 1: The architecture of the encoder and the decoder.

3.2 Data preparation486

To obtain a dataset of synchronized visuo-proprioceptive sequences, we used a humanoid robot, Torobo487
(Tokyo Robotics Inc.) and a motion capture suit (Perception Neuron, Noitom Ltd.). Torobo is a human-488
sized, torso-type humanoid robot with 16 joint-angles, of which 6 are for each arm and 4 are for the torso489
and head positions. Human body movements can be mapped to joint-angle trajectories of the robot using490
the motion capture suit. A human experimenter wearing the suit demonstrated a set of body movements,491
which were mapped as joint-angle trajectories. This demonstration was also recorded with a camera492
to obtain corresponding visual patterns. The target sequential movement pattern to be learned by the493
robot was designed by considering a probabilistic finite state machine that can generate probabilistic494
sequences of three different primitive movement patterns. Those were (A) waving with both arms three495
times, (B) rotating the torso to the left with the arms three times, and (C) rotating the torso to the right496
with the arms three times. Primitive pattern A is followed either by primitive pattern B or primitive497
pattern C with a 50% chance, and primitive patterns B and C are followed by pattern A with a 100%498
chance (Figure 3 (A)). One sequence consists of 8 probabilistic transitions of primitive movements. Three499
human participants demonstrated and recorded 10 movement sequences each. In other words, the dataset500
comprised 30 sequences of visuo-proprioceptive temporal patterns. Recorded visuo-proprioceptive patterns501
were down-sampled to 3.75 Hz so that one sequence became 400 time steps. Joint-angle trajectories were502
normalized to a range between −1 and 1. Vision patterns were further converted into gray scale images and503
down-sized to 64× 64 pixels (Figure 3 (B)). A summary of the training data is shown in Table 2. Visual504
trajectories fluctuated far more than proprioceptive trajectories due to various optical conditions, such as505
illumination and surface reflectiveness.506
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Dimension time step Participants Total sequences

Proprioception 16 400 3 30Vision 64×64

Table 2: A summary of the training data.

Figure 3: Training data. (A) A diagram of the probabilistic finite state machine. (B) An example of the
training dataset. The top row is part of a joint-angle trajectory. The corresponding labels of primitive
patterns (A, B, and C) are indicated above the plots. For simplicity, only 4 joint-angles out of 16 representing
the movements are shown. The middle row shows corresponding visual pixel images in each period. The
bottom row shows visual trajectories in the latent space embedded by the encoder. For simplicity, only
three variables out of 20 are shown.

Using the training example, the model is required to extract a probabilistic structure such that the primitive507
pattern of B or C appears with only a 50% chance after every appearance of the primitive A, by estimating508
precision in transitions of primitives with learning. Such learning should be achieved without providing509
explicit labels for those primitives, by extracting the underlying chunking and segmentation structure from510
continuous sensory signals prepared in the dataset. The PV-RNN can achieve such tasks using a multiple511
timescale RNN scheme combined with a Bayesian inference approach (Ahmadi and Tani, 2019).512

3.3 Experiment 1: Training with different meta-priors in different modalities513

This experiment investigates effects of changing the tightness used to regulate the complexity term for514
each sensory module with regard to coordination and integration of different modalities of sensation. In515
addition, this experiment provides successfully trained networks with well-balanced complexity between516
the vision and proprioceptive modules for possible use in Experiment 2. To accomplish this, we examined517
how assigning different values of the meta-prior to the proprioception and vision modules affects the518
learning process and performance in the pseudo-imitative interaction. Two sets of meta-priors w1 and519
w2 were assigned to the model (Table 3). w1 has larger values of the meta-prior in the proprioception520
module than in the vision module, and they were exchanged in w2. Both w1 and w2 have the same value521
for the meta-prior in the associative module. First, the model was trained with the w1 and w2 settings,522
and the learning process was examined, with special attention to each component of the lower bound. To523
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Rd Rz τ w1 setting w2 setting
wl wl1 wl wl1

