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Abstract

The current paper examined how compositional structures can self-organize
in given neuro-dynamical systems when robot agents are forced to learn mul-
tiple goal-directed behaviors simultaneously. Firstly, we propose a basic model
accounting for the roles of parietal-premotor interactions for representing skills
for goal-directed behaviors. The basic model had been implemented in a set
of robotics experiments employing different neural network architectures. The
comparative reviews among those experiment results address the issues of local
vs distributed representations in representing behavior and the effectiveness of
level structures associated with different sensory-motor articulation mechanisms.
It is concluded that the compositional structures can be acquired “organically”
by achieving generalization in learning and by capturing the contextual nature
of skilled behaviors under specific conditions. Furthermore, the paper discusses
possible feedback for empirical neuroscience studies in the future.
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1 Introduction

We humans learn our behavior skills through repetitions of own behavior experiences.

We learn to manipulate objects, to use tools and to navigate to desired locations.

When we investigate the capabilities of human or artificial agents to generate diverse

and complex skilled behaviors, mechanisms for behavior compositionality become an

essential issue. The term compositionality here is adopted from “Principle of compo-

sitionality” (Evans, 1981) in linguistics which claims that the meaning of a complex

expression is determined by the meanings of its constituent expressions and the rules

used to combine them. This principle can be translated in our problem such that

skilled behaviors can be generated by combining a set of re-usable behavior primitives

adaptively corresponding to required goals by following rules. For example, an attempt

of drinking a cup of water might be decomposed into multiple behavior primitives such

as reaching to a cup, grasping the cup and moving the cup toward ones’s mouth. Each

behavior primitive can be re-utilized also as a component for other goal-directed ac-

tions e.g. reaching to a cup can be used for another goal such as clearing it away. Also

it is noted that this idea of decomposition of whole behaviors into sequences of reusable

primitives is parallel to the motor schemata theory by Arbib (1981).

However, the compositionality assumed in motor behaviors might have different as-

pects from the one considered in conventional linguistics. Firstly, when we think about

the behavior primitives, they should not be regarded as concrete objects. Instead,

each behavior primitive should be flexible enough to be used in various situations. For

example, a behavior primitive of grasping an object should be flexible enough to be

used for different object positions and shapes. This requires generalization in learn-

ing of the skills through experiencing variations of sensory-motor flow, like practicing

to grasp objects with different shapes and positions. Secondly, the rules for combin-

ing behavior primitives in sequences should be “fluid” and context-dependent rather

than formalistic. For example, exact motor trajectories of grasping a cup should be

affected by the next motor act to follow them as well as the entire goals of whether

to drink a cup of water or to clean off the cup. The whole motor behaviors should

be generated fluently by capturing the context-dependent nature of intended action

goals. The requirement here is that behavior generation systems should afford certain

compositionality in manipulating primitives while their rules and elements are fluid

and elastic enough such that they can entail the tacit knowledge of skilled behaviors.

In the current paper this sort of compositionality is called “organic” compositionality.

Then, the essential question is how this sort of “organic” compositionality can be
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achieved in behavior generation systems. The question is deeply related to the sensory-

motor articulation problem which has been investigated by some research groups (Ku-

niyoshi, Inaba, & Inoue, 1994; Tani & Nolfi, 1999; Yamamoto & Kuniyoshi, 2002).

The problem asks how experiences of continuous sensory-motor flow as a whole can

be segmented into sequences of meaningful parts. Kuniyoshi et al. (1994) addressed

this articulation problem in their robot learning experiment studies. In their exper-

iment with an assembling robot, the robot recognizes the various task performances

by decomposing them into sequences of modular representations. Subsequently, the

robot is able to learn various tasks in terms of combinations of the reusable modu-

lar representations obtained. For attaining such a modular representation, the task

performance was temporally segmented by means of detecting “meaningful changes”

in the observed sensory flow. The problem, however, is that the definitions of these

meaningful changes were predetermined by designers. Our prior study (Tani & Nolfi,

1999) showed that robots can learn to recognize meaningful changes by themselves

and can perceive a continuous sensory-motor flow as segmented into reusable behavior

primitives with utilizing the gated networks scheme (Wolpert & Kawato, 1998; Tani &

Nolfi, 1999). The similar scheme will be introduced in one of the experiments in the

current paper.

It might be inadequate to regard behavior primitives or motor schemes as just reflex-

type functions that map the current sensory state to next motor state. Instead, the

functions should involve anticipation by which diverse sensory-motor flows achieving

various goals can be imaged (Ito, 1970; Kawato, Furukawa, & Suzuki, 1987; Jeannerod,

1994; Tani, 1996). When the sensory-motor flow of a particular act can be imaged,

the same act by others can be recognized (Oztop & Arbib, 2002; Oztop, Wolpert, &

Kawato, 2005; Tani & Ito, 2003; Ito & Tani, 2004), as will be explained later in terms

of mirror systems (Rizzolatti, Fadiga, Galless, & Fogassi, 1996).

In the brain science perspective, we speculate that structures responsible for gen-

erating or mentally simulating skilled behaviors “organic” compositionality might be

acquired in the inferior parietal lobe (IPL) through repeated sensory-motor experiences.

Our ideas have been inspired by Ito (2005) who suggested that information from daily

sensory-motor experiences is first consolidated in parietal cortex and then further con-

solidated into the cerebellum as internal models (Kawato et al., 1987) related to actions.

Conventionally, parietal cortex has been viewed as a core site to associate and integrate

the multi-modality of the sensory inputs. However, the neuropsychological studies in-

vestigating various apraxia cases, including ideomotor apraxia and ideational apraxia

(Liepmann, 1920; Heilman, 1973), have suggested that IPL should be also an essential
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site to represent a class of behavior skills, especially related to object manipulations.

We speculate that this region might function especially as a predictor for future sen-

sory inputs for particular goals of actions based on neuroscience evidence that will be

detailed in later sections. Furthermore, it has been speculated that IPL might function

both for generating and recognizing the goal-directed behaviors (Fogassi et al., 2005)

by having dense interactions with ventral premotore (PMv) cells which are known as

mirror neurons (Rizzolatti et al., 1996).

The current paper reviews our recent trials on synthetic robotics approaches (Nishi-

moto, Namikawa, & Tani, 2008; Tani, Nishimoto, Namikawa, & Ito, 2008; Paine & Tani,

2005) to model the PMv-IPL networks for representing goal-directed behavior skills.

We present three different architectures adopted for different robot experiments includ-

ing a simulation in which each experiment has a specific modeling aspect. However, all

three experiments share the same research motivation that asks how “organic” compo-

sitionality can be self-organized in some forms of neuro-dynamical systems when the

robots are required to learn multiple goal-directed behaviors simultaneously. If such

pressures could actually lead to the self-organization of compositional structures, next

questions might be how modular or level structures of the networks could enhance the

self-organization of such structures. Those research interests will be examined from the

dynamical systems view point (Schoner & Kelso, 1988; Kelso, 1994; Beer, 1995; Tani

& Fukumura, 1994; Schaal, Ijspeert, & Billard, 2003). The repertoire of dynamical

systems language, including attractor, bifurcation and initial sensitivity, would qual-

itatively describe the characteristics of “organic” compositionality observed in those

experiments.

After obtaining these results in the synthetic robotics study, the current paper

discusses how the results can be reconciled with empirical neuroscience studies. It is

considered that empirical studies can show us certain evidence in real brains, but that

they rarely describe their underlying neuronal mechanisms. On the other hand, the

synthetic studies can handle possible mechanisms directly in computational models but

without assuring that such mechanisms can exist in real brains. In this situation, it is

expected that cyclic collaborative research between proposing possible models for brain

mechanisms in the synthetic studies and proving the models in reality in the empirical

studies could improve our understanding of brain mechanisms substantially.

Before closing this section, we briefly describe the specific goal of each modeling and

robotics experiment shown in the current paper. The first experiment by Nishimoto

et al. (2008) examines how the simplest implementation of a dynamic neural network

in modeling the parietal-PMv interactions can achieve both generation and recognition

5



of a set of goal-directed behaviors of a robot in a simple object manipulation learn-

ing task. The second experiment by Tani et al. (2008) examines how the scheme of

using the dynamic neural network model can be scaled by introducing some modular

and level-structured architecture and incorporating a developmental learning scheme.

The third experiment by Paine and Tani (2005) examines the emergence of level struc-

tures in answering the question of how levels and modules are crucial in representing

compositional behavior skills.

2 Premotor and parietal cortex interactions

This section describes our interpretations for the functional roles of IPL and PMv in

representing goal-directed behaviors by their interactions. Conventionally, parietal cor-

tex has been regarded as a cortex region for associating multi-modal sensory informa-

tion including visual, auditory, tactile and proprioceptive sensations(Colby, Duhamel,

& Goldberg, 1993). The sensory information integrated in parietal cortex is considered

to be sent to PMv for organizing the corresponding motor programs which are further

sent to the primary motor area (M1) for generating more detailed programs (Sakata,

Taira, Murata, & Mine, 1995).

Fagg and Arbib (Fagg & Arbib, 1998) introduced the so-called FARS model which

attempts to explain how PMv and AIP (the Anterior Intra-Parietal sulcus) in parietal

cortex can generate object grasping behaviors. In this model, the visual information of

an object is sent from the IT area in the visual ventral pathway to AIP. AIP extracts

”affordance” information of the object which is a set of important visual properties of

the object to be grasped. This affordance information is sent to canonical neurons in

PMv where the corresponding motor program of grasping the object is generated by

means of an inverse model.

Oztop and Arbib (Oztop & Arbib, 2002) proposed a model of mirror neurons (Rizzo-

latti et al., 1996) found in PMv which recognizes the goal-directed behaviors of oneself

and of others. They proposed that information about the positional relation between

an object and the hand of an other person or animal is extracted and represented in

AIP neurons. Then, this AIP neural representation is mapped to categorical activation

of the mirror neurons in PMv. (They employ a simple three-layered perceptron-type

neural network to learn this mapping from the sensory feature inputs to the categorical

outputs.)

One common idea in these two models by Arbib’s group is that parietal cortex is

considered to preprocess the sensory information prior to PMv in both cases of the
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behavior recognition and generation. It is assumed that parietal cortex may deal with

sensory inputs merely as static patterns rather than temporally changing ones. On this

account, we speculate that parietal cortex may function as forward models to anticipate

coming sensory inputs.

