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Abstract

In the field of biologically inspired cognitive systems, time perception, a fun-
damental aspect of natural cognition is not sufficiently explored until now.
The majority of existing works ignore the importance of experiencing the flow
of time, and the implemented agents are rarely furnished with time process-
ing capacities. The current work aims at shedding light on this largely un-
explored issue, focusing on the perception of temporal duration. Specifically,
we investigate a rule switching task that consists of repeating trials with dy-
namic temporal lengths. An evolutionary process is employed to search for
neuronal mechanisms that accomplish the underlying task and self-organize
time-processing dynamics. Our repeated simulation experiments showed that
the capacity of perceiving duration biases the functionality of neural mecha-
nisms with other cognitive responsibilities and additionally that time percep-
tion and ordinary cognitive processes may share the same neural resources
in the cognitive system. The obtained results are related with previous brain
imaging studies on time perception, and they are used to formulate sugges-
tions for the cortical representation of time in biological agents.

Key words: 'Time Perception, Time Experience, Rule Switching,
Evolutionary Robotics, Wisconsin Card Sorting.

1. Introduction

Many of the human daily activities rely on our ability to perceive the flow
of time [1]. For example, we estimate how much time is left for our visitor to
come so that we schedule food preparation, or how our inability to drive fast
will cause a delay in the time of arrival to a planned destination. Besides
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humans, animal behaviors are also influenced by temporal computations [2],
rendering time perception a fundamental aspect of cognition.

The interpretation of the principles guiding the natural perceptuo-motor
loop into a computational context, is now a well established approach for de-
veloping Artificial Intelligence (AI) systems. Recent bio-inspired works in the
field of robotics emphasize the reciprocal coupling of the control mechanism
(i.e. of the central nervous system), the body of the agent, and the operating
environment in the development of intelligence [3]. These approaches are
usually referred to with the term new Al [4, 5], in order to contrast with the
good-old-fashion AI [6, 7] that aims at implementing universal mechanisms
of logical derivation, omitting the role that situatedness, embodiment, and
emergence have in in intelligence development [8]. Besides these shortcom-
ings, old-fashion Al has already from its early days understood that time is
fundamental aspect of cognition and there is a clear need for reasoning about
it. More than 50 years ago, Arthur Prior introduced the Tense Logic [9] that
gave rise to the recent time-dedicated calculus systems expressed in the form
of Temporal Logics [10, 11].

However, in new Al approaches, the importance of perceiving time is not
adequately appreciated yet. The majority of works that focus on embodied
intelligence concentrate only on the spatial characteristics of environmental
interaction, nearly ignoring the temporal aspects of cognition that are neces-
sary to accomplish meaningful perception of real world phenomena [12]. Due
to the behavioral evaluation of robotic agents that is interpreted in terms of
spatial measures, cognitive systems are now equipped with the ability to un-
derstand spatial relationships, to reach goals, to accurately mimic behavioral
patterns, and others (e.g. [13, 14, 15, 16, 17]). However, these robotic sys-
tems are lacking the capacity to experience time. In most existing systems,
time is only implicitly accounted for, in terms of cognitive state transitions
occurring in linearly ordered clock ticks. In other words, time is nothing
more than a variable specifying the ordering of events.

In contrast, in biological agents the feeling of time significantly affects the
dynamics of cognition, from the way that the low level sensory-motor loop is
perceived, to the performance and control of higher level cognitive processes
such as memory organization or reasoning. Despite the importance of tem-
poral information, humans and animals lack a sensory system devoted to the
sense of time. This suggests that time perception is carried out by cognitive
activities working on top of other sensory modalities. However, even if all
our senses were prevented from functioning for a while, we could still notice



the passing of time [18]. The experience of time is now consider a central
element of natural cognition [19] that has recently attracted a large amount
of research interest [20, 21, 22]. The current study focuses on one particular
aspect of time perception, namely duration (other aspects of experiencing
time are discussed in section 2).

An important issue for cognitive neuroscience is how cortical processes
represent time. There are now two major models for the neural represen-
tation of time [23]. One emphasizes that the judgment of the duration of
a stimulus depends on the operation of dedicated neural mechanisms spe-
cialized for representing the temporal relationships between events. Alter-
natively, according to the second model, the representation of duration may
arise from the intrinsic dynamics of neural mechanisms non-dedicated to time
perception. The current work aims to explore the plausibility of the two al-
ternative choices by following a cognitive robotics approach. Previous works
have stressed that evolutionary robotics [24, 25] can be a useful tool in brain
science that can help to uncover important principles of neural processing
[26]. Such examples can be found in several recent studies [27, 28, 29]. In
the current work we follow a similar approach to investigate the time repre-
sentation issue, avoiding to arbitrary favor any of the two models mentioned
above.