Assoc. module 10 1 15 0.0025 0.01 0.0025 0.01
Prop. slow layer 20 2 8 0.005 0.01 0.0025 0.05
Prop. fast layer 30 3 2 0.01 0.01 0.005 0.05
Vision slow layer 20 2 8 0.0025 0.05 0.005 0.01
Vision fast layer 30 3 2 0.005 0.05 0.01 0.01

Table 3: The model configuration in Experiment 1. Rd and Rz are the dimensions of d and z, respectively.
τ is the time constant of the MTRNN computation in each layer.

facilitate training, the Adam optimizer (Kingma and Ba, 2014) was utilized with the parameter settings524
α = 0.001, β1 = 0.9, and β2 = 0.999. The model was trained 10 times with different random initializations525
of model parameters for 10,000 epochs, and the mean and standard deviation of the prediction errors of526
proprioception and vision, and the KL divergence of each layer of the model at each epoch were computed.527

Results are summarized in Figure 4. In comparing w1 and w2 conditions, even though the prediction528
errors in the proprioception and vision modules showed similar behavior (Figure 4 (A), (B)), the KL529
divergence in each module was optimized differently. Despite different values of the meta-prior assigned to530
the fast layer of the proprioception module, its KL divergences in w1 and w2 conditions were reduced in531
exactly the same way (Figure 4 (E)). This is not the case in the fast layer of the vision module (Figure 4 (G)).532
The KL divergence in the slow layer of the proproception module and the slow layer of the vision module533
showed different values in w1 and w2 settings (Figure 4 (D),(F)). Interestingly, although the associative534
module was set to the same value of meta-prior in w1 and w2 conditions, the KL divergence in the w2535
setting reached a larger value than in the w1 setting. This is because the larger value of the meta-prior536
assigned to the fast layer of the vision module in the w2 condition prevented the vision module from537
absorbing the fluctuation in observed visual patterns, which resulted in bottom-up fluctuation from the538
vision module to the associative module, appearing as a discrepancy between the prior and the posterior in539
this module. Because visual sensation contains more inherent randomness than proprioceptive sensation,540
as mentioned previously, complexity in this modality should be adequately regulated by setting a smaller541
meta-prior value. Otherwise, the discrepancy that appears in the visual module tends to leap to the higher542
associative module without being well resolved before.543

We further tested the trained models in the pseudo-imitative interaction. Training of the models stopped544
after 4,000 epochs. Three novel visuo-proprioceptive sequences recorded from three human participants545
were prepared for the pseudo-imitative interaction, which also comprised the previous primitive body546
movements A, B, and C, the lengths of which were 400 time steps. The length of the ER window was set547
to 30 time steps, and the number of optimization iterations for posterior inference by BPTT at each time548
step was 30. Namely, at each sensory sampling time step, the network infers the posterior distribution of z549
responsible for reconstructing the observation inside the ER window, in which the cycle of the forward550
computation and the posterior update described in section 2.4 repeats 30 times. As in learning, Adam was551
used to improve optimization with parameter settings α = 0.2, β1 = 0.9, and β2 = 0.999. Evaluation of552
the error-regression examined how much the reconstruction error in each modality and the KL divergence553
at each sub-network in the PV-RNN were minimized. That is, at the point when T ′ time step window for554
the immediate past shifts t time steps, i.e., the current time step is t, the adaptive variable a assigned within555
the window is optimized with the iterative process, and at the last iteration, the reconstruction error and the556
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Figure 4: The learning process of the model with two different meta-prior settings. (A) The prediction error
in proprioception. (B) The prediction error in vision. (C) The KL divergence in the associative module. (D)
The KL divergence in the slow layer of the proprioception module. (E) The KL divergence in the fast layer
of the proprioception module. (F) The KL divergence in the slow layer of the vision module. (G) The KL
divergence in the fast layer of the vision module. The shadows are the standard deviation of 10 trials with
different parameter initializations. Note that values of prediction errors are the sum of the prediction errors
at all time steps and sequences normalized by the data dimension.