Our interpretation originated from literature of neuropsychological studies. It is

well known that patients whose IPL are impaired often suffer from deficits in the usage

of tools (Liepmann, 1920; Geschwind & Kaplan, 1962). The deficit is called ideomotor

apraxia. Because their basic movements of limbs are not impaired, it is plausible to

consider that IPL contains tacit knowledge about the skills to use the tools. More

interestingly, some of ideomotor apraxia patients have deficits only in pantomiming

but not in actually using the tools (Liepmann, 1920; Geschwind & Kaplan, 1962; Mc-

Donald, Tate, & Rigby, ; Ohshima, Takeda, Bandou, & Inoue, 1998). The pantomime

requires a capability of generating mental imaginary of sensory inputs associated with

the actual tool usages for their self-feedback. Because the chain of sensory imaginary

can be generated by means of look-ahead prediction using the forward models (Tani,

1996; Hesslow, 2002), it is speculated that the deficit in pantomime might be originated

from impairment of the sensory forward prediction mechanism assumed in IPL.

Eskandar and Assad (1999) investigated the role of the posterior parietal cortex

(PPC) in the visual guidance of movements in monkeys trained to use a joystick to

guide a spot to a target. In the electrophysiological experiments of the monkeys, they

found cells in the lateral intraparietal area (LIP) which seem to encode a predictive

representation of stimulus movement. Ehrsson, Fagergren, Johansson, and Forssberg

(2003) observed specific activity in posterior parietal cortex (PPC) during control of

fingertip forces for grasp stability in human fMRI scan experiments. Because this force

coordination requires anticipation of the grip forces that match the requirements im-

posed by the self-generated load forces, PPC is assumed to implement such anticipatory

mechanism.

Another clue came from recent studies on the involvement of the medial parietal

regions of monkeys with goal-directed navigation by Taira et al (Sato, Sakata, Tanaka,

& Taira, 2006). In their experiments, monkeys were trained to navigate to reach specific

goal locations in a virtual office environment. The monkeys watched the computer

simulated egocentric view, which was projected into a front screen, and maneuvered

the virtual workspace using a joystick controller. In the examination of the neural

activities in the medial parietal region, large portions of neurons activate with specific

movements (turning left or right) at specific positions. Moreover, some neurons respond

in a goal-dependent manner i.e. - they respond not only depending on specific position
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and movement but also on specific goals. This result suggests that the medial parietal

region stores route-based navigation knowledge or, in other words, the internal models

of the workspace.

In summary, the evidence suggests that the parietal cortex implements different

types of sensory anticipation functions at different local regions depending on the goal

of behavior. In the following, our modeling focuses on sensory anticipation mechanisms

assumed especially in IPL in the parietal cortex. IPL is known to have a dense connec-

tivity with mirror neurons in the PMv. Our modeling assumes that the anticipation

mechanisms in IPL might be different from the one considered in the conventional

forward model (Kawato et al., 1987; Wolpert & Kawato, 1998) hypothesized in the

cerebellum. The conventional forward model predicts the next step sensory outcomes

regarding the current action taken and the current sensory state given. In our model,

IPL predicts the next step sensory state only with the current sensory state given. We

may call this modified version of the forward model as the sensory forward model.

The sensory forward model, however, requires one more piece of information, that

is goals for current actions. For example, let us consider a situation in which there

is a coffee mug in front of us that is to be manipulated. Our anticipation of sensory

sequences is based on the visual image of the mug and its relative position among

the fingers and the arm. It is also based on the proprioception of each joint angle

for the fingers and arms. The anticipation of sensory experiences might be different

depending on our current goals of grasping the mug for drinking coffee or for throwing

it toward somebody. Once the goal is set, the sensory sequence associated with this

goal-directed behavior can be predicted. Therefore, in our formulation the sensory

forward model is provided with the goal state as well as the current sensory state

in its inputs and then the next step sensory state is predicted in the outputs. It is

important to note that the sensory forward model cannot play an equivalent role of

an internal model or a world model that can tell sensory consequences for whatever

motor command sequences. The function of the sensory forward model is much limited

in a sense that it can predict sensory sequences only for a set of task goals which are

frequently experienced. Therefore, it can be said that the sensory forward model can

work only for skilled goal-directed behaviors rather than arbitrary motor behaviors.

It is also noted that the current sensory input could be provided by feeding back

its own sensory prediction without having the actual sensory input. This enables the

sensory imaginary loop required for the pantomime behaviors, as described previously.

An obvious question is then where the current goal information comes from. We

assume that it comes from the mirror neurons in PMv. This assumption accords with

8



the main arguments by the Rizzolatti group (Rizzolatti et al., 1996) that the mirror

neurons do not encode exact movement profiles but encode the underlying goals of

movements. Now, the sensory sequence is predicted in IPL with the goal informa-

tion provided from PMv. Here, we show another assumption which could account for

how actual motor behaviors can be generated from the predicted sensory sequences.

The basic idea is that the predicted sensory sequences for given goals contain enough

information about the corresponding motor sequences. We assume the predicted pro-

prioception is sent to primary sensory cortex (S1) and further sent to primary motor

cortex (M1) for generation of actual motor command. The analogy in robot joint con-

trol is that the position encoder value at the next time step is predicted (IPL) and set

as the desired position (S1). Then, the motor controller (M1) computes necessary mo-

tor torque command. This part of the assumption is inspired by observations by Fetz

and his colleagues (Fetz, Finocchio, Baker, & Soso, 1980; Soso & Fetz, 1980) about S1

involvement in motor generation. They found that some monkey S1 cells are activated

immediately before the actual movements of limbs, as if preparing for the movements.

Figure 1(a) summarizes of the behavior generation pathway which is assumed in the

current paper.

The goals of others’ behaviors can be recognized by going inversely through the

generation pathway described above. In the case of recognizing a person manipulating

an object, the sensory forward model can predict how the visual image, for example, the

extracted features about positional relations between the object and the hand (Oztop

& Arbib, 2002), evolves in time from one’s own experiences if the goal of the person

is correctly set. If the goal state is set incorrectly in the sensory forward model, the

prediction for the coming visual sensory image generates error. In this situation, the

prediction error can be minimized by searching for the optimal goal state. If the goal

state is eventually found such that the error becomes negligibly small, it can be said

that the goal of the behavior by this person is recognized.

Previously, we implemented this idea into a robot that can both generate and

recognize a set of arm dancing patterns by itself and by others by using a scheme called

the recurrent neural network with parametric biases (RNNPB) (Tani & Ito, 2003; Ito

& Tani, 2004). In this scheme, the parametric bias (PB) units allocated in the input

units of a jordan-type recurrent neural network (RNN) (Jordan, 1986) encodes the goal

state where the RNN functions as a sensory forward model. By setting the goal state

in the PB units, the corresponding behavior can be generated. On the other hand, the

goal of observed behaviors by others can be recognized by optimizing the PB values for

minimizing the sensory prediction error in the RNNPB. Therefore, it can be said the
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Figure 1: (a)The behavior generation pathway. Mirror neurons in PMv send the

goal information to the sensory forward model in IPL and the sensory forward model

generates the predicted sensory sequence. The predicted proprioceptive state is sent to

S1 and further to M1 where the corresponding motor command is generated. (b) The

behavior recognition pathway. The error between the expected visual image and the

real outcome is propagated back to PMv where the mirror neuron activation patterns

are modulated in the direction of minimizing the error.

generation and the recognition processes are mirrored by means of the PB mechanism

in an abstract sense. The scheme of the PB encoding of the goal state is only one

possible implementation that follows the assumptions described above. The current

paper will introduce the variations of this scheme. Figure 1(b) illustrates the summary

of the behavior recognition pathway which is assumed in the current paper.

Oztop et al (Oztop et al., 2005) proposed another model of mirror neurons, in

addition to their former model (Oztop & Arbib, 2002), by concatenating an inverse

model and a forward model. In their model, the inverse model generates the imaginary

motor sequences with the inputs of the estimated goal state (the mental state in their

word) of others. Then the forward model generates the prediction of the coming sensory
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sequences with the inputs of the imaginary motor sequences. The estimate of the goal

state in the inverse model is optimized such that the prediction error with the observed

sensory sequences is minimized. In this manner, the goal of the observed behaviors

can be recognized. Their model is different from ours in that their internal model is

implemented by the concatenation of the inverse model and the forward model and

is assumed to be located in PMv rather than in IPL. Our current model, as well as

our prior model of the RNNPB, (Tani & Ito, 2003; Ito & Tani, 2004) is considered to

be simpler in the sense that the goal state can be estimated directly from the sensory

forward model.

There are several computational models that aim to achieve mirror systems in robots

(Billard & Mataric, 2001; Inamura, Nakamura, Ezaki, & Toshima, 2001; Demiris &

Hayes, 2002; Schaal et al., 2003; Inamura, Toshima, Tanie, & Nakamura, 2004). Bil-

lard and Mataric (2001) use their invented connectionist-type network called DRAMA

for imitation learning. Inamura et al. (2001) utilize a hidden markov model for rep-

resenting behavior primitives and their sequential combinations. Demiris and Hayes

(2002) utilize a set of gated-modular networks for representing behavior primitives

whose architecture is similar to MOSAIC (Wolpert & Kawato, 1998) and the mixture

of RNN experts (Tani & Nolfi, 1998). Schaal et al. (2003) proposed to describe discrete

and cyclic movement primitives in terms of two parameterized canonical equations of

fixed point dynamics and limit cycling dynamics, respectively. Inamura et al. (2004)

proposed the so-called mimesis space for representing behavior patterns in a certain

metric space using artificially designed manifolds. The representation can be utilized

both for generation and recognition. Although each of those models has a specific

computational mechanism of achieving the mirror system for robots, its biological cor-

respondence to networks in PMv and IPL are not discussed well.

In the current study, a continuous-time recurrent network (CTRNN) (Williams &

Zipser, 1989; Doya & Yoshizawa, 1989; Beer, 1995) is used for the purpose of modeling

the sensory forward model assumed in IPL in a connectionist level abstraction. The

usage of the error back propagation learning scheme (Rumelhart, Hinton, & Williams,

1986) which may not represent real neuron synaptic modulation mechanisms, can be

accounted for by the same reason.