In particular, we evolve simple Continuous Time Recurrent Neural Net-
work (CTRNN) controllers [30], being free to self-organize in any direction,
revealing the most appropriate mechanism to perceive time duration. Similar
to [31], we investigate a mobile robot rule switching task. In short, accord-
ing to our experimental scenario, a simulated robotic agent has to consider
unpredictably changing reward signals, in order to switch between behav-
ioral rules choosing the one that is considered correct at a given time period.
In order to focus on the time-feeling properties developed in the cognitive
system, the rule switching task consists of a series of trials with varying
temporal duration. Then, we study the internal mechanisms developed in
CTRNNSs, exploring the self-organization neurodynamics and how they are
constrained by the task’s temporal properties. It is noted that, to the best
of our knowledge this is the first work that uses the new AI’s embodied
intelligence principles to explore time perception cognitive dynamics.

The rest of the paper is structured as follows. In section 2 we discuss
important aspects of experiencing time and how they are related to brain
science research. Then, we describe the CTRNN models used in the current
study. In the following section we described the investigated task providing
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the details of our experimental setup. In section 5 we present the evolution-
ary procedure used to explore the space of CTRNN solutions. In section
6 we present the results obtained by the independent evolutionary proce-
dures. Additionally, we discuss the common neurocognitive characteristics
appearing in all successful solutions. Subsequently, we compare the results
of our study with those obtained in our previous work [31] investigating rule
switching using trials of predefined temporal duration. In section 8 we discuss
the effect of the experimental temporal constraints on neural dynamics, and
we formulate predictions about possible mechanism of real cortical dynamics.
Finally, the last section highlights conclusions and directions for future work.

2. Aspects of time perception

Investigating the issue of time perception is a very complicated task that
requires research efforts to be directed along different, yet interconnected
topics. In particular, research on time perception needs to address the broad
range of temporal experiences we have in our daily life. Among these, we
may list five basic experiences [18], that regard:

e Duration, that assigns the moments of a time interval to real-world
behaviors and processes. The ways that different intervals might be
related (inclusion, succession, overlap, etc.) places independent experi-
ences into a common context that is useful for understanding the causal
dynamics of the world.

e Simultaneity, that addresses how events that start and end at close but
different moments, are experienced as occurring concurrently (i.e. we
feel present as an interval rather than a durationless instant).

e Ordering, that is how we perceive precedence amongst events, i.e not
only perceiving events one after another, but rather perceiving an event
as occurring after another considering also the relationships that may
link them [1, 32].

e Past, present and future, that respectively regard (i) feelings we once
sensed and we can not experience in the same way again, but we can
recall an abstract (incomplete) representation of them (ii) feelings that
we have here and now, or during short periods perceived as present (the
specious present), (iii) feeling that we have never sensed but is possible



to do so after some time, being capable of abstractly representing this
possibility (in a way different than recalling the past) [1, 32, 19].

e Time flow, that is the fundamental feeling of the present that is con-
stantly changing in a unidirectional way, that makes future become
present and then become past.

Additionally, from a brain science and artificial intelligence perspective,
we are interested in the cognitive mechanisms of biological agents being in-
volved in time perception and how they can be interpreted in a computational
context. In particular we are interested in:

e the neural basis of time processing, addressing issues about the exis-
tence of separate subsystems for processing long and short time scales,
the dedicated or implicit representation of time, and the role of devel-
opment in acquiring time perception capacity.

e the interaction of time perception with other cognitive processes, in-
vestigating how we plan actions, filter information, direct attention to
events, form decisions, or how can we understand the common and
different properties of two similar behaviors executed in different time
scales (i.e. temporal compression).

The topics mentioned above have attracted significant research interest
in the fields of philosophy, cognitive science and neuroscience [20, 21, 22].
However, in the field of robotics and embodied intelligent systems, these
issues remain largely unexplored. In a first attempt to explore temporal
processing in artificial cognitive systems we have recently investigated how
the feeling of temporal duration may self-organize in robotic cognitive agents
[33]. In the current work we extend this study comparing also the dynamics
of the cognitive system with the dynamics of network structures evolved in
a similar experimental setup with different temporal characteristics.

3. CTRNN Model and Input-Output Connectivity

In order to investigate how time perception affects the self-organization
of rule switching capacity in neural dynamics we implement an artificial
cognitive system based on a Continuous Time Recurrent Neural Network



Figure 1: Schematic representation of the bottleneck CTRNN used in the current study.

(CTRNN) [30]. Interestingly, in CTRNNs contextual memory is implic-
itly represented by internal neurodynamics. Therefore, in our experimental
setup, the neuronal state is initialized only once in the beginning of the first
trial, and then neuronal dynamics continues across trials and phases with-
out resetting (see experimental setup below). In this manner, we speculate
that dynamical states will emerge for representing the rule stored in work-
ing memory, and additionally, these dynamical states might switch to one
another according to the currently adopted rule.