KL divergence are computed inside the window. Therefore, they are defined as557

Proprioception error :=
1

T

T∑
t=1

1

T ′

T ′∑
t′=1

1

Rp
‖pt′ − p̄t′‖2 (32)558

Vision error :=
1

T

T∑
t=1

1

T ′

T ′∑
t′=1

1

Rl
‖lt′ − l̄t′‖2 (33)559

KLD :=
1

T

T∑
t=1

1

T ′

T ′∑
t′=1

1

Rz
DKL[q(zt′ |dt′−1, et′:T )‖p(zt′ |dt′−1)] (34)560

where t′ is the time step inside the window. Rp and Rl are the dimension of proprioception and the latent561
space of vision, respectively. Rz is the dimension of z, and the KL divergence is computed for every562
PV-RNN submodule. Models trained in previous experiments were used. The pseudo-imitative interaction563
experiment was run 10 times with different random number seeds, and the mean and standard deviation of564
each quantity were computed. In addition, one-step, look-ahead prediction error, the discrepancy between565
the prediction in the next time step of the current window and the observation, was computed in the vision566
module to evaluate prediction accuracy.567

Figure 5 exemplifies how the pseudo-imitative interaction developed in the w1 setting in time-lapse. For568
clarity, only parts involving the proprioceptive interaction are shown. Each column shows the representation569
of the network when the network finished a posterior inference and made a new prediction at each time570
step. The first, second, and third row show representations in the associative module, the slow layer in the571
proprioception module and the fast layer in the proprioception module, respectively. Solid lines indicate572
the activity of three randomly chosen d neurons, and dashed lines indicate the KL divergence value at each573
time step in each layer. The fourth row shows joint-angle trajectories. Solid lines are predictions generated574
by the network, and dashed lines are joint-angle values demonstrated by the human counterpart in the575
recorded data. The bottom row shows the reconstruction error, inside the ER window, which was minimized576
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by updating a via BPTT under regularization by the KL divergence between the inferred posterior and the577
conditional prior. In section 2.4, describing the error-regression scheme, the network is illustrated in a way578
that it only makes the prediction at next time step during the interaction. In this experiment, however, the579
network was allowed to generate the prediction not only at next time step, but also at subsequent time steps580
with the conditional prior to visualize the network’s long-term prediction. This is also the case in Figure 8.581

At each time step, the network receives a new sensation, computes the reconstruction error and the KL582
divergence within the ER window, updates the a such that the lower bound inside the ER window is583
maximized, and modifies the prediction after the current time step with the conditional prior. In Figure584
5, the network continually modified the future prediction as a result of the posterior inference. Since the585
lower bound summed over time steps inside the ER window is maximized, all as inside the ER window586
are updated so that the sum of the reconstruction error and the KL divergence weighted by the meta-prior587
inside the ER window are minimized. Therefore, it is often observed that the value of the reconstruction588
error or the KL divergence at a certain time step inside the ER window becomes larger at the next time589
step, which is considered a transient process in the optimization wherein the past is re-interpreted and590
re-represented in coping with a new entering sensation, in terms of post-diction (Shimojo, 2014). In the w1591
setting, larger values of the meta-prior are assigned to lower layers of the network and smaller to higher.592
In other words, KL divergences in lower layers are weighted more in the lower bound, and while those593
in higher layers are weighted less. Therefore, KL divergences in lower layers were reduced more, and594
those in higher layers remained larger after iterative optimization. Owing to MTRNN characteristics of595
different time-scales among layers, higher layers showed slower dynamics and lower layers showed faster596
dynamics. It is assumed that higher levels predict switching of primitives and lower levels predict sensory597
profile changes at each time step. Detailed analysis of this issue was not conducted in the current study598
since similar phenomena using MTRNN have been reported frequently (e.g. Yamashita and Tani (2008);599
Hwang et al. (2020)).600

Figure 5: An example of the network representation during testing in w1 setting. Gray areas indicate the ER
window. The first, second, and third rows show representations in the associative module, the slow layer
in the proprioception module, and the fast layer in the proprioception module, respectively. Solid lines
represent activities of three randomly chosen d neurons, and dashed lines represent the value of the KL
divergence at each time step. The 4th row shows predictions (solid lines) and sensations (dashed lines) of
joint-angles. For clarity, only four joint-angles of 16 are shown. The bottom row shows the reconstruction
error in proprioception.

