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Abstract

The current paper reviews a connectionist model, the recurrent neural net-
work with parametric biases (RNNPB), in which multiple behavior schemata can
be learned by the network in a distributed manner. The parametric biases in
the network play an essential role in both generating and recognizing behavior
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patterns. They act as a mirror system by means of self-organizing adequate
memory structures. Three different robot experiments are reviewed: robot and
user interactions; learning and generating different types of dynamic patterns;
and linguistic-behavior binding. The hallmark of this study is explaining how
self-organizing internal structures can contribute to generalization in learning,
and diversity in behavior generation, in the proposed distributed representation
scheme.
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1 Introduction

The ideas of motor and behavior schemata (Arbib, 1981; Feldman, 1980; Bizzi, Acornero,

Chapple, & Hogan, 1984) are indispensable when biological or artificial systems are

required to generate behavior patterns flexiblely as adapted to their environmental

situations. The underlying idea is that a set of motor programs are stored by which

their combinations in space and time can generate variety of behaviors. There are

two essntial requirements concerning behavior schemata. One is about the composi-

tionality. The motor systems should have certain manipulatable structures by which

various combinations of behavior patterns can be generated. The other is about their

grounding. It is required that actual behavior patterns should be generated from the

schemata robustly in the tight coupling with the environmental dynamics. The current

paper address these issues by reviewing studies conducted by the authors as well as

others for recent years.

One central discussion in the current paper is how a set of behavior schemata are

embedded in memories organized in neuronal network models. Is each of the behavioral

schemata memorized in a corresponding local network module independently? Or are

all of them memorized distributively in a network without having specific modules?

The most of prior studies have investigated the localist representation scheme. Tani

and Nolfi (1998) and Wolpert and Kawato (1998) proposed modular neural network

schemes in which each pair of inverse and forward models for specific behavior prim-

itives is embedded in a corresponding local expert network. One network module is

selectively activated by means of winner-take-all dynamics among the modules in order

to recognize or generate a specific learned behavior primitive. In the computational

models of Amit and Mataric (2002) and Inamura, Nakamura, Ezaki, and Toshima

(2001), a cluster of motor primitives are organized in the lower level. Then, each local

hidden Markov model (HMM) in the higher level learns a specific sequence of activat-

ing those primitives. Ijspeert, Nakanishi, and Schaal (2003) envision motor primitives

that consist of oscillatory movements and discrete movements. Each of these two types

of primitives can be represented by a specific differential equation, where movement

profiles can be modified by changing the equation parameters. In the localist scheme,

a new behavior schema can be learned by just adding its template to the existing set of

local modules. This type of learning is quite easy since the addition does not cause any

memory interference with the current memory contents because of the independence of

each module. However, the question may arise of how such learning can achieve gen-

eralization for unlearned patterns. In order to generalize the learned contents, certain
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underlying structures, accounting for each instance of learning, should be acquired. If

the localist scheme is employed, each behavior schema is learned as an independent

template in which generalization across different behavior schemata becomes difficult.

The current paper reviews the possibility of a distributed representation scheme as

an alternative which the authors have studied in recent years in the context of behavior

learning by robots. In the distributed representation, multiple behavior schemata are

embedded in a single neuronal network. Each schema is memorized distributively

over all synaptic weights, and is thus represented among the activations of all neurons

within the network. In such situations, each schema memory is no longer independent

but can exist only in relation to others. It is considered that learning is a process of

self-organizing the global structure, accounting for the relations among the memorized

schemata. The main focus of the current paper is to examine what sorts of structures

emerge through the self-organization process by means of the proposed distributed

representation scheme. We further investigate how such structures could contribute

to generalization in learning and diversity in behavior generation. This part of the

analysis will be the highlight in the current study.

Our distinction between the local and the distributed representation so far might be

similar to the distinction between synchronic and diachronic modularity discussed by

Ziemke (2000) in which “synchronic” referes to multiple modules existing as separated

hardwares at the same time while “diachronic” referes to multiple schemata that are

different instantiations of a single hardware at different occasions.

Another essential characteristics in the model proposed by the authors is that the

system performs in both generation and recognition of behavior patterns as a mirror

system (Pellegrino, Fadiga, Fogassi, Galless, & Rizzolatti, 1992; Rizzolatti, Fadiga,

Galless, & Fogassi, 1996). Pellegrino et al. (1992) discovered that there is a “mirror

system” in which those neurons active when the monkey executes a specific object

handling behavior are also active when the monkey observes other monkeys or hu-

mans carrying out the same behavior. Based on this finding, Oztop and Arbib (2002),

Billard and Mataric (2001) proposed biologically inspired models of mirror systems.