Following our previous study [31] showing that bottleneck configurations
[34] are more effective in rule switching tasks compared to fully connected
CTRNNS, the current work focuses only on the bottleneck architecture. As
shown in Fig 1, we use two bottleneck neurons to separate CTRNN in two
levels. The bottleneck neurons loosely segregate information processing in
each level, allowing the development of different roles by the groups of higher
and lower level neurons. At the same time, the continuous interaction be-
tween levels supports their cooperation and the accomplishment of different
behavioral patterns by the overall system.

Similar to previous studies [35, 34] all CTRNN neurons are governed by
the standard leaky integrator equation:

dy; 1 R N
L= =, E s E P A, 1
dt T ( ! ' k=1 ik i m=1 i ) ( )

where ~; is the state (cell potential) of the i — th neuron. All neurons in
a network share the same time constant 7 in order to avoid explicit differ-
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entiation of CTRNN parts. The state of each neuron is updated according
to external sensory input I weighted by w?*, and the activity of presynaptic
neurons A weighted by w?. After estimating neural state by eq (1), then
the activation of the ¢ — th neuron is calculated by the non-linear sigmoid

function according to:
1

where 0; is the activation bias applied on the ¢ — th neuron.

In order to investigate embodied rule switching, we employ a two wheeled
simulated robotic agent equipped with 8 uniformly distributed distance, light
and reward sensors. The experiments discussed here have been carried out
using YAKS! a simulated version of the real Khepera miniature mobile robot.
The simulator has been slightly modified for the needs of the present study
(e.g. by integrating a new type of sensors that supports feeling the special
environmental signals simulating negative rewards).

A= 2)

4. Experimental setup

The current study is an extension of our previous work [31], addressing
meta-cognitive rule switching dynamics in a mobile-robot version of the clas-
sical Wisconsin Card Sorting (WCS) task [36, 37]. The motivation for our
experiments is to provide self-organization pressure on simple neural network
models which are evolved to accomplish a mobile-robot WCS task with time
varying characteristics.

4.1. Mobile Robot Rule Switching Task

The task used in the current study is inspired by the rat version of WCS
used to investigate rule switching capacity of rodents [38]. In particular, we
assume that a mobile robotic agent is located at the bottom of a T-maze
environment (see Fig 2). At the beginning of a trial, a light sample appears
at either the left or the right side of the robot. Depending on the light side,
the robot has to move to the end of the corridor, making a 90° turning choice
towards the left or right. The side of the light is linked to the choice of the
robot according to two different sample-response rules (see Fig 2). The first
is called Same-Side (SS) rule implying that the robotic agent should turn

!The simulator has been developed in the University of Skovde, Sweden, and can be
downloaded at http://www.his.se/iki/yaks



Same Side (SS) Rule Opposite Side (OS) Rule

Figure 2: A schematic representation of the delayed response rules. Light samples are rep-
resented by double circles. Goal locations are represented by x, while reward corresponds
to the gray area. The behavioral task asks for controllers capable of switching between
the two rules.

left if the light source appeared at its left side, and it should turn right if
the light source appeared at its right side. The second rule is named (OS),
implying that robot should turn to the side opposite to the light.

The capacity of the agent to adopt and follow each rule can be evaluated
by testing sequences of the above described trials. For example, lets assume
that a human experimenter selects one of the rules (either SS or OS) and
asks the agent to follow it for several trials. Based on the side of the light
sample, the experimenter provides reward to the side of the T-maze that the
robot should turn (see Fig 2). Thus, every time that the robot gives a correct
response, it drives to a reward area, knowing that it follows the right rule.

Turning now to rule switching, the experimenter at a random time (un-
known to the robotic agent) changes the rule considered correct, positioning
rewards according to a new sample-response rule. The task for the agent now
is to discover this rule change, switching its response strategy in accordance
to the new rule. The details of the experimental procedure are described
below.

In order to explore the capacity of the robotic agent to switch among rules
we have divided the sample-response sequence into P € {1...10} phases,
each one consisting of 7, (randomly determined) trials. The number of trials
T, € {8,10,12,14} is randomly specified, so that the agent can not predict
the end of a phase. Let us assume that during the first phase p = 1, the
experimenter selects SS as the correct rule. Then, for all 77 trials the agent
has to respond to the appearance of light samples at its left or right side
(their order is randomly chosen) according to the SS rule. Every time the
agent gives a correct response it receives a positive reward indicating it is
following the correct rule. In case that the robot turning is not correct, it will
drive to an area that no reward exists, indicating that the currently adopted
rule is not correct and it should be switched. During phase p, the robot is



given six free-of-cost exploratory trials to discover the currently correct rule
specified by the experimenter. In the remaining 7, — 6 trials the performance
of the robotic agent is evaluated in terms of following the desired response
rule. If any of these trials is incorrect, the task is immediately terminated
without completing the current phase and without investigating the next
phases (we note that for the successful CTRNN controllers presented in the
Results section, immediate terminations are very rare, occurring on average
once every 84 trials).