Experimental results are summarized in Table 4. The reconstruction error in proprioception was601
remarkably minimized compared to that in vision, in both conditions w1 and w2. This is because vision602
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involves more noise than proprioception. The reconstruction error in vision was smaller for the w1603
condition than the w2 condition. Furthermore, the KL divergence in the associative module was reduced604
more significantly in the w1 condition than the w2 condition. This occurred because the vision module605
generalized better with noisy visual patterns in the test of pseudo-imitative interaction in the w1 case than606
in the w2 case by minimizing the complexity term more. Because fluctuation or randomness in visual607
sensation was well resolved in the vision module in the w1 case, the associative module became relatively608
free from such fluctuation, as evidenced by the smaller KL divergence observed in the associative module.609
As a result, the one-step, look-ahead prediction was also more accurate.610

Proprioception Vision Associative Proprioception
reconstruction error reconstruction error KLD slow KLD

w1 0.017± 9.5× 10−4 0.12± 6.9× 10−3 2.0± 0.091 1.6± 0.12
w2 0.011± 2.9× 10−4 0.19± 1.5× 10−2 3.2± 0.15 2.6± 0.11

Proprioception Vision Vision Vision one-step
fast KLD slow KLD fast KLD prediction error

w1 0.57± 0.040 8.1± 0.17 0.50± 0.048 0.20± 0.0097
w2 0.57± 0.041 1.9± 0.071 0.54± 0.048 0.24± 0.017

Table 4: The result of the pseudo-imitative interaction experiment. The errors are the standard deviation of
10 different trials with different random number seeds.

3.4 Experiment 2: Imitation with stronger and weaker agency611

This experiment was devised to reveal possible effects of changing the tightness used to regulate612
the complexity term for the entire network on the strength of agency exerted in imitative interaction.613
Accordingly, we investigated how changes of meta-prior values of the entire network from default values614
used in learning affect performance characteristics in the pseudo-imitative interaction. We used a network615
that was trained for 4,000 epochs in Experiment 1 with thew1 setting as the default network. Five meta-prior616
settings were prepared for testing of imitative interaction: from smaller values of the meta-prior setting W1617
to the larger settingW5 with a consistent ratio among all layers of all modules (Table 5). Imitative interaction618
with different meta-prior settings was performed with the novel visuo-proprioceptive patterns used in619
Experiment 1. Interactions were analyzed in terms of the quantities introduced in previous experiments.620
In addition, one-step look-ahead prediction error in proprioception was also measured. Each test with621
a different meta-prior setting was repeated with 10 network models trained with different initialization622
weights, but with the same parameters for the purpose of examining these quantities statistically.623

W1 W2 W3 W4 W5

Associative module 2.5× 10−5 2.5× 10−4 2.5× 10−3 2.5× 10−2 2.5× 10−1

Proprioception slow layer 5.0× 10−5 5.0× 10−4 5.0× 10−3 5.0× 10−2 5.0× 10−1

Proprioception fast layer 1.0× 10−4 1.0× 10−3 1.0× 10−2 1.0× 10−1 1.0
Vision slow layer 2.5× 10−5 2.5× 10−4 2.5× 10−3 2.5× 10−2 2.5× 10−1

Vision fast layer 5.0× 10−5 5.0× 10−4 5.0× 10−3 5.0× 10−2 5.0× 10−1

Table 5: The values of meta-prior in Experiment 2.
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Results are summarized in Figure 6. As a whole, with smaller values of the meta-prior, the reconstruction624
error was minimized more (Figure 6(A)), and the KL divergence remained large (Figure 6(D)), whereas625
with larger values of the meta-prior, the KL divergence was minimized more (Figure 6(D)), and the626
reconstruction error remained large (Figure6(A)). This tendency can also be seen in the local proprioception627
module and vision module, although the reconstruction error in the vision module was not significantly628
different. In the proprioception module, as values of the meta-prior increased, the reconstruction error in629
proprioception became large (Figure 6(B)), and the KL divergence became small, both in the slow layer630
(Figure 6(F)) and in the fast layer (Figure 6(G)). In the vision module, as values of the meta-prior increased,631
though the reconstruction error in vision did not increase as significantly (Figure 6(C), the KL divergence632
became small in both the slow layer (Figure 6(H)) and the fast layer (Figure 6(I)). The KL divergence633
in the associative module also increased as values of the meta-prior increased (Figure 6(E)). In addition,634
with smaller values of the meta-prior, the one-step, look-ahead prediction error was minimized in both635
proprioception (Figure 6(J)) and in vision (Figure 6(K)).636