The CTRNN has the advantage of having rich dynamics defined in a continuous-

time and space domain which allows the network to have dense interactions with analog

sensory-motor flow. An interesting characteristic of the CTRNN is that the time con-

stant parameter of each unit can regulate the time scale of its activation dynamics. It

is, however, noted that activation of a single unit in a CTRNN does not correspond
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to the firing dynamics of a single real neuron. Instead, activation of a single unit in a

CTRNN may correspond to an average firing rate of populations of real neurons. In

this situation, the time constant parameter of a unit may represent the time constant

of macroscopic dynamics consisting of population of neuronal activities. This time

constant at the macroscopic level should depend on the connection paths among local

neurons and their synchronal characteristics. For example, a group of cells affected

by distant neurons with large variations of spike timings, which are often observed

in prefrontal cortex (Sakurai & Takahashi, 2006), might be modeled by a unit with

slow time constant dynamics. On the other hand, closely neighboring neurons having

sharply correlated firings, such as those observed in the primary motor cortex (Hat-

sopoulos, Ojakangas, Paninski, & Donoghue, 1998), might be modeled by a unit with

a fast time constant. Our hypothesis here is that such a difference of time constants

in macroscopic neuronal dynamics might lead to the emergence of levels of behavior

generation.

One of the main motivations of the current paper is to seek brain-inspired mech-

anisms to achieve a compositional representation of skilled behaviors. Although it is

hardly confirmed that IPL and premotor cortex are actually involved with genera-

tion of such compositional structures, some observations of ideational apraxia patients

may suggest its plausibility. Heilman (Heilman, 1973) defined ideational apraxia as

an inability to put acts into sequences. Ohshima et al (Ohshima et al., 1998) found

that patients with lesions in left parieto-occipital lobe cannot execute or pantomime

skilled acts with objects in sequence. However, these patients can successfully execute

each element of these acts. The observed dissociation between the elements and their

combined sequences suggest that there might exist a level structure in which only the

higher level for combining the elements into the sequences might be impaired in those

patients. Our modeling studies accompanied with robot experiments will examine pos-

sible effects of level structures in achieving the compositional representation of skilled

behaviors.

3 Learning with a simple CTRNN: experiment-1

In our 1st robot experiment (Nishimoto et al., 2008), a humanoid robot is tutored

by supervisors to perform multiple goal-directed behaviors concerning simple object

manipulations. Although the intended goal-directed behaviors might be seen as simple,

they are actually structured to share some behavior primitives.

A single CTRNN model (Williams & Zipser, 1989; Doya & Yoshizawa, 1989; Beer,
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1995) is utilized in this experiment. Then, a question is how it can learn to encode

multiple goal-directed behaviors through the sensory motor experiences. The current

study investigates the possibility of encoding the task goal information by utilizing

the initial sensitivity characteristics of the CTRNN dynamics. More specifically, the

dynamics of a CTRNN is trained to produce trajectories reaching to the multiple goal

state, depending on the initial internal state of the CTRNN. The mapping of the goal

states of actions to the initial internal state is acquired through the training process. In

the experiments, we introduce some variations in the adopted environment by changing

the position of the object to be manipulated at each trial. By doing this, we examine

how robustness in performing goal-directed behaviors can be achieved under variable

situations and how this sort of robustness is related to generalization in learning. The

next subsection introduces the CTRNN model employed in this experiment.

3.1 A simple CTRNN model

Overview

The proposed network model is designed to learn to re-generate sensory sequence pat-

terns represented as (st,mt). Here, st represents vision-based sensory information at

time step t, representing an object’s position attended by the robot video camera. The

other component of the sensory information mt represents proprioception of the arms

of the robot by reading encoder values in the arm joints. Essentially, this network takes

input as different modalities of sensation and mingles those inputs together to generate

predictions of their time developments in the future.

We designed our CTRNN model, shown in Figure 2, by modifying the Jordan-type

RNN – a discrete time model. In this model, the current sensory state and the context

state, representing the current internal state of the network, are represented as aBx

and aBc, correspondingly in the bottom layer units. The activations in the hidden

layer aH are computed by means of standard sigmoidal activation of the input sum

obtained from the bottom layer activation multiplied through the synaptic connections

wH
ij . And then, aUx and aUc in the upper layer are computed in the same way by using

the synaptic connections wU
ij . The activations of aUx and aUc are used only internally

for computing the direction of changes in time predicted for the sensory state aBx and

the context state aBc, correspondingly. The sensory feedback loop and the context

feedback loop shown in Figure 2 instantiate this integration. Therefore, it is noted

that the units of aBx in the bottom layer function both for receiving the sensory inputs

and predicting their future as the outputs.
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aUx

wU

aUc

aH

aBc

ij

wH

^ ^ ^

ij

aBx = (st, mt)

aBx = (st, mt)

Figure 2: The CTRNN model employed.

Forward dynamics

This part of the time integration is detailed in the following. The next time step

activations of those units aBx
t+1 and aBc

t+1 are obtained by integrating the first order

differential equation of Eq.1 in which the upper layer outputs aU
i work as force inputs

to drive the internal potential of these units uB
i . The actual updates of these values

are computed with the numerical approximation of Eq.2 associated with the sigmoidal

transformation in Eq.3.

τ u̇B
i = −uB

i + aU
i /α (1)

uB
i,t+1 = −uB

i,t/τ + (aU
i,t − 0.5)/(α · τ) + uB

i,t (2)

aB
i,t+1 = sigmoid(uB

i,t+1) (3)

where τ and α denote the time constant and the input force coefficient, respectively. It

is noted that the time constant τ determines the dynamic characteristics of the network

substantially. If τ is set larger, the network easily adapts to slower dynamics of the

sensory flow. Otherwise it adapts to faster dynamics. Although in the current and the

next experiments τ is set manually by experimenters, the 3rd experiment will show

how τ can be determined autonomously. The prediction of the proprioception mt is

utilized to generate the actual motor command of the robot by a position feedback

controller at each joint. On the other hand, the prediction of the vision state st is used
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for recognition of the observed behavior, as will be described later.

Training

The goal of training the network is to minimize the error between the teaching sequence

pattern âBx
t given from the outside and the predicted sequence pattern aBx

t generated by

itself. The network learning method uses the general Back Propagation Through Time

(BPTT) algorithm (Rumelhart et al., 1986). Using the BPTT algorithm, the network

obtains shared weight connectivities for all the given teaching sequence patterns. At

the same time, in the proposed model, the initial values of the context units aBc
0 for

each trained behavior are iteratively computed such that the error between the re-

generated sequence starting from the initial values obtained and the training one can

be minimized. The aim is for each desired goal-directed behavior to be generated by

setting its corresponding initial values into the context units after the learning process

has converged.

In the actual learning process, an update of a connective weight from the i-th unit

to the j-th unit at the nth learning iteration step is obtained by using the delta error

δi back-propagated to the i-th unit in the following equation.

∆wij(n + 1) = ηδiaj + α∆wij(n) (4)

In addition, an update of the initial context unit values corresponding to each train-

ing sequence pattern is obtained simultaneously by utilizing the delta error δi back-

propagated through time steps to the context unit at the initial step.

∆c0,i(n + 1) = ηδ0,i + α∆c0,i(n) (5)

In the actual experiment, only two dimensions of the initial context state are adapted

and all other dimensions are set to 0.5.

Generation and recognition

After the network is trained, the network can be operated both in the generation mode

and the recognition mode. In the generation mode, once the initial context values are

set, the network generates the corresponding sensory prediction sequences either in the

open-loop mode by receiving the sensory inputs or in the closed-loop mode by having

the self-feedback of the sensory prediction sent into the inputs. In the recognition

mode, some dimensions of the sensory sequences are given to the network as a target

sequence. Then, the optimal initial context state is searched by following Eq.5 such

that the error between the sequence pattern generated from this initial context state

and the target sequence pattern can be minimized. Consequently, the goal for the

observed sequence is recognized by obtaining the optimal initial context state.
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(b)right
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start position hold

Figure 3: Three type of the goal-directed behaviors aimed in the experiment.

3.2 Robot task in experiment-1

The experiments are performed using a small-scale humanoid robot produced by SONY.

It is aimed at autonomously generating three types of operational actions on objects,

as shown in Figure 3, based on learning. In those goal-directed behaviors, the robot

starts to move from the same start position to approach and to hold an object placed

in front of the robot. The object is then either (a) held up, (b) moved to right, or (c)

moved to left. The object is marked with a red color point which the robot camera

mounted on its head attempts to target all the time during the operation. The direction

of the robot head in terms of encoder values of two head joints represents the object

position relative to the robot. This 2-dimensional vector corresponds to the visual

input denoted as st in the previous section.

The robot has two arms each of which has 4 degrees of freedom without fingers.

The encoder values of these arm joints are received as the current proprioceptive inputs

mt and its next step prediction mt+1 is sent to the joint controller to generate their

actual movements. The CTRNN used for this experiment is allocated with 20 hidden

units, 20 context units and 10 sensory inputs.

In order to examine the generalization capability of the object holding action with

regard to variance in object position, the robot is trained with the object located

among three different positions, “right”, “left” and “center” in front of the robot. In

the training, the experimenters guide the robot arm movements by grasping the arms

in order to generate the desired trajectories. The encoder values as well as the visual

inputs (2-dimensional head direction) are recorded during the guidance for their later

use for the off-line training of the CTRNN. The arm trajectories are guided for three

types of the goal-directed behaviors with the three different object positions for each.
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Therefore, there are 9 categories of the teaching sensory sequences where each category

sequence is repeated 3 times. In total, 27 sensory sequences are sampled during the

supervised teaching phase. The CTRNN is trained with these teaching sequences in a

parallel manner for 50000 epochs.

3.3 Results of experiment-1

The repeated training examinations with randomly set different initial weights revealed

that the mean square error (MSE: average square error per sensory unit per step over

all teaching sequences) converges to around 0.0003. By taking one case of the trained

weights with its MSE converging to 0.00028, the robot performance of generating the

goal-directed behaviors was examined.

The robot behavior was generated by setting the initial context state with the value

that had been obtained for each of the three goal-directed behaviors. The object was

located in the center in the learning process. The experiment results showed that the

robot achieved these three goal-directed behaviors successfully when the object was

positioned in the center. Figure 4 shows the time-developments of the head direction

representing the relative position of the object and the context state for each behavior.