If the agent completes 7), trials successfully, it moves to the next phase.
In the beginning of phase p + 1 the experimenter changes the correct rule -
to OS for our example. Therefore, reward signals are now positioned by the
experimenter according to OS. The agent that is not aware for this change
will continue responding according to the previous rule (i.e. SS). In that case,
the agent will be unable to get any reward, indicating it is not following the
correct rule. In order to get more reward, the robot must reconsider its rule
choice, switching to OS. In phase p + 1, the robot is given again six free
exploratory trials to discover rule switching. In the remaining 7}, — 6 trials
agent’s responses are evaluated according to the correct response rule chosen
by the experimenter. If any of these trials is incorrect, the evaluation is
interrupted.

If the agent completes 7}, trials successfully, it moves to the next phase.
In phase p + 2 the experimenter changes again the correct rule - back to SS
for our example - and a similar experimental procedure is repeated (i.e. due
to the re-location of the reward cues the robotic agent needs to switch the
adopted rule to SS). Overall, the task evaluates agent’s switching behavior
for a maximum of P phases (if all of them are completed successfully).
Trial Duration. Due to the iterative nature of the Rule Switching task
described above, we investigate robot responses for several trials. At the
beginning of each trial the robot is located at a predefined starting position,
with its direction randomly specified in the range [85° — 95°] degrees (90°
correspond to the direction of the corridor). The robot is kept in the same
initial position for five simulation steps, and then it is allowed to navigate
freely in the environment, responding to the presentation of the light sample
at its left or right side.

The temporal length of each trial is not predefined, but it is determined
on-line in a dynamic way. Specifically, each trial ends as soon as the agent
reaches the current goal position at a distance of 10 environmental units.
Therefore, trials with very fast robot responses will last shorter than those
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Generation | Task Type | Description

1-60 Single CTRNN reset - 1ask 1. SS
Phase CTRNN reset - 1ask 2: OS
61-140 Two CTRNN reset - 1ask 1: SS — OS
Phase CTRNN reset - Task 2: OS — SS
141-300 Multiple CTRNN reset - Task 1: SS — OS — SS — OS ... SS — OS
Phase CTRNN reset - Task 2: OS — SS — OS — SS ... OS — S8

Table 1: The incrementally more complex tasks solved in different parts of the evolutionary
procedure.

that the agent spends time exploring the environment. Additionally, we have
defined an upper bound for the duration of a trial, being 200 simulation steps.
At the end of the trial, we automatically reset robot to the starting position,
and we are ready to test its behavior for the next trial (that will have again
a dynamically determined temporal duration).

It is worth noting here that every time we artificially reset robot to the
start position we do not make any artificial change to the robotic cognitive
dynamics which are kept continuous, without any interruption (i.e. we do
not reset neural state of the CTRNN controller). Following this approach,
CTRNN functionality resembles the continuous nature of real brain dynam-
ics.

The described experimental setup is particularly appropriate to uncover
temporal differences between SS and OS rules, indicating the development
of time perception capacity in CTRNN controllers, as will be described later
in section 6.

5. Evolutionary Procedure

We use a Genetic Algorithm? (GA) to explore how rule switching capac-
ity self-organizes in CTRNN dynamics. In short, we use a population of
artificial chromosomes encoding CTRNN controllers (their synaptic weights
and neural biases). Each candidate solution encoding a complete CTRNN is

2The current evolutionary procedure does not mean to represent an artificial counter-
part of biological evolution. It only serves our study as a consistent mechanism to explore
the domain of solutions for our problem.
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tested on tasks examining the ability of the network to switch between rules.
We evaluate the performance of all candidate CTRNN controllers assigning
them an appropriate fitness value. The scores accomplished by the controllers
are used to sort and evolve the population of chromosomes, therefore pro-
ducing a new generation of CTRNN controllers that is ready for evaluation.
This iterative procedure is repeated for a predefined number of generations.
The details of the evolutionary procedure are described below.
Incremental Evolution. In order to facilitate successful convergence of
the evolutionary process we have used an incremental approach investigating
gradually more complex versions of the rule switching problem. In the first 60
generations (see Table 1) the evolutionary process asks for robot controllers
capable of adopting both SS and OS response rules. Two different tasks are
used to evaluate CTRNN controllers. The robotic agent needs to explore the
environment in order to discover which rule should be adopted for gaining
rewards. Each task consists of only one phase. The accomplishment of T'ask1
implies that the robot can adopt SS rule, while the accomplishment of T'ask2
implies that the robot can adopt OS rule. At the beginning of each task the
states of all CTRNN neurons are reset to zero, which means that the robot
is in a neutral state, without following any rule.