This is because the KL divergence term in the evidence lower bound was weighted more for minimization637
than was the reconstruction error term. In this situation, the posterior q(zt|dt−1, et:T ′) at each time step in638
the ER window approached its prior p(zt|dt−1) by modulating the adaptive value at, which is fed into639
the computation of the posterior q(z|dt−1, et:T ′), while the prior p(zt|dt−1) was less changed. This means640
that network dynamics were driven mainly by the prior, and were less affected by sensory inputs. Network641
dynamics become more egocentric by following the prior, which was less modified by looser regulation of642
the complexity term (i.e., more weighting for the KL divergence term). On the other hand, with tighter643
regulation (i.e., less weighting of the KL divergence term), network dynamics became more adaptive644
to changes or fluctuations of sensory inputs by freely modulating the posterior in the direction of error645
minimization without being much constrained by the prior. In this condition, the prior p(zt|dt−1) at each646
time step in the window also changes because the posterior q(zt−1|dt−2) at the previous time step, which647
is mapped to p(zt|dt−1) through dt also changes.648

In the course of pseudo-imitative interaction, when the network observes a single time step of a new649
sensation, it infers sequences of the posterior inside the ER window with the aforementioned iterative650
computation of the error regression. Figure 7 displays some examples of the posterior inference during the651
process in which tight regulation of the complexity term (W1 setting) (Figure 7 (A)) and loose regulation of652
the complexity term (W5 setting) (Figure 7 (B)) are compared. For clarity, part of the network responsible653
for proprioception is shown. The columns illustrate, given a single time step of sensory observation, how654
the network inferred the posterior in terms of parameters of the posterior distribution, mean µ, and variance655
σ of multivariate Gaussian distributions under the effect of different values of the meta-prior through656
iterations. From the left, each column shows network dynamics before the inference, after 5th, 10th, 15th,657
20th, 25th, and 30th iteration of the update of adaptive variable a inside the ER window with BPTT. The658
first, third, and fifth rows plot the relationship among the mean of the prior µp (blue lines), the mean of the659
inferred posterior µq (red lines), and the KL divergence (dashed black lines) in the associative module, in660
the slow and fast layers of the proprioception module, respectively. The second, fourth, and sixth rows plot661
the variance of the prior σp (blue lines), the variance of the inferred posterior σq (red lines), and the KL662
divergence (dashed black lines) in the associative module, in the slow and fast layers of the proprioception663
module, respectively. Although dimensions of z in the fast layer and in the slow layer of the proprioception664
module are greater than one, only one dimension is plotted for visibility.665

In W1 setting, the network is assigned smaller values of the meta-prior, which means that the complexity666
term is tightly regulated. Therefore, during the course of posterior inference, the inferred posterior is667
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Figure 6: Reconstruction error, KL divergence minimization, and one-step, look-ahead prediction error
in error-regression with five meta-prior settings. (A) Sum of reconstruction errors in proprioception and
vision. (B) The reconstruction error in proprioception. (C) The reconstruction error in vision. (D) Sum of
the KL divergence in all layers. (E) The KL divergence in the associative module. (F) The KL divergence in
the slow layer of the proprioception module. (G) The KL divergence in the fast layer of the proprioception
module. (H) The KL divergence in the slow layer of the vision module. (I) The KL divergence of the
fast layer of the vision module. (J) One-step, look-ahead prediction error in proprioception. (K) One-step,
look-ahead prediction error in vision. Error bars represent the standard deviation of 10 models with
different weight initialization. Asterisks represent the statistical significance in t-tests: ∗ for p < 0.05, ∗∗
for p < 0.01, and ∗ ∗ ∗ for p < 0.001. Note that each graph has a different scale.