It is shown in the left-hand side of Figure 4 that the head direction starts to change

largely after around 30 steps with developing a different profile depending on each goal.

These trajectories are regenerated with mostly the same profiles with the ones in the

training phase. The right-hand side in this figure shows that some dimensions of the

context state develop differently for each goal. Especially, two bold lines represent

the activation of the context units, of which the initial values are adapted. The units

develop in different ways, starting from different initial values depending on the goals.

It is noted that these two context units activation states develop differently even while

the same movement pattern of approaching the object is generated. It is speculated

that these states work as dynamic memories to initiate each different goal-directed

movement that follows the initial same movement of approaching the object.

We further examined the generalization capability of the learned network. For

this purpose, the behavior generation was tested by varying the object position from

left to right within the same range used in the teaching phase but with setting the

same initial context state values which had been used in the previous experiment for

each goal. It was found that the same initial context state can generate the same

goal-directed behavior successfully regardless of the object position.

We also examined how much this generalization capability of the robot can tolerate
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Figure 4: The generation of (a) “move up”, (b) “move left” and (c) “move right”

behaviors with the object allocated in the center. On the left-hand side, head direction

represents relative position of the object to be manipulated. On the right-hand side, a

bold curve and a dotted one represent two context unit activation values of which the

initial states are adapted.
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variation of object position beyond the range trained. For this purpose, the “lift up”

action was tested by varying the object position from the left position trained to 5cm

further left by 1cm intervals. The initial context state was set with the representative

value for the “lift up” action as it was done in the previous experiment. The success

rate for each position with 5 trials is shown in Figure 5. It is shown that the trials are

100the object is positioned within 2cm farther left from the trained left position. The

robot starts to fail with the object positioned at 3cm farther left. With more than 4cm

farther left the robot fails completely. In these failure cases the robot hands cannot

approach the exact positions required to grasp the object. These results show some

generalization capability for object position variance beyond the trained range.

We further examined how the multiple trained goals are internally represented by

constructing the initial context state map. Figure 6 plots the 2-dimensional initial

context state adapted for each training sequence. In Figure 6(a) the plots are made

using category labels representing different goals. In Figure 6(b) different object po-

sitions sharing the same data aim to show the possible effects of position variance on

the internal representation of the goals. From these two plots it is seen that the initial

context state is categorized well for each goal but not for each position of the object.

This result indicates that the initial context state map is self-organized to be sensitive

to goals but not to positions of the object. This implies that although the motor be-

havior of approaching the object is adapted to the object position variance using the

sensory information of the object position, the goal information is well preserved in the

context state dynamics without being affected by the position variance.

The above experimental results show that the network has achieved both adapt-

ability to environmental variances and robustness in achieving the goals. It is shown

that the network can successfully acquire the skill of manipulating the object with

its position variances by generalizing the interpolation as well as the extrapolation of

a finite number of teaching data in learning. It seems that the robot becomes able

to generate multiple goal-directed behaviors in a contextual manner, which could be

expressed by Luria (1973)’s metaphor of “kinetic melody”.

However, it is noted that this successful condition holds good only at a certain

range of the time constant parameter τ . Our further experiments revealed that if τ

is reduced to less than half of the current value, the robot cannot achieve the goals

properly. The goal information kept in the context units, dynamics is lost during the

approach to the object because of its position variances. It was, however, found that

the adaptability to the object position variances can be much improved in this case.

On the other hand, if τ is increased to more than twice the normal value, although the
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Figure 5: The success rate of the lift up action with varying the object position to

further left of the trained range.
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Figure 6: The initial context state map with category labels denoted for (a) different

goals and (b) for different object positions.

goal information is preserved well during the movements, adaptability to the object

position variances is lost completely. This implies that there is a tradeoff between the

adaptability to the current sensation and the ability to achieve the specified goals. The

parameter τ that represents the time constant of the memory dynamics can change the

balance between the two.

In the end of the experiment-1, we examined the behavior recognition processes

of the robot when the object is moved by the experimenter in the same way as the

robot does. As it has been described in the previous section, recognition is a process

of searching for an optimal 2-dimensional vector of the initial context state that best

fits with the observed behavior. Figure 7 shows how the value of the initial context

state is searched from its neutral value (0.5, 0.5) during the recognition process of the

visual input sequence pattern st for each observed goal-directed behavior. It is seen

that each value of the initial context state (denoted by a trajectory reaching to a black

category label) converges to a neighbor of the appropriate goal cluster (represented

by clusters of white category labels) which reappeared from Figure 6. It can be said

that the network recognizes the observed goal-directed behaviors correctly using the

proposed scheme.

Now, the results of experiment-1 are summarized. Our experiments showed that the

robot can learn to generate multiple goal-directed behaviors using the initial sensitivity
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Figure 7: The trajectories of searching the optimal value of the initial context state in

recognizing the observed different goal-directed behaviors. The black category labels

denote the converged values and the white category labels denote the initial context

values adapted in the learning.

characteristics of the CTRNN dynamics. Each goal-directed behavior can be learned

with generalization for the object position variances if the time constant of the CTRNN

dynamics is set appropriately. It was also shown that the robot can recognize the

learned goal-directed behaviors by means of the inverse computation of the initial

context state values.

4 Learning with modules and levels: experiment-2

The previous experiments showed that even a simple CTRNN can learn skills for mul-

tiple goal-directed behaviors whose representation seems to possess minimal composi-

tionality. However, if a robot is to learn more diverse and complex behaviors, intro-

ducing level structures to its neuronal architectures seems inevitable. If we suppose

a two-level structure, the lower level might organize a set of behavior primitives on
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which the higher level might operate for the sequential compositions. Previous stud-

ies showed that behavior primitives can have either local (Wolpert & Kawato, 1998;

Tani & Nolfi, 1998; Demiris & Hayes, 2002) or distributed representations (Tani, 2003)

in neuro-dynamic systems. Unlike local representations, a distributed representation

has globally shared structures that can be used to represent whole primitives that

could be acquired in a single network once final generalizations are achieved. How-

ever, any distributed representation scheme would have difficulty handling increasingly

larger numbers of primitives because catastrophic memory interferences among differ-

ent primitives would occur. This problem actually happened when we attempted to

scale the single CTRNN scheme shown in experiment-1 with a larger number of be-

havior patterns. Therefore, the current study employs a level-structured architecture

with an enhanced version of our local representation scheme (Tani & Nolfi, 1998) which

showed originally how the sensory-motor flow can be hierarchically segmented.

This newly proposed architecture is examined with a developmental tutoring scheme

in order to achieve more complex behavior skill acquisitions. The developmental tu-

toring scheme means that the robot skill is developed incrementally through dense

interactions with tutors. In this scheme, the task learning is facilitated through the

robot’s self-trials, with human guidance, that are repeated in cycles until required tasks

are mastered thereby enabling consolidation learning of the neural networks. The ac-

tual interaction between the robot and the tutor takes place with force when the tutor

guides the robot movements by grasping its arms while the robot attempts to move

as driven by the CTRNNs trained in the last teaching session. Through this type of

interactions, the trajectories by the tutor guidance can be also modulated along with

the ones by the robot and thereby they could co-develop to satisfy the task goals.

4.1 The CTRNNS with levels and modularity

Before describing the details of the architecture, an intuitive account is given. Figure 8

shows the two-level neural network architecture used. The architecture is divided

into the lower level consisting of multiple CTRNN modules and a single CTRNN in

the higher level. When a set of teaching sensory sequences is given to the system,

the lower level CTRNN modules compete to be an expert of predicting the sensory

sequence. It is important to understand that a single CTRNN does not win to become

an expert for the whole sequence but it does for parts of the sequence. Other CTRNNs

become experts for other parts of the sequence. After the training of the networks is

iterated for a set of teaching sequences, the sequences become segmented by means of
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Figure 8: Two-level structured CTRNNs.

autonomous switching of the winner CTRNN associated with its gate opening. On the

one hand, the higher level CTRNN learns to predict which gate opens in the sequences.

As the result, when the learning of the networks converges, the sensory sequences can

be regenerated in a way such that the higher level CTRNN selects the next opening of

the gate and the corresponding lower level CTRNN generates the sensory prediction

pattern.

Now, the details are explained. The lower level consists of (N = 16) CTRNNS each

of which has a gate and yt of the overall outputs of this level is computed as the gate

weighted summation of each network output yi
t:

yt =
n∑

i=1

gi
t · yi

t (6)

where gi
t is the gate opening of the ith network. The output yt is the prediction of

the sensory inputs that contain 2 dimensional vision-related information (the head

direction) st and 8 dimensional proprioceptive information mt whose setting is the

same as in experiment-1. The temporal sequence of gi
t is determined by the learning

process of the lower level networks. Basically the gate opens more for the network with

less prediction error in the current step. As the soft max function is applied, the gates
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tend to open in a winner-take-all (WTA) manner. The gate opening is computed as:

gi
t =

esi
t

∑n
j=1 esj

t

(7)

si
t =

−eri
t
2

(2σ2)
(8)

where eri
t
2

denotes the time average of the mean square error (MSE) of the ith network

at time step t. The time average is obtained by using a fixed time step window. σ2

denotes the standard deviation of the errors of all the networks. Upon computing

the gate opening for each network, the error of each network used for the BPTT

computation is weighted by its gate opening. This means that a network with less

error for certain segments of sensory sequences will learn the sequences better since its

gate has a larger opening. In this way, local “expert” networks develop for segments

that repeatedly appear and sensory sequence patterns develop. These segments in the

sensory sequences are considered as behavior primitives. The sensory sequence patterns

experienced in the lower level are segmented into a sequence of the behavior primitives

that are self-organized and their sequences are represented as gate switching sequences

in the higher level(Tani & Nolfi, 1998).

Meanwhile the higher level CTRNN learns to predict the gating sequences in the

lower level CTRNN modules. The learning of the higher level occurs only after the

lower level is trained at each tutoring session. In the current implementation a single

CTRNN is allocated in the higher level. This CTRNN learns sequences of the MSE for

each lower level CTRNN module instead of its gate opening because temporal patterns

of gate opening vector frequently change much more discontinuously than temporal

patterns of the prediction error due to the WTA characteristics of the softmax function.