In evolutionary generations 61-140, the tasks are getting more complex
asking for controllers capable of one switching step between rules. Therefore
tasks consist of two phases. Reward signals that have been properly posi-
tioned by the experimenter, indicate the correct response strategy for each
phase. The Taskl examines agent’s ability to adopt SS and then switch to
OS. In a similar way, the T'ask2 examines robot’s ability to first adopt OS
and then switch to SS. At the beginning of each task the CTRNN state is
reset to zero, but then it is kept continuous implying that special memory
pathways have to develop facilitating rule switching from SS to OS and visa
versa.

Finally, in generations 141-300 we ask for controllers capable of repeatedly
switching between rules. Both T'askl and T'ask2 are now described by ten
phases (see Table 1). Similarly to previous generations CTRNN is reset
to zero at the beginning of each task, and then keeps continuous memory
state when passing from one phase to the other (i.e. continuously switching
between SS and OS rules).

Task Evaluation. The accomplishment of tasks is evaluated based on the
goal positions of each trial. The goal positions are specified according to (i)
the current rule, and (ii) the side of the light sample (see Fig 2). For each
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Figure 3: The response of the agent in 22 consecutive trials (covering three phases). The
robot initially follows SS rule, then it switches to OS, and back to SS.

response of the robot, the minimum distance d,,;, € [0, D] between the goal
and the robot route is used to measure the success of the given robot turning
choice (D is the distance between the starting position and the goal). For a
task ¢ evaluating the behavior of the robot for p phases, the success on rule
switching is given by:

EE05)

The evaluation starts from trial t = 7 because the first six trials of each phase
are exploratory and they are not considered in evaluation. The higher the
value of F; the more rule switches the agent has accomplished.

Fitness Measure. The individuals encoding CTRNN controllers are tested
on Taskl and Task2 described above. The accomplishment of each task is
evaluated separately according to eq (3). The total fitness of the individual
is then estimated by:

th - ETaskl : ETask2 (4>

We note that the multiplication operator favors individuals that can accom-
plish (at least partly) both tasks, distinguishing them from the individuals
that fail in any one of them.

Evolutionary Process. A standard GA with mutation, but without crossover,
is employed to evolve randomly initialized populations of 500 encoded CTRNNSs.
The evolutionary process is driven by the fitness function described in eq (4).
At the end of each epoch, the S=30 best individuals of the population are
used as a basis for producing the individuals of the next generation. The
new individuals are generated by randomly selecting and mutating one of
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Figure 4: The activity of neurons in CTRNN layers, while the agent performs ten consec-
utive sample-response trials. The first line shows activity of a higher level neuron (H-N),
the second line shows activity of a bottleneck neuron (B-N), and the third line shows
activity of a lower level neuron (L-N). The exact paths followed by the robot at each trial
are demonstrated in the last line.

the S individuals. Mutation corresponds to the addition of up to 30% noise,
in the parameters encoded to the chromosome, while each parameter has a
probability of 4% to be mutated.

6. Results

We have run ten GA processes, evolving CTRNN controllers to accom-
plish the incrementally more complex tasks described above. Six of the evo-
lutionary procedures converged successfully configuring CTRNNs capable of
rule switching. Interestingly, even if the corresponding evolutionary proce-
dures have been statistically independent, all obtained results show (quali-
tatively) similar internal dynamics. Below we discuss the common charac-
teristics among successful neuro-controllers, using as a working example one
representative solution.

The performance of the agent during rule switching is demonstrated in Fig
3. During trials 1-4 the agent follows SS rule, successfully acquiring rewards.
Next, in trial 5 the experimenter changes rule to OS. The agent that is not
aware of this change fails to accomplish reward for two consecutive trials,
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SS vs SS OS vs OS SS vs OS
Inter-distance Inter-Distance Intra-Distance
Left Turn | av:5.24 (var:3.94) | av:2.64 (var:1.52) | av:20.33 (var:9.81)
Right Turn | av:4.79 (var:2.22) | av:3.41 (var:1.67) | av:22.42 (var:8.20)

Table 2: The average distance of the paths followed by the robot in distinct trials. The
second column shows average distance and variance between two SS paths, the third
column shows average distance and variance between two OS paths and the fourth column
shows average distance and variance between an SS and an OS path.

but then, in trial 7 it adopts OS. The rule is changed again in trial 15, where
the agent is missing the reward. However, this time the agent switches very
fast back to SS, accomplishing reward in trial 16, and continues responding
according to SS for the rest trials.

We note that the agent follows different trajectories to gain rewards, de-
pending on the rule adopted in each trial. For example, the left turning
paths when SS is adopted (see trials 2, 3, 16, 18) are all similar, but different
than the right turning paths when OS is adopted (see trials 7, 10, 12, 13).
More specifically, we have calculated the average distance between the left
or right paths followed by the agent for the case of the two rules. These
which are demonstrated in Table 2. Clearly, the distance between individual
paths of the same rule is rather low (see columns 2,3), while the distance
between paths of different rules is significantly higher (see column 4). There-
fore, embodiment and sensory-motor dynamics seem to have considerable
correlations with rule encoding, or in other words, they have an important
role in discriminating the two rules.