allowed to deviate somewhat from the prior to minimize the reconstruction error compared to the W5668
setting with looser regulation. This can be seen in Figure 7 (A). In the leftmost column, the network669
encountered a large reconstruction error in the last time step inside the ER window. This reconstruction670
error was eventually resolved while updating the posterior repeatedly as a result of distributing the KL671
divergence over the entire network in consideration of values of the meta-prior assigned to each layer.672
In the W1 setting, the associative module had the smallest value of the meta-prior, the slow layer of the673
proprioception module had one with a moderate value, and the fast layer of the proprioception module had674
the largest value of the meta-prior. Thus, the largest discrepancy between the inferred posterior and the prior675
was allowed in the associative module and the smallest discrepancy in the fast layer of the proprioception676
module. This can be confirmed by comparing the posterior, the prior, and the value of KL divergence in677
each layer in Figure 7 (A).678

In contrast, in theW5 setting, the complexity term is loosely regulated with larger values of the meta-prior,679
which forces the network to keep the KL divergence small during the posterior inference. This can be680
observed in Figure 7 (B). During the iteration, the value of the KL divergence was strongly suppressed, and681
as a result, the reconstruction error remained large even after the posterior update. Compared to Figure 7682
(A), the posterior was inferred so that it was closer to the prior (red lines are closer to blue lines).683
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Figure 7: An example of the posterior inference during the pseudo imitative interaction in the W1 setting
(A) and in the W5 setting (B). For clarity, only those parts involved in the proprioception module are
shown. From the left, each column represents the network representation inside the ER window before the
inference, after every 5th iteration up to the 30th iteration of the posterior inference. The first, third, and
fifth rows show time trajectories of the mean µ of the z in the associative module, the slow layer of the
propriception module, and the fast layer of the proprioception module, respectively. The blue and red lines
represent the prior µp and the inferred posterior µq, respectively. The second, fourth, and sixth rows show
the time trajectories of variance σ of z in the associative module, the slow layer of the proprioception
module, and the fast layer of the proprioception module, respectively. The blue and red lines indicate
the prior σp and the inferred posterior σq, respectively. Dashed black lines indicate values of the KL
divergence in each layer. The bottom row shows the reconstruction error at corresponding time steps.

Figure 8 (A) and (B) show examples of time-series plots of related neural activities of the proprioception684
module, comparing cases of tight (W1 setting) and loose (W5 setting) regulation of the complexity term.685
Both cases are computed for a situation observing the same visuo-proprioceptive sequence pattern. With686
tight regulation of the complexity term (Figure 8 (A) top), the observation of the primitive A (dashed lines)687
was well reconstructed (solid lines) inside the ER window (gray area) from time steps 120 to 150, due to688
relatively stronger weighting of the accuracy term compared to the W5 setting. Plots after time step 150689
represent future predictions of the expectation of encountering the primitive B. From time steps 150 to690
180 (Figure 8 (A) bottom), the agent observed new sensory information where the primitive C instead of691
the predicted primitive of B was encountered. (Remember that there is a 50% chance of encountering the692
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primitive B or the primitive C.) This new observation was reconstructed inside the ER window. Based on693
the inferred posterior during this period, the robot updated the future prediction after time step 180 as the694
primitive C to be continued. Because of relatively stronger weighting in the accuracy term, the posterior695
was inferred to adapt to reality. The prediction was also updated accordingly (Figure 8 (A) bottom).696

In the case of loose regulation (Figure 8 (B) top), the observation was still well reconstructed inside697
the ER window. This is because primitive pattern A always follows either primitive pattern B or C so698
that it is easy to predict primitive A. Therefore, the reconstruction error inside the ER window was small699
from the beginning. Plots after time step 150 represent future predictions expecting primitive pattern B700
to be encountered. After observing new sensory information in which primitive pattern C instead of the701
predicted primitive pattern B was encountered between time steps 150 and 180 (Figure 8 (B) bottom);702
however, the new observation was not reconstructed well inside the ER window. Due to tight regulation of703
the KL divergence term (loose regulation of the complexity term), the posterior was forced closer to the704
prior by ignoring the new observation. Consequently, the inferred posterior did not affect the prior as much705
as in the W1 setting, which resulted in generation of consistent predictions for the future. Actually, the706
look-ahead prediction made at time step 150, shown in the top row, and the one made at time step 180 in707
the bottom row are almost the same. These observations imply that both the prediction of the future and the708
reflection of the past become more adaptive to sensory observation in the case of tighter regulation of the709
complexity term, whereas they become more persistent regardless of sensory observations in the case of710
looser regulation.711