The CTRNN generates the next prediction of the MSE for 16 lower networks de-

noted as ˆMSEt+1 by receiving the self-feedback of its own prediction at one-step before
ˆMSEt, 2 dimensions of the visual input at the current step that are the same as those

received at the lower level, and 3 dimensions of vector inputs that specify the task

goal currently engaged. The visual sensation as well as the task switcher vector are

regarded just as inputs and they are not for prediction.

For behavior generation, the predicted error vector is sent to the lower level which is

converted to the gate openings with the softmax function in Eq. 7. This pathway serves

as a top-down control by the higher executive level onto the lower sensory prediction

level. The prediction of the proprioceptive state provides the target encoder value at

each joint at the next time step in the same way as in experiment-1. The time constant
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τ of the higher level is set four times larger than the one in the lower level. This time

constant difference enables the abstraction of information flow from the lower level to

the higher one (Paine & Tani, 2005). The exact value of τ is 5.0 for the lower level

CTRNN and 20.0 for the higher one, correspondingly.

It is noted that the scheme of the initial context state adaptation shown in Eq. 5 is

not utilized in both the lower and the higher level CTRNNs. Instead, the higher level

CTRNN is given with specific constant inputs for each task goal in both learning and

generation phases. All the initial context states are set with a constant neutral value.

4.2 Setup in experiment-2

The same robot, as shown in experiment-1, was utilized again. The robot with this two-

level structured CTRNN receives tutored training for a set of goal-directed behavior

tasks. In task-1 the robot must approach the object with both hands coming down

from the home position, grab the object, let it go, and return to the home position. In

task-2, the robot must approach the object, grab it, bring the object up and down three

times, release the object, and return to home position. And in task-3 the robot must

alternately touch the object with its right and left hands eight times before returning

to the home position.

A tutor taught these three task behaviors to the robot in 3 tutoring sessions. (Note

that all three different tasks were taught to the robot at each training session.) The

tutor was given instructions for each task. For task-1, he was asked to ensure that both

hands hit precisely the right position for object touching. In task-2, he needed to make

sure the object was held and brought up and down three times without dropping it and

that the robot touch the object with each hand as they alternate for the correct number

of sets in task-3. In each tutoring session, the task behaviors are guided and the initial

position of the object changes 6 times for each task. In Figure 9 six object positions

from 0 to 5 are for the training and 6 and 7 are for the test of position generalization.

In the first session, the robot guidance is conducted by disabling active movements

of the robot by setting the motor control gain to zero because the networks are not

yet effective with the randomly set initial synaptic weight values. In this session, the

network training was iterated for 50000 epochs for the lower level and 5000 epochs for

the higher level networks, respectively. In the second and third sessions, the tutoring

is conducted interactively by enabling active movements of the robot with the control

gain set to 50 percent of its normal operation value. The network was trained off-line

by using all tutoring sequence data obtained at each session. The network training was
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Figure 9: The initial object positions. 0 to 5 for training and 6, 7 and 8 for general-

ization tests.

iterated for 10000 epochs and 5000 epochs for the lower and the higher level networks,

starting with the synaptic weights obtained from the previous session.

4.3 Results of experiment-2

The experiment results showed that the robot learns to perform all the three task

behaviors nearly perfectly by the 3rd session, even for untrained positions of the object.

We briefly describe how the task performance developed as follows. For more detailed

descriptions of the observed development processes, the reader should refer to (Tani

et al., 2008).

Figure 10 shows how the robot self-generated the described three task behaviors in

the 3rd session. For each figure the profiles of task-1 (object position 0), task-2 (object

position 2) and task-3 (object position 2) are shown in (a), (b) and (c), respectively.

The time developments for the openings of 16 gates, mt 4 left arm encoder values and

st 2 dimensional head direction inputs for vision information are shown in the upper,

the middle and the bottom levels. In this figure each gate opening is represented by the

grey level color of a horizontal bar from white to black, corresponding to its value from

0.0 to 1.0. Those bars are aligned from the top to the bottom levels as corresponding

to the 0th to the 15th gate openings.

Figure 11 shows the developmental process of task-2 over three sessions (The plot is

shown only for task-2 due to space limitations.) The task-1 behaviors were generated

perfectly, even with the untrained object positions (6 and 7 in Figure 9) from the 1st

session. This might be because the task behavior in task-1 is simpler than those in the

others. We also observed that st and mt profiles and gate openings for task-1 do not

change drastically across three sessions. The approach to an object is encoded by the

15th gate opening. Return arm movements are encoded by the joint opening of the
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denote type of behavior primitives.
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4th and 10th gates, as shown in Figure 10(a).

In task-2, the object could not be lifted in three of the five attempts in the first

session. While the approach trajectories for both hands were almost prefect, the robot

could not squeeze the object suitably with both its hands in every position. However,

in the following teaching session, the tutor felt that the robot could self-generate most

of the desired movements and only needed a little guidance to squeeze the object

slightly harder. With this guidance, the robot’s performance improved. In the second

self-generation session, the robot manages to lift the object up and down once before

dropping it. However by the third session the robot executes the task nearly perfectly

(see Figure 11 for this developmental process).

In the first session of task-3, the robot could not touch the object most of the

time. In fact, oscillatory motor patterns for repeated touching crashed over time. In

the second session, the robot started to touch the object at least once and initiated

oscillations in motor patterns. By the third session the robot became able to touch the

object repeatedly in a stable manner as it generated more explicit cyclic patterns in

the motor outputs (see Figure 10(c).)

Now we examine what sorts of behavior primitives are acquired and how they are

combined to generate the desired task behaviors. By looking at the gating sequences

generated in the third session, we can see how continuous behavior flow is segmented

into a self-organized set of behavior primitives that emerges in our proposed neural

network architecture. For example, in Figure 10, we see that the approach to the

object by both hands (ApB) is encoded by the 13th gate opening for tasks 1 and 2.

The cyclic movement of lifting the object up and down (Li) occurs by the 0th gate

opening. The return home (Hm) occurs by the 3rd gate opening, with slight opening

of the 10th one for task-1 and the same for task-2 does by the 10th one only. Also,

the approach to the object by the left hand from the home position (ApL) in Task-3

is encoded by the 1st gate opening. The cyclic touching of the object by alternating

left and right hands (Tch) is encoded by the 11th gate opening and the return home

is encoded by the 3rd gate opening. The gating for grasping the object by both hands

(Gr) seems different between Task-1 and Task-2.

Here, two questions might come to mind. (1) Why are similar behavior patterns

sometimes encoded by different gate openings? (2) Are the encodings of these behavior

primitives sensitive to the object’s position or are they sufficiently generalized to be

insensitive to the object’s position? To examine these questions the activation profiles

in the higher level CTRNN are compared for task-2 with different initial object position

cases, namely positions 7, 8 and 6 shown in Figure 12(a), (b) and (c), respectively.
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(Position 8 is 3cm left of position 2 and is newly introduced in this experiment in

order to amplify the effects of position differences.) The profiles consist of context

unit activation and the MSE prediction vector of the 16 dimensions in the higher level

CTRNN and the gate openings and the motor profiles in the lower level CTRNNs. The

value of the MSE prediction is represented by the grey level color of each horizontal

bar where the darker color denotes the smaller MSE prediction.

First, we see that gate opening profiles and context activation profiles are mostly

the same overall for all three cases regardless of the object position difference. How-

ever, there are certain differences in the gate opening immediately before the 0th gate

opens between the position 8 and 6 cases. The 1st gate opens in the position 8 case in

Figure 12(b) and the 12th gate does in the position 6 case Figure 12(c). It is, however,

important to see that the MSE prediction vector profiles in these time windows are

similar, as are the context activation profiles between the two even though the gate

openings are explicitly different in this period. This means that the 1st and 12th local

CTRNNs in the lower level are equally good at predicting the visuo-proprioceptive

sequences in this segment and therefore show only slight differences in their errors.

Although this may introduce certain fluctuations in the gate opening between the two

because of the winner-take-all characteristics by means of the employed softmax func-

tion, it does not matter for the system because both local nets are good at generating

motor sequences with small learning errors. Here, most of the local CTRNNS actually

participate in competition for the gate opening at subthreshold levels although only

some of them are observed as explicit winners. This explains how redundant encod-

ing of behavior primitives is self-organized and why behaviors can be generated stably

regardless of such redundancy. In our preliminary experiments, it was frequently ob-

served that reduction of number of local nets introduce instability in learning because

allocation of a set of behavior primitives into limited number of local modules becomes

tighter.

Furthermore it can be said that the gate openings are performed in a context-

dependent way such that each behavior primitive can be smoothly continued from its

predecessor. Thus, the gate opening for “return home” was different for each goal task,

as was shown in Figure 10, because the previous primitives were different.

Another interesting observation in the current developmental tutoring scheme is

that the human tutors as well as the robots codevelop as they interact to achieve a

specific task goal. More specifically, when robot learning is immature, human tutors

physically interact with the robot in order to guide the robot to perform the task better.

Through the physical interactions, tutors can easily learn which ways the robot tends
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Figure 12: The context units activations and the mean square error prediction vector of

16 dimensions in the higher level CTRNN and the gate opening and the motor profile

in the lower level CTRNNs in three different initial object position cases in (a) with

position 7, (b) with position 8 and (c) position 6.
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to move and which parts of the movements should be modified. The tutor simply

exerts intentional forces on the robots only at some parts of the trajectories to be

modified and lets other parts go rather freely. The re-training of the networks with

these newly codeveloped trajectories could lead to much better learning results than

cases of training the networks with arbitrarily determined teaching trajectories. By

this means, the robot tutoring becomes a process of jointly exploring better training

paths which can influence the network’s internal structure. It is gradually organized

to become an adequate one for achieving the desired task goal.

Figure 13(a), (b) and (c) shows an observation related to the codevelopment. Each

graph in this figure shows velocity profiles for the development of teaching trajectories

on the left hand side and those generated by the robot on the right hand side for task-1

after each session’s learning. It is observed that some parts of the teaching velocity

profile in the first session are relatively steep, especially when both arms approach

the object (from 5 to 20 steps) and when they leave the object (from 35 to 45 steps).