Additionally, we have investigated neural activity in the higher and lower
levels of the CTRNN network (see Fig 4). We observed that in all trials, lower
level neurons fluctuate much faster than higher level neurons. This difference
implies that higher level neurons are mostly involved in rule encoding and
response planing, while the neurons below bottleneck are mostly involved in
the execution of higher level plans taking also into account environmental
interaction issues (e.g. wall avoidance). This property is an emergent result
of evolutionary self-organization, that appears consistently in all CTRNNs
capable of rule switching. It is worth emphasizing that our evolutionary de-
sign procedure does not artificially force CTRNN to develop different roles
in the higher and lower levels. Non-successful networks follow different acti-
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Rule SS Duration Rule OS Duration
Number of Sim. Steps Number of Sim. Steps
Left Turn | av:159 (min:155 max:163) | av:158 (min:150 max:162)
Right Turn | av:154 (min:148 max:157) | av:178 (min:166 max:186)

Table 3: The average, minimum and maximum duration of sample-response trials, when
the agent turns left and right following either the SS, or the OS rule.

vation patterns. In the cases that we observe distinct neural activity in the
two levels, higher activity either drives the agent always to a single side of
the T-maze, or encodes only one of the available rules being unable to switch
to the other. There is also the case that the network operates as a whole,
being unable to distinguish between light and reward sensory information or
being incapable to navigate efficiently in the environment.

Observing further Fig 4, we see that trials 1 and 4 corresponding to the
right turnings of the OS rule last longer compared to the other trials. In
order to shed more light on this issue, we have calculated statistics regarding
the temporal length of agent responses from a series of randomly initialized
runs. In particular, we have estimated the number of simulation steps elapsed
between successive positionings of the agent in the starting location. These
are shown in Table 3. We see that for the case of left turning, SS and OS
have nearly the same (average) duration, which is however not true for the
case of right turning. As it is expected, the duration of the right OS turning
is significantly longer to the rest. This makes the dynamics adopted for the
two rules differentiate in terms of their temporal characteristics which in turn
facilitates the agent to track the current rule, when passing from one trial to
the next.

Furthermore, statistical information shows that for all four possible re-
sponses, duration may vary across independent responses. This is because
the duration of trials depends on the time that the agent will reach the goal
position (this is usually less than the maximum of 200 simulation steps per
trial). A series of turnings for both rules is shown in Fig 5. We see that the
variations in the paths followed by the agent (due to the noise of sensors and
actuators) can produce significant delays in the duration of trials.

Turning back to Fig 4, we can further observe that two patterns of neural
activation repeat across trials that correspond to either SS or OS rule (for
example note the similarity in trials 1,4 or 2,3 and how they compare to trials
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Figure 5: Indicative left and right turnings of the robotic agent when it follows either the
SS or the OS rule (the starting point corresponds to the bottom of the plots). Sensory-
motor differences produce variation in the duration of sample response trials.

7,9 and 8,10 respectively). In an attempt to reveal the differences between
the two rules, we have investigated neural activity of the original CTRNN
configurations evolved for rule switching in a modified single-rule-following
task, i.e. always follow only one of the SS or OS without switching (these re-
sults are only briefly discussed here). Specifically, for both rules, we request
the agent to perform 100 random turning trials (either left or right) after ran-
dom perturbation of the neurons in the higher level. For both rules, CTRNN
dynamics quickly converged to SS or OS after the perturbations, developing
the same pattern of neural activity with the one shown in Fig 4. Addi-
tionally, we have conducted PCA analysis on neural activity that revealed
different patterns of principal components for SS and OS. In particular, Fig
6 shows the phase plot of the first two principal components related to the
activity of the higher level neurons (these components encompass 68% of the
total information encoded in neural activity). For both rules we observe the
same shape to appear in the phase plot, regardless of the perturbations in
the initial state. Therefore, each plot represents a distinct invariant set for
the corresponding rule. It is noted that neural activity moves on the same
invariant sets when the agent is tested on the accomplishment of the original
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Figure 6: Phase plots of the first two principal components of higher level neural activity,
when the agent follows either the SS, or the OS rule (x-axis corresponds to the first
principal component, and y-axis corresponds to the second).

Taskl and Task2. The switching of the adopted rule from SS to OS and visa
versa, corresponds to neural activity transitions from one invariant set to the
other.