Figure 8: An example of time-series plots of neural activities in the output layer of the proprioception
module in theW1 setting (A) and in theW5 setting (B). Reconstruction of the past observation and the future
prediction at time step 150 (top) and at time step 180 (bottom) are shown. Solid lines represent prediction
outputs, and dashed lines represent observations. The shadowed area indicates the error-regression window.
For simplicity, only 4 of 16 joint-angles representing movements are shown.

Some representative videos related to Experiment 2 can be seen at video link A and at video link B712
for the W1 condition and the W5 condition, respectively. These videos show how prediction of the future713
as well as reflection of the past can be performed for each condition. Also, further temporal details714
during the error-regression process can be seen at video link C and at video link D for the W1 condition715
and the W5 condition, respectively. In these videos, there is some divergence between the prior and the716
posterior in terms of mean and variance and they are dynamically changing inside the ER-W in the W1717
condition, whereas these two profiles approximate each other, showing relatively persistent patterns in the718
W5 condition. These observations accord with our analysis, described previously.719
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4 DISCUSSION
The current study investigated underlying mechanism of the strength of agency in social interaction by720
proposing a model for imitative interaction using multimodal sensation based on the framework of PC and721
AIF. We proposed a hypothesis that tightness used to regulate the complexity term in the evidence lower722
bound in the proposed model should contribute to the strength of agency. This hypothesis was evaluated by723
conducting simulation experiments on a pseudo-human-robot imitative interaction using the model.724

First, we examined possible effects of changing the tightness used to regulate the complexity term for725
each sensory module during the learning phase in coordination and integration of different modalities726
of sensation and those in the test imitation phase. Our results showed that the complexity term in the727
vision module should be regulated more than that of the proprioception module. This is because vision728
and proprioception are significantly different with respect to their intrinsic randomness, as visual inputs729
fluctuate more due to optical conditions, such as illumination and surface reflectiveness. We concluded that730
the complexity term in the vision module should be regulated much more than that for the proprioception731
module to achieve better generalization in learning.732

Next, we investigated the strength of agency as the main focus of the current study by changing the733
tightness used to regulate the complexity term for the entire network relative to that which was introduced734
in the training phase. For this purpose, characteristics of pseudo-imitative interaction were examined by735
scaling the meta-prior of each module equally to larger or smaller values using the network that had been736
evaluated as successful in the previous experiment. Our results demonstrated that changing the meta-prior737
this way affects performance characteristics of imitative interaction significantly. With looser regulation of738
the complexity term, the agent tends to act more egocentrically, without adapting to the other. In contrast,739
with tighter regulation of the complexity term, the agent tends to follow its human counterpart by adapting740
its internal state. This result implies that the strength of SoA can be modulated by adjusting the tightness741
with which the complexity term is regulated after the learning phase.742

In the current study, we evaluated this hypothesis by considering a task of imitative interaction between a743
robot and a human counterpart. In such an imitative interaction, there could be two situations: the robot744
follows the human’s movements, or the human follows the robot’s movements. In our experimental results,745
the agent with tight regulation of the complexity term corresponded to the former case, and that with loose746
regulation to the latter. These findings could provide new insights into computational modeling studies of747
MNS. Our group’s previous studies (Ahmadi and Tani, 2017; Hwang et al., 2020) on modeling MNS using748
deterministic RNNs that were applied to robot imitation experiments, introduced a scheme similar to the749
ER scheme described in the current study, in the sense that both reinterpret past observations and update750
future predictions. In the model, deterministic latent variables at the onset time step of the immediate751
past window are updated by means of the ER scheme. Since these latent variables are not constrained by752
any prior probability distribution (unlike the sequential prior scheme), they adapt to sensory sequences753
encountered for minimizing the error directly wherein the speed of updating is simply determined by the754
adaptation rate to update the latent variables.755