However, in the successive robot generation phase in the first session it is seen that the

steepness in the velocity profile becomes much milder. Then in the second teaching

session the teaching velocity profile becomes mild and is also affected by the robot’s own

movement. It seems that the codevelopment of the velocity profile mostly converges

since the profiles for teaching and generation after this session does not change much.

The result of this development tutoring scheme contrasts significantly with our pre-

liminary experimental results with one-time batch training without the codevelopment

scheme. In one-time batch training, task-2 and task-3 were not accomplished even with

more learning iteration steps than those in the developmental learning scheme. This

comparative result implies the effectiveness of the codevelopmental learning scheme.

The readers may ask why the trained CTRNN can perform well even outside of

the training region for positions 6 and 7. We consider that the required movement for

position 6 can be determined simply by extrapolating from the movements for positions

2 and 4. Similarly, the movement for position 7 can be determined by extrapolating

from the movements for positions 0, 2, and 3. This type of generalization capability

of the CTRNN has been demonstrated also in experiment-1. It was shown that the

generalization can cover not only for interpolation but also for extrapolation of trained

data sets.

Additionally, we examined if the robot can pantomime object manipulation be-

haviors without using an actual object. In this experiment, the lower level CTRNN

operates in the closed-loop imaginary mode with the actual vision information inputs

st shut off after the initial step. (The vision information inputs at the initial step
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Figure 13: Development of velocity profiles guided by tutors shown on the left hand

side are contrasted with the ones generated by robot shown on the right hand side for

(a) session 1, (b) session 1 and (c) session 3 for task-1.
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are necessary in order to integrate them through future time steps.) The higher level

CTRNN also receives the imaginary st generated in the closed-loop operation in the

lower level CTRNN rather than the actual one. We ran this experiment for task-2

because the visual inputs change dynamically in this task only when the robot brings

up and down the object. The results show that the sequential behavior of approaching

the object, the cyclic movement of bringing up and down the object, and homing are

well imitated. It was also seen that the imaginary sensations are reconstructed well

(see more details in (Tani et al., 2008).) A further interesting observation was that the

same behavior could not be imitated at all when the imaginary sensor loop was cut

off and the inputs were fixed as if the object were constantly positioned in the center.

In this case, it was observed that the motor movement was frozen after the object

was grasped even though the gating signal from the higher level was completely the

same as the one in the case with the imaginary sensor loop. It is understood that the

inadequately fixed sensory inputs inhibit the CTRNN dynamics of the periodic move-

ment. This explains why the vision-related and the proprioceptive signals are treated

in an inseparable manner in the lower level CTRNN. This finding is analogous to the

neuroscience observation that vision and proprioception are integrated well in parietal

cortex (Iacoboni, 2006).

5 Emergence of level-structured functions: experiment-

3

The experiments in the previous section showed that certain complex behaviors can be

learned if level-structured neuronal functions are given explicitly to the systems. The

interactions between the levels are achieved by introducing the gating mechanism asso-

ciated with local modular representations in experiment-2. Our previous study (Tani,

2003) showed that level interactions can be achieved also by means of a distributed

representation scheme, the so-called RNN with parametric biases (RNNPB).

This section reviews a novel trial by Paine and Tani (2005) to investigate whether

an appropriate mechanism of level interactions can be self-organized without explicitly

introducing apriori schemes. More specifically, our new experiments investigate how

the level-structured functions can emerge by means of evolutionary computation if level

decomposition tasks are imposed on the system.
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5.1 Set up of experiment-3

The following exploratory navigation task is considered as an experimental platform

for the problem. A simulated mobile robot equipped with 8 proximity sensors and 2

motor-driven wheels explores a maze environment shown in Figure 14. The task of the

robot is to find navigation paths reaching to as many different goals as possible from

a start position. This navigation task can be decomposed into two levels of system

functions. The first level should deal with collision-free maneuvering, going straight

along a corridor and turning left or right at corners. The second level should deal with

sequencing the turning at corners in order to reach the goals. The goal of the study is

to understand how such two levels of functions can be self-organized in neural networks

from scratch without showing explicit cues.

The robot is implemented with a fully connected CTRNN which is evolved by a

genetic algorithm (GA). The activation dynamics of each neuronal unit is given by:

τ u̇i = −ui +
∑

wijaj (9)

ai = sigmoid(ui + bi) (10)

We tested two types of CTRNNs as shown in Figure 15. Figure 15 (a) is called a

“bottle-neck” network since the information flow between the top and bottom levels is

narrowed in its bottle-neck. (The neural activations can propagate to the other level

only through the bottle-neck neurons (BN).) The bottleneck CTRNN has 5 neurons

in the lower part, 2 BNs, and 4 neurons in the upper part. There are 2 so-called

task neurons (TN) in the upper part whose functions will be explained later. All

neurons in the lower part receive 8 proximity sensor inputs and output to two motor

neurons, driving left and right wheels, through synaptic connections. Figure 15 (b) is

a standard CTRNN consisting of 9 neurons including two TNs. All neurons receive 8

sensory inputs and output to 2 motor neurons.

We employed the ideas of initial sensitivity, described in the previous section, to

generate combinatorial action sequences in the current task. The idea in the current

setting is that the robot can reach different goals depending on the initial state values

set in the TNs shown in Figure 15. In the evolutionary process, a set of the initial

state values in the task goal neurons evolves, along with the synaptic weights and the

biases. The time constant τ for each neuronal unit is also evolved. The fitness function

is designed to increase the number of different goals reached with the set of evolved

initial state values. We repeated the evolution runs 20 times for both types of networks

for statistical comparisons of their performances. Each evolution run is conducted for

200 generations with an 80 robot population per generation.
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Figure 14: A simulated mobile robot learns ways to reach 8 different goals starting

from the home position.

set initial task neuron states

set initial task neuron states

Figure 15: CTRNN with a bottle-neck in (a) and standard CTRNN in (b)
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5.2 Results of experiment-3

Our experiment results showed that the best performance is obtained in the bottleneck

network. In 20 evolutionary runs, the average number of different goals reached was 5.1

for the bottleneck CTRNN, and 2.3 for the standard CTRNN. The bottleneck CTRNN

found five or more goals on 14 of 20 runs. The standard CTRNN found them on only

six runs.

The temporal neuronal activation profiles for an evolved bottleneck network, which

found 6 different goals, are shown in Figure 16. The profiles correspond to a Right-Left-

Right turn sequence, starting from the home position, that reaches goal 6 of Figure 14.

The top row shows the activation profiles of two TNs and two bottleneck neurons

(see Figure 15(a)). The bottom row shows the profiles of the two motor output neurons

in the lower part of the network. Observe that the motor outputs show much faster

dynamics than those of the TNs and BNs. Actually, we found that the time constants

τ for the motor neurons evolve to be much faster than those of the TNs and BNs in all

successful evolution runs. The activation profiles of the BNs correlate with right and

left turns, denoted by labels in the top figure. For the right turn, both BNs have high

activation values, while BN-2 takes a low value and BN-1 slightly decreases for the left

turn. TN-2 shows a similar type of encoding as the BNs, while the dynamic profile of

TN-1 seems uncorrelated with the turn sequence. These profiles suggest that certain

level structures are self-organized in the bottleneck network. The following analysis

examines such structures.

First, functions of the BNs were examined. We constructed a phase space analysis

for the BNs, focusing on the cornering behavior at the T branch. Figure 17 indicates

how the cornering behavior varies when the activations of two BNs are clamped ex-

ternally to various values. It is observed that the BNs activation space is divided into

three regions, grey, white and black, which correspond to left turns, right turns and

collisions with the walls, respectively. It is considered that the BNs activation states

encode the behavior primitives of turning left or right in branches.

Next, we constructed a phase space analysis for the task neurons, initial states,

focusing on their possible encoding for the turning sequences. The results can be seen

in Figure 18, where the regions in the initial state space that reach different goals

are labeled by the corresponding turn sequence, e.g., LRR for a Left-Right-Right turn

sequence. The turn sequence is denoted by number in the plot (see the legend on the

right).

It is observed that the sequence patterns are arranged in clusters in the TN initial
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Figure 16: Neuronal activity for a Right-Left-Right turn sequence in the bottleneck

network. Top: Neuronal activity of bottleneck and task neurons, respectively; Bottom:

Activities of motor output nodes.
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state space. First, the space is grossly clustered based on the first turn direction, left

or right, of the movement sequence, as shown by a thick solid line in Figure 18. Each

of these two clusters is then further divided into topologically ordered sub-clusters,

depending on the second turn direction of the movement sequence, as shown by a solid

line. These sub-clusters are still further divided into smaller clusters, depending on

the third turn as shown by the dashed lines. These smallest clusters neighbor each

other and share the first two turns of their sequences in common. In other words, the

turn sequences are hierarchically ordered into progressively smaller regions of the initial

TN activity space as additional turns are added. As the complexity of the movement

sequence increases, so too does the initial sensitivity to the TN activities.

In order to clarify the functional roles of the upper level of the bottleneck network,

we observed the activities of the upper level neurons while they were decoupled from

the lower level ones i.e., disconnecting all the synaptic connections from the lower level

neurons to the BNs. It turned out that the activities over time of the TNs and BNs

are mostly the same as the original ones provided that the same initial states are set in

TNs. Compare the disconnected case shown in Figure 19 with the original one shown

in Figure 16 for reaching goal 6.

The results imply that the whole network was evolved such that the upper level

generates top-down internal images or plans for achieving the goals without accessing

the sensory inputs, and that the lower level deals with actual maneuvering control of

the robot based on the plans. More specifically, the upper level generates the top-

down anticipation of how the BNs states should develop based on the goal information

encoded in the initial states of the TNs while the BNs, states activate the behavior

primitives of turning left or right in sequences in the lower level.

Finally, the readers might ask why the standard CTRNN case cannot evolve success-

fully as compared to the bottleneck case. It is assumed that evolving different dynamic

functions with different time constants is difficult within a single fully-connected net-

work because it would cause too much interference among them. In the bottleneck

case, fast and slow dynamics can be evolved more easily by having less interference

with each other since they are segregated by the bottleneck of the network. Our ex-

periments showed that a class of level-structured functions can be evolved provided

that adequate topological constraints such as bottlenecks or hub-like connectivities,

are given in the network.

40



Bottleneck Neuron 2 Activity

B
ot

tle
ne

ck
 N

eu
ro

n 
1 

A
ct

iv
ity

Right

Left

Collision

Figure 17: Phase space analysis for two bottleneck neurons.