In order to explore the mechanisms facilitating rule switching, we have
tested the obtained solutions in rule following under no-reward conditions
(i.e. when the agent responds correctly reaching the goal position, it is not
provided any reward). These experiments showed that SS performance cru-
cially depends on reward signals (i.e. when reward is missing, the agent can
not stabilize behavior to SS). However, the the agent is capable of following
the OS rule for an adequately long number of trials, even if no reward is
provided. But, if missing the expected reward does not affect OS, then what
makes the agent shift to SS in the ordinary rule switching task? A careful
investigation of trial 5 in Fig 4 (i.e. an erroneous response after the exper-
imenter has changed the rule), shows that the duration of the underlying
trial is considerably larger compared to the previous ones. This is because
the agent is unable to meet the goal position, spending the maximum of
available simulation steps in the current trial. This makes the cognitive sys-
tem dynamics and the expected duration of the trial de-synchronize, which
results in shifting the adopted rule from OS to SS. In other words, the agent
has been aware of the expected duration of OS responses, and when the
trial last more than expected, it decides to switch the currently adopted rule
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(the same mechanism applies also for SS to OS transitions). Interestingly,
the agent has self-organized the capacity of monitoring temporal duration of
trials, and this has an important role in rule transition dynamics. Taking
also into account that OS is not affected by the absence of reward, we can
argue that in the current experimental setup the perception of temporal du-
ration gained a role that is more important than the role of reward guidance
(we note however, that for SS, both reinforcement and trial duration are
important).

The last set of experiments (i.e. agent response in no-reward conditions)
revealed that the representation of OS in CTRNN dynamics is more stable
compared to SS because the former is adopted even without reward, while
the latter requires reward to be provided. Additionally, after perturbations
in neural activity (experiments discussed above) network state is always di-
rected to OS and then, if necessary, switches to SS. These findings imply that
CTRNN assumes OS as the default rule state that can occasionally switch
to SS. This self-organized bias that drives neurodynamics to a preferred in-
variant set is similar to [16]. It is noted that what seems important for the
preference of the cognitive system to OS rule, is the different duration of
trials when the agent turns left or right (see Table 3). This argument is
reinforced by the fact that the named result -different duration of trials- ap-
pears consistently in all successful CTRNN controllers that were obtained
by statistically independent evolutionary processes (i.e. when there is signif-
icant difference in the duration of left and right turnings, the response rule
is preferred against the other).

The findings discussed above, clearly suggest that the CTRNN controllers
have developed an internal duration-perception mechanism that is used to
discriminate the two response rules and facilitate switching between one an-
other. As a result, the time perception dynamics self-organized in the current
study could provide implications for the neural basis of time processing in
biological agents. However, subsequent investigation of the CTRNN com-
putational units could not reveal any dedicated subset of neurons with time
measure responsibilities. Therefore, in relation to the time perception models
proposed in [23], our CTRNN controllers have developed an intrinsic rather
than a dedicated mechanism of time perception. In other words, time is not
just a variable existing in the neural equations of the CTRNN model, but
something much more rich and powerful that can affect the self-organization
of neurodynamics. These results are in agreement with recent brain imaging
studies showing that time perception shares neural resources with other cog-
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Figure 7: Phase plots of the first two principal components of higher level neural activity
for the CTRNN controller evolved according to the Static Duration (SD) experimental
setup (x-axis corresponds to the first principal component, and y-axis corresponds to the
second).

nitive processes (in particular working memory) [39], favoring the intrinsic
approach of time representation.

7. Static vs Dynamic Duration of Trials

The current results are compared with those obtained in our previous
study [31] investigating rule switching assuming a static trial duration. In
particular we had investigated switching between the same SS and OS rules
with all robotic agent trials lasting exactly 170 simulation steps. At the end
of a trial we automatically reset the robot to the start position (without
reseting neurocognitive dynamics), and we are ready to test its behavior for
the next trial lasting again 170 simulation steps. In order to discriminate the
two versions of rule switching we will refer to the problem investigated in the
current paper as Dynamic Duration (DD), and the problem investigated in
[31] as Static Duration (SD).

The investigation of successful CTRNN controllers in SD rule switching
showed that, similar to the current study, embodiment and environmental
interaction significantly facilitates the discrimination of SS and OS rules. In
particular, the agent follows different paths when turning left or right depend-
ing on the currently adopted rule [31]. Another similarity with the current
study is that rules are encoded in distinct invariant sets. This is shown in
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Figure 8: The activation of one higher level neuron in different trials of the SD rule
switching task. In the case of the SS rule (solid line) neural activation starts and ends at
high values, while in the case of OS (dashed-dotted line) neural activation starts and ends
at low values. The figure is copied from [31].

Fig 7, that illustrates phase plots of the first two principal components after
PCA in higher level dynamics.