On the other hand, in the case of the ER, which uses PV-RNN, the update of stochastic latent variables z756
at each time step inside the ER window are constrained by the sequential prior represented in terms of a757
Gaussian probability distribution. If the PV-RNN is developed more toward deterministic dynamics by758
setting the meta-prior with larger values, the sequential prior for each stochastic latent variable should759
have a peaky distribution with relatively small variance. In such a case, the approximate posterior cannot760
adapt to the sensory sequence by using the propagated error signal because the current prior is estimated761
with a strong belief. In contrast, if the PV-RNN is developed toward a more random process by setting the762
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meta-prior with smaller values, at each time step the prior should exhibit a wide distribution with large763
variance. Then, the posterior can easily adapt to the sensation using the error signal, because the current764
prior is estimated with a weak belief. Therefore, the PV-RNN can show both mirror neuron-type adaptive765
response and egocentric behavior, depending on the setting of the meta-prior in interactions among agents.766
The deterministic RNN models shown in Ahmadi and Tani (2017); Hwang et al. (2020), however, can only767
show mirror neuron-like adaptive responses.768

By following the above discussion, one essential advantage of using variational RNNs, such as PV-RNN,769
compared with conventional deterministic RNNs, is that they can predict not only future contents, but can770
also estimate predictability of such predictions or in other words, the credibility of prediction, as discussed771
in formulation of the free-energy princple (Friston, 2005). This sort of cognitive competency of second772
order prediction by means of representing the belief of prediction, by which the strength of agency can be773
mechanized, provides modeling of agents, including cognitive robots with more complexity and richness in774
ways of interacting with other agents, as well as the physical world, as the current study demonstrates, at775
least partially.776

In everyday social interactions, humans don’t just follow others, nor do they lead them all the time. Rather777
humans sometimes follow others and sometimes lead them, depending on the moment-by-moment context778
or social situation. Psychological studies indicate that turn-taking between following and leading can occur779
quite spontaneously in various social cognitive behaviors, including conversation (Sacks et al., 1978),780
mother-infant pre-verbal communication (Trevarthen, 1979) and imitation (Nadel, 2002). In considering781
possible mechanisms underlying turn-taking, some researchers (Ikegami and Iizuka, 2007; Ito and Tani,782
2004) suggest that turn-taking may develop due to potential instability, such as chaos formed in coupled783
dynamics between two agents in their modeling studies. We consider meta-level dynamics coupling two784
agents, whereby the value of the meta-prior to regulate the complexity terms in the two agents counteract785
one another mutually. This could result in autonomous shifts between the leading mode by increasing the786
meta-prior and the following mode by reducing it.787

Future studies should examine the aforementioned mechanism for turn-taking by conducting an online788
experiment of human-robot interactions. However, the computational cost of online error-regression for789
the posterior inference has been the major bottleneck for conducting such experiments in real time, and790
this is why the current study was limited to a simulation of pseudo-imitative interaction using recorded791
visuo-proprioceptive sequence patterns, rather than introducing actual, real-time, human-robot interaction.792
Although our group has shown that some real-time experiments using online ER are possible using only793
the sensory modality of proprioception (Chame and Tani, 2019), it becomes prohibitive when also using794
vision, with sufficient pixel resolution. Regarding this problem, some may suggest employing other types795
of variational models, such as a variational recurrent neural network (VRNN) (Chung et al., 2015), because796
a VRNN demands far less computation time, since the posterior at each time step can be inferred by simple797
sequential mapping of inputs using an autoencoder (Kingma et al., 2016). However, the current scheme for798
inference of the posterior through iterative computation for optimization is probably vital for any embodied799
cognitive systems that require rapid adaptation of internal states to the environment. Actually, Ahmadi and800
Tani (Ahmadi and Tani, 2019) showed that PV-RNN performs better than VRNN in online prediction in801
dynamically changing environments by inferring the posterior using the error-regression scheme. Therefore,802
future studies should explore possible methods for accelerating online error-regression of the model, such803
as by massive parallelization so as to conduct real-time, human-robot interactions using the current model.804
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