Task Neuron 2: Initial Activation Value

T
a
s
k
 N

e
u
ro

n
 1

: 
In

it
ia

l 
A

c
ti
v
a
ti
o

n
 V

a
lu

e

RRR

LLL

LLR
LRR

RLL

RLR

0: LLL

1: LLR

2: LRL

3: LRR

4: RLL

5: RLR

6: RRL

7: RRR

9: Crash

Figure 18: Phase space analysis for task neurons initial states. Plotted numbers cor-

respond to turn sequences as in the legend on the right.

41



6 Discussion

6.1 ”Organic” compositionality

The current paper has reviewed different schemes to represent behavior skills of robots

using dynamic neural networks. However, all approaches share the same research

motivation to see what sorts of “organic” compositionality can be self-organized in

given neuro-dynamical systems when the robots are required to learn multiple goal-

directed behaviors through diverse sensory-motor experiences.

In the beginning of the current paper, we discussed that acquisition of reusable

behavior primitives is indispensable in achieving the compositionality in action repre-

sentation. In our studies, behavior primitives are represented implicitly or explicitly

depending on each of the proposed CTRNN architectures. Let’s review them again

briefly.

In experiment-1 multiple behavior primitives are embedded in the dynamics of a

single CTRNN. The behavior starts from “approach to object” and then it branches to

either of “hold up”, “move to left” or “move to right” based on the initial state of the

context units. This mechanism of branching can be explained in terms of a pitchfork

bifurcation (Wiggins, 1990) as schematically shown in Figure 20.

The intuition is that there is only one attractor (a stable fixed point in the direction

of x) encoding behavior-A before the branching point and it bifurcates to two attractors

of behavior-B and behavior-C after the branching. It is essential that each behavior

primitive is encoded by attractor dynamics because its convergent vector flow provides

inherent robustness in generating behaviors. On the other hand, pitchfork bifurcation

provides the composition mechanism in terms of dynamical switching from one behav-

ior primitive to another. The way of the switching depends on the goal information

embedded in the initial state of the context units and the dynamic memory organized

in these units generates motor-act sequences fluently and contextually toward the goal.

Furthermore, our prior study with simple simulations (Nishimoto & Tani, 2004)

showed that a conventional RNN of Jordan-type (Jordan, 1986) can also learn recur-

sively branching structures (tree-like graph structures) but with limited depth using

the same initial context state adaptation scheme. In this case, fractal structures are

self-organized in the mapping between the initial state and the category of infinite num-

ber of branching sequences. It can be said that the combination of attractor dynamics

and bifurcation mechanisms self-organized in nonlinear adaptive dynamical systems

can provide both robust and compositional characteristics to the systems.
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The idea of switching behavior by pitchfork bifurcation is analogous to the observa-

tions of human rising motions by Yamamoto and Kuniyoshi (2002). This study showed

that diverse trajectories of human rising motions can be qualitatively represented by

topological graphs in which each arc denotes a transitional motor act and each node

denotes an unstable branching point among possible behaviors. In their studies, the

branching structures are mostly generated based on the physical body kinematics. A

similar idea had been seen in a robot navigation scheme (Tani & Fukumura, 1994) in

which the branching, in mobile robots maneuvering in obstacle environments, is made

by means of a pitchfork bifurcation in virtually generated potential fields. On the other

hand, in the current case, the branching structures are generated based on the neuro-

dynamic structure self-organized through learning. It is highly likely that both effects

of adaptive neuro-dynamics and fixed body kinematics contribute to generations of the

branching structures in skilled human behaviors.

The second experiment showed a trial to scale the CTRNN scheme. Our preliminary

studies showed that a single CTRNN cannot store more than 3 or 4 behavior primitives

in a stable manner. Surprisingly, it was true that increasing the number of neurons

in the network does not help this situation progressively. The reason for this is that

the activation of each neural unit becomes too correlated with others because of tight

coupling among them. This induces the so-called catastrophic interference problems

(McCloskey & Cohen, 1989) in which acquisition of one attractor severely interferes

with other ones, and thus limits the memory capacity of the network. The gating

networks scheme is employed to avoid this problem by allowing local representation

for encoding each distinct behavior primitive (Wolpert & Kawato, 1998; Tani & Nolfi,

1999).

One novel idea shown in experiment-2 is to introduce different time constant dy-

namics in the lower and the higher levels. The lower level networks learn to anticipate

how sensory flow develops in time with their fast time constant dynamics. The higher

level network learns to anticipate how the prediction error is generated at each local

module in the lower level. The gate opening at each module is controlled by its slow

time constant dynamics. The system can be scaled much more by decomposing the

complex behavior dynamics into multiple levels of different time constant dynamics,

incorporated into local modular representation schemes.

The interactive developmental tutoring is another interesting trial examined in

experiment-2. From the experiment results, we learned that the CTRNNs do not

learn well all of the arbitrary patterns given, but they have preferences for the patterns

to be learned (see details in (Tani et al., 2008)). The network has its own inherent
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dynamic characteristics pre-determined by various parameters of the network, which

determines such preferences. For example, a CTRNN with a slow time constant can-

not catch up to rapid changes in the given teaching set of sensory-motor profiles. In

addition, the tendency of generalization in learning at each network also generates the

preferences. Each network learns each behavior primitive with variations in teaching

trajectories depending on the object position. If the changes of teaching trajectories

versus the object position are smooth, such relations can be learned as generalized

through repeated learning processes. However, if there are some patterns which can-

not be generalized among others, such patterns cannot be learned well. Tutors may not

always be conscious about generating such particular teaching patterns by themselves.

The problem here is that it is difficult for tutors to know any networks, learning

preferences prior to their actual trials and also to predict how the generalization would

proceed in repeated learning. Therefore, tutors need to explore the learning preferences

by interacting with the robot driven by the network dynamics. In the first session,

the teaching trajectories in our experiments were arbitrarily provided to the networks

via the tutor’s attempts to satisfy the task specifications. Such arbitrariness resulted

in generating large errors in the self-generated motor patterns because the teaching

patterns could not be generalized well. The tutors feel the “intentionality” of the robot

driven by the network’s dynamics as a force that represents the gap between how the

robot intends to move and how the tutors intend to guide. However, these errors were

minimized in the subsequent tutoring sessions because the directions of generalization

by the network and the ways of tutoring reconcile each other gradually through the

repeated interactive trials. Consequently the motor trajectories satisfy the constraints

imposed by the task specifications. Such intensive interactions during the tutoring

processes allow the compositionality achieved in the networks to be more “organic” in

the sense that inherently natural dynamics gradually develop in the networks.

Experiment-3 looked at another aspect of organizing level structures. When we

design more complex network architectures with modules and levels, parameter tuning

of the networks becomes more difficult. Actually, the success in experiment-2 required

an adequate tuning of both time constants in the lower level network and the higher

one. It is also true that the parameters for the gate dynamics such as σ2 have to be

carefully hand-tuned depending on patterns to be learned. Therefore, it is natural to

ask if the scheme of the gating modular networks is the only way to scale. Experiment-

3 employed the simulated evolutionary exploration scheme in order to examine this

problem. It was shown that a level-structured function with different time constant

dynamics evolves in the network. The dynamic function with the slower time constant
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predicts abstract plans for generating goal-directed behaviors while the one with the

faster time constant generates actual motor acts based on the plans.

An interesting finding is that the evolutionary exploration found a mechanism sim-

ilar to the RNNPB (Tani, 2003), namely a set of behavior primitives are represented

distributively in a single network with bifurcation parameters represented by the BNs

activations. Although we have discussed that the distributed representation scheme

has difficulty encoding a large number of behavior primitives because of interference

problems, the scheme has its own merits in other aspects. Firstly, the structure of the

network is simple, consisting of a single network associated with a small vector for bi-

furcation parameters. More importantly, the distributed representation allows sharing

of common functions among different behavior primitives within a single network. For

example in experiment-3, two behavior primitives that evolved in the network share a

common behavior function of collision avoidance against walls. The left turning and the

right turning behaviors are just achieved on the top of this collision avoidance mech-

anism. It can be said that a generalized representation is more likely to self-organize

in a distributed representation than in a local one because a set of memory patterns

is memorized while preserving relational structures among them in a shared network

(Sugita & Tani, 2005). This has been theorized by the PDP group (Hinton, McClel-

land, & Rumelhart, 1986) for more than two decades. The results of experiment-3

showed us the most implicit way to achieve behavior compositionality where we do

not see any explicit “homunculus” to manipulate the representations internally. All

that exist are just evolved dynamical structures and their natural time developments in

which we, as external observers, might see the emergence of compositionality in their

phase space. This aspect should account for the essence of “organic” compositionality.

The discussions in this subsection are summarized as follows: It can be said that

the compositionality in representing skills for goal-directed behaviors can be achieved

to certain extents in various CTRNN architectures proposed by the authors and that it

can be enhanced especially by introducing adequate level structures into the networks.

It can be also said that the compositional mechanisms can be “organic” provided

that the CTRNNs achieve generalization through learning various sensory-motor ex-

periences and that they capture the contextual nature of the skilled behaviors. It is

still a debatable problem whether a distributed representation or a local one should

be employed for representing behavior primitives. Although the local representation

scheme could gain compositionality more easily than the distributed one because each

primitive can be manipulated as an independent object as encoded in a separate local

network, it might have less generalization capability among a set of primitives. On this
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account, one important future research direction is to explore an intermediate repre-

sentation scheme between thw two extremes of a distributed representation and a local

one. It would be beneficial if the degree of distribution in the representation could be

optimized in the learning processes. This problem is open for future.

6.2 Interpretations of parietal-premotor interactions

Now, we discuss how the results of our synthetic robotics studies can be reconciled with

empirical neuroscience studies. The central hypothesis in the current paper is that

the IPL-PMv network might acquire a compositional representation for generating as

well as recognizing goal-directed behaviors through iterative learning processes. Under

this central hypothesis, one essential assumption is that IPL might play an important

role in predicting future sensory images and/or abstract plan level images regarding

actions rather than just associating different sensory modalities. The Rizzolatti group

had similar speculation in their recent paper (Fogassi et al., 2005) that IPL might form

predictive chains regarding sequences of motor acts. They stated that “the organization

of IPL receptive fields also favors a model that postulates a chain between neurons

coding subsequent motor acts”(Fogassi et al., 2005). Their idea came from the finding

of IPL neurons in monkeys which facilitate the mouth opening after they respond to

touching or grasping an object (Yokochi, Tanaka, Kumashiro, & Iriki, 2003).