Being inspired by the results of the current DD study, we have re-visited
CTRNN controllers evolved in [31], looking for time-related cognitive dynam-
ics. Obviously temporal differentiation among rules can not be related to the
duration of trials (they are all equal due to the Static Duration experimental
setup). Exploring the internal neurodynamics for each one of the two rules,
we found that intensity differences in the neural activation pattern of the
higher CTRNN part, clearly separates SS from OS. Specifically, Fig 8 shows
activation of a higher level neuron for the two rules. Note that for both
the left and the right turnings of SS, neural activity starts and ends at very
high values. In contrast, for the case of OS rule, neural activity starts and
ends at very low. This high-low difference facilitates (i) the discrimination
between the two rules, and (ii) the binding of left and right turnings as part
of the same rule. It is important to emphasize that the nature of the SD
rule switching problem allows the emergence of the above mentioned neuro-
dynamic characteristics, due to the perfectly measured and exact temporal
duration of trials (all of them lasting 170 simulation steps) that is perfectly
synchronized with the activation of neurons. However, neural activity pat-
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Figure 9: The trajectories of left and right turning for the CTRNN controller evolved
according to the Static Duration (SD) experimental setup. The paths corresponding to SS
are illustrated with a solid line, while the paths corresponding to OS are illustrated with
a dashed-doted line.

tern does not seem to encode time related activity (at least, not at a first
sight) and the two rules are separated by intensity differences.

Then, we turn to the trajectories followed by the agent during left and
right turnings. We observed that when the agent follows the SS rule, it
spends significantly more time in the reward area compared to OS case. This
is demonstrated in Fig 9 that shows the trajectory of left directed turning
for both SS and OS (we remind that in contrast to the current study, in
SD experiments, trials do not terminate when the agent approaches the goal
position). Turning now again to neural activities shown in Fig 8, we can
better understand the unfolding of neural activity at the end of trials. In
the case of OS, the receipt of reward makes neural activity fade to zero. The
agent does not stay for long in the reward area, and therefore there is no time
for neural activity to rise up again. However, when the agent follows the SS
rule, the time spend in the reward area is much longer. In that case, after the
initial drop of neural activity, the agent keeps sensing the reward which makes
neural activity rising up again. In other words, the cognitive agent evolved
in [31] has also self-organized a temporal duration monitoring mechanism,
which now focuses on the time spend in the reward area. Interestingly these
results provide further support to the intrinsic representation of time, since
time perception shares neural resources with reward perception.
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8. Discussion

In the current study, we have evolved Continuous Time Recurrent Neural
Networks (CTRNNs) on a rule-switching task consisting of trials with dy-
namic temporal duration. The continuous nature of CTRNN controllers is
very important for the study of cognitive process related to rule switching,
because real brain operates also in a continuous mode [40]. Thus, the present
study can potentially reveal important aspects of brain processes involved in
switching from one behavioral strategy to another.

The relevance of the obtained CTRNN solutions to real brain is supported
by the emergent properties of neurocognitive dynamics. First, we found that
time perception may co-exist with other cognitive processes (for our task,
those involved in rule discrimination), favoring the intrinsic model of time
perception. This is in agreement with [39] arguing that time perception
shares common neural resources with other cognitive processes. However, we
need to note here that our findings can be biased by the short time intervals
investigated in the current study, and another mechanism might be necessary
for representing long temporal durations. In particular, it is possible that
both intrinsic and dedicated representations of time are simultaneously active
in the cortex with the former applicable to relatively short intervals, and the
latter to longer intervals [23].

Furthermore, our results are in agreement with [12], that investigates pos-
sible mechanisms for encoding temporal duration. According to this study, it
is not necessary to have a linear time counter to accomplish (primitive) skills
of time perception. Similar to [12], in the current work, CTRNN solutions
have been capable of discriminating between the default OS and the alterna-
tive SS rule, with the first having significant differences in the duration of left
and right turnings. Additionally, we observed the shaping of invariant sets
in cognitive neurodynamics, which supports the time-perception capacity of
agents discriminating SS and OS rules having different duration. This is also
in agreement with [12].

The short comparison between our current DD and the previous SD rule
switching study shows that temporal constraints of the experimental setup
significantly bias the self-organization of internal cognitive dynamics. How-
ever, the parameter of time is rarely taken into account in robotic cognitive
studies and we believe it worths more attention from researchers in order
to get a complete picture of cognitive phenomena in biological and artificial
agents.
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9. Conclusions

The current study aims to shed light on a largely unexplored aspect of cog-
nition, namely time perception, and its relation to other cognitive processes.
By adopting a dynamical systems approach to explore mechanisms shaping
neurodynamics we found that the continuous nature of cognition provides to
ordinary cognitive processes primitive time perception capacity. Addition-
ally, we found that the temporal constraints of tasks can significantly bias
the shaping of internal dynamics of the system.

Overall, the investigation of time is an important parameter/aspect for
the complete and in-depth understanding of cognitive processes. The current
study is a first attempt towards a rigorous and systematic exploration of
the time perception capacity of cognitive agents. In the future, we aim
at systematically exploring more aspects of time perception, investigating
problems that combine perception of both static and dynamic duration tasks.
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