Furthermore, some of our robotics experiment results reviewed in the current paper

can be directly related to the recent finding of the goal encoding IPL neurons by

Fogassi et al. (2005). In their experiments, monkeys were trained for two different

goal-directed behaviors, where one is to grasp a piece of food to eat and another is to

grasp a solid object (the same size as the food object) to place it into a cylinder. Their

interesting finding is that activation patterns of many IPL neurons during grasping are

different depending on the subsequent goals, namely to eat or to place, even though the

kinematics during grasping are the same. Their supplemental experiments confirmed

that the activation preferences during grasping do not originate from the visual stimulus

difference between food and solid objects, but from the goal differences. This finding

may correspond to the results obtained from experiment-1. In experiment-1 we showed

that the activation temporal patterns of some context neurons while approaching an

object are specific to the subsequent goals even though the sensory-motor profiles

during this period are the same. It turned out that goal information is preserved in

this temporal activation pattern of the context neurons in terms of memory dynamics

by utilizing the initial sensitivity characteristics. The same mechanism was observed
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in experiment-3 in which navigation skills reaching to different goals are successfully

evolved. In this case, the goal information is embedded in the initial state of the TNs.

This might also correspond to the finding by Sato et al. (2006) that some neurons in

medial parietal regions are involved in goal-directed navigation in monkeys.

It is noted that there is another way to represent goal information. The goal can

be represented also by static activation patterns of neurons as have been shown in

experiment-2 as well as in our prior studies using the PB vector (Tani & Ito, 2003;

Ito & Tani, 2004). In experiment-2 the gate opening sequences are encoded by static

input patterns in the higher level CTRNN. However, our preliminary simulation ex-

periments showed that the static vector scheme cannot be extended to learning of

tree-like branching action sequences. Such complex sequences might be learned much

better with the scheme utilizing the initial sensitivity characteristics of neuro-dynamic

systems. Our previous study (Nishimoto & Tani, 2004) as well as the experiment-3 re-

sults showed that action branching sequences can be learned by self-organizing fractal

structures in the mapping between the initial state and the target sequences. However,

a disadvantage utilizing the initial sensitivity is that information about long distance

goals preserved in the dynamic memory might be volatile. On the other hand, the

goal information encoded as a static input vector is stable because the information

is always there. It is expected that future neurophysiological experiments will clarify

whether the goal information is encoded in static activation patterns of neurons or is

preserved in the dynamic memory of neural activations utilizing the initial sensitivity

characteristics.

Another question is whether the goal information is encoded in PMv or in IPL.

Originally, mirror neurons that encode goals of actions were found in PMv (Rizzolatti

et al., 1996). Fogassi et al. (2005) speculate that the same chained organizations

might exist both in PMv and IPL firstly because they are interconnected tightly and

secondly because they share similar receptive fields from sensory inputs. We, however,

may construct a more persuasive proposition from the modeling view. Our hypothesis

is that PMv sets goals of behaviors by sending the initial state vector to the internal

neurons in IPL before actual movements initiate. By receiving the initial state, the IPL

network initiates its dynamics for generating the corresponding goal-directed behavior.

PMv can also recognize goals of observed behaviors by inversely searching the optimal

initial states that account for the observations. The central assumption here is that

PMv might be involved mainly with manipulation of the initial state either for setting

goals or for recognizing goals. On the other hand, the networks in IPL might embody

the actual ongoing dynamics of generating the contextual flow of a “kinetic melody”
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(Luria, 1973) for achieving the intended goals. It is expected that future joint research

by modeling and empirical researchers will examine these arguments.

6.3 Toward understanding brain mechanisms for cognitive be-

haviors

Finally, we briefly discuss how the robotics modeling approach can contribute to un-

derstanding brain mechanisms for cognitive behaviors. It is fair to say that the brain

mechanisms of acquiring compositional representations for skilled behaviors are far

from completely understood. It is true that recent electrophysiological studies provide

us a number of interesting findings on correlations between behaviors and neuron acti-

vation patterns in various conditions. Although we can draw plausible explanations on

the mechanisms of target cognitive behaviors from those observed data, they are still

just hypotheses. On the other hand, although the robotics researchers can show the

exact mechanisms of their own robots for generating target cognitive behaviors, they

can never prove that those mechanisms actually take place in real brains. What can be

shown by either empirical studies or robotics modeling studies might be just a plausi-

bility at the most. Nevertheless, it should be true that the constraints from both sides

can elucidate more comprehensive and realistic accounts for the target mechanisms in

real brains.

There seem to be two extreme approaches in modeling studies. One general ap-

proved approach is to build models of target biological systems as precisely as possible.

The objective is to reconstruct the biological behavior of the target systems in digital

computers by paying close attention to the exact properties of the target organisms,

such as neuronal populations, synaptic connectivities, and the cell firing characteristics.

This approach, however, faces potential difficulties when the properties of the target

organisms are not well known. And this actually happens in many situations in brain

science. For example, we don’t yet know the details of neuronal network structures

or the exact synaptic connectivities inside parietal cortex. Therefore, we consider an

alternative. The alternative approach is concerned only with abstract models of the

targets. The objective in this case is not to mimic the reality but to elucidate general

mechanisms by comparing among possible models that assume various conditions in

the target biological systems, as we have shown in the current paper. The current paper

examined how two extremes of local and distributed representations can affect learning

and generating behaviors. We also examined how the connectivity constraints in net-

works, such as the bottleneck, could affect the self-organization of the level-structured
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functions. The attempt here is not to look at a specific point in a parameter space even

though it might exactly correspond to the biological reality. Rather it is to elucidate

the general mechanisms or principles of the target biological systems by comparatively

studying various possible points.

Robotics provides us a good opportunity to embody brain models under real world

settings by having sensory-motor interactions with the physical world. Studies focusing

on such couplings between internal neuronal dynamics and the outer physical world

have often resulted in obtaining unique insights for understanding cognitive behaviors.

At the same time, we often notice that there is a large diversity in neural network

models embodied in robotics experiments. Of course, it is nice to know that each model

has a specific advantage in enhancing cognitive behaviors of robots. However, the more

important thing is to extract more plausible mechanisms by comparing among various

robotics experiments conducted by different research groups. We again emphasize the

importance of comparative studies among the various possible assumptions of models.

The knowledge accumulated through such trials could inspire empirical neuroscientists

to conduct biological experiments in real brains. The cycle of proposing plausible brain

mechanisms through robotics modeling and examining the reality of biological brains

by empirical research has a good chance of describing the principles of the brain and

accounting for various cognitive behaviors.

In order to kick off such trials, a list of possible experiments is proposed that might

interest neuroscientists.

1. One question from the modeling side is that if PMv cells actually encode goal

information for a particular action, is it by their initial activation state or by their

static activation state which lasts during the whole action period? This could

be answered by conducting unit recording for populations of PMv cells. Animals

would perform for different trained goal tasks which are similar to the monkey

tasks shown in (Fogassi et al., 2005).

2. Another question is whether the encoding of behavior primitives assumed in IPL

takes a local representation or a distributed one. This question can be examined

again by unit recording of populations of IPL cells to see if each behavior primitive

is represented by particular activation patterns of the population. After animals

are trained to be able to generate a set of behavior primitives with minimum

error, measuring overlap between the population of firing for different behavior

primitives would show the distribution in their neuronal encoding. If some lo-

cality is found, a further question might be if we can find mutually inhibitory
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mechanisms among such local regions, corresponding to a gating mechanism.

3. However, if behavior primitives are in fact represented by the correlation of cell

firing in a population, it might be necessary to use simultaneous recording with

multiple electrodes.

4. The last experiment might be a bit difficult. In the previous section, it was spec-

ulated that some population of cells which have a similar but broad response to

the same stimulus could be modeled as a dynamic unit with a slow time constant.

On the other hand those cells with a sharp response with synchronization could

be by the ones with a fast time constant. If we can identify such populations char-

acterized by different time constants in their collective activities, the question is

whether the distribution of the time constants shows certain locality, for example

in IPL. Although measuring such locality by using simultaneous recording would

be very difficult, finding such locality in IPL could lead to the finding of level

structures as well as possible mechanisms for the organic compositionality in this

cortical region.

7 Summary

The current paper introduced a synthetic approach using robots to understand brain

mechanisms for achieving “organic” compositionality in representing skills to achieve

multiple goal-directed behaviors. Inspired by neuroscience studies on the roles of IPL-

PMv interactions, we assumed that IPL networks may predict motor-related sensory

flow by means of forward dynamics based on the goal information input from PMv. Mo-

tor flow may be generated in association with the forward prediction of future sensory

flow. We also assumed that the goals of observed motor behaviors can be recognized

by means of an inverse computation through the same forward prediction network in

IPL. Based on these assumptions, a set of different dynamic neural network models

has been proposed and they have been implemented in different robotics experiments.

The first experiment showed that multiple goal-directed behaviors can be learned

with certain generalization in a simple CTRNN architecture utilizing its initial sen-

sitivity characteristics. Our analysis showed that the motor behaviors are fluently

articulated by means of a pitchfork bifurcation appearing in the network dynamics.

The second experiment showed that the CTRNN scheme can be scaled by introduc-

ing some modular and level structures in the network architectures. We also showed

that the interactive and incremental tutoring scheme can enhance the acquisitions of
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the skilled behaviors. The third experiment showed that the CTRNN can evolve to

possess fast and slow time constant dynamics internally by limiting their mutual in-

teractions by having the bottleneck. It was observed that by coupling these two sets

of dynamics, level-structured functions emerge by which multiple goal-directed behav-

iors can be generated. It is concluded that the self-organization process in each of

the proposed dynamic neural network models can achieve “organic” compositionality

that affords generalization, robustness and context-dependency in generating multiple

goal-directed behaviors under specific conditions for each.

It is expected that future iterative conversations between robotics modellers and

empirical neuroscienitists will elucidate more plausible mechanisms of brain function

with compositionality in generating cognitive behaviors.
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