Inamura et al. (2001), Amit and Mataric (2002) showed modeling of mirror systems in

the computational level by using HMMs . On the other hand, the authors attempt to

explain functions of mirror systems in the dynamical systems level where the behav-

ior generation is regarded as a top-down process and its recognition as a bottom-up

process. This bi-directional processes are considered to play an important roles also in

generating its own behaviors while recognizing their consequences in the environment

simultaneousely. The authors speculate that adequate dynamic interactions between
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these bottom-up and top-down processes might solve possible conflicts between the

compositionality and the grounding of behavior schemata.

The paper first reviews our proposed scheme, the so-called recurrent neural net-

work with parametric biases (RNNPB) (Tani, 2002, 2003; Tani & Ito, 2003), through

which multiple behavior patterns can be learned for their generation and recognition

as a mirror system. The scheme has been implemented for three different robotics

tasks. The first experiment, utilizing a small humanoid robot, will demonstrate how

the RNNPB in terms of a mirror system works in the imitative interactions between

a user and the robot. This study will examine the dynamic interactions between the

top-down behavior generation process and the bottom-up recognition process of oth-

ers, especially focusing on synchronization between those two processes. The second

experiment with an arm robot will clarify the dynamic structures self-organized in

the RNNPB, especially when different types of movement patterns (end-point move-

ments and cyclic movements) are learned simultaneously. The analysis will clarify the

generalization characteristics in learning movement patterns and the diversity in their

generations. The third experiment with a mobile robot will show binding of behavioral

processes dealing with objects and simple linguistic processes consisting of verb and

object pairs of which task setting is analogous to Arbib (2002)’s hypothesis relating

the mirror neurons with language. The analysis of the self-organized structures will

reveal the compositionality and the generalization in the associative learning between

behaviors and language by using the RNNPB.

2 Model overview

This section presents the main ideas behind our proposed model RNNPB. For details

of the modeling, please refer to our prior publications (Tani, 2002, 2003; Tani & Ito,

2003; Sugita & Tani, 2003). The main characteristic of the RNNPB is that chunks of

spatio-temporal patterns of the sensory-motor flow can be represented by a vector of

small dimensions. This vector plays the role of the bifurcation parameters of nonlinear

dynamical systems. In other words, different vector values make the system generate

different dynamic patterns. In our modeling, the nonlinear dynamical system is im-

plemented by a Jordan-type recurrent neural network (Jordan, 1986). The parametric

biases (PB) that are allocated in the input layer function as the bifurcation parameters.

It is reminded that the RNNPB scheme is different from Doya and Yoshizawa (1989)’s

scheme of multiple oscillatory patterns learning by an RNN since their model utilizes

the multiple attractor structures rather than the parameter bifurcation for embedding
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different oscillatory patterns. The main advantage of utilizing the parameter bifurca-

tion is that ideally the RNNPB can encode infinite number of dynamic patterns with

modulating analog values of the PB vector while the number of patterns eoncoded by

multiple attractors is limited in general.

The role of learning is to self-organize the mapping between the PB vector and

behavioral spatio-temporal patterns. It is important to note that the PB vector for

each learning pattern is self-determined in a non-supervised manner, without teacher

signals. Another feature of the RNNPB is that the system works as both a behavior

recognizer and generator as a mirror system after learning. When given a fixed PB

vector, the RNNPB generates the corresponding dynamic patterns. On the other hand,

when given target patterns to be recognized, the corresponding PB vectors are obtained

through an iterative inverse computation.

In the learning phase, a set of movement patterns are learned through the forward

model of the RNNPB by self-determining both the PB vectors, which are assigned

differently for each movement pattern, and a synaptic weight matrix, which is common

for all the patterns. The information flow of the RNNPB in the learning phase is

shown in Figure 1(a). This learning is conducted using both target sequences of motor

values mt and the sensory values st. When given mt and st in the input layer, the

network predicts their values at the next time step in the output layer as ˆmt+1 and

ˆst+1. The outputs are compared with their target values mt+1 and st+1 and the error

generated is back-propagated (Werbos, 1990; Rumelhart, Hinton, & Williams, 1986)

for the purpose of updating both the synaptic weights and PB vectors. Note that the

determined synaptic weights are common to all learning patterns, but the PB vector

is differently determined for each pattern. The manner of determining the PB vectors

will be detailed in later sections. ct represents the context units where the self-feedback

loop is established from ct+1 in the output layer to ct in the input layer. The context

unit activations represent the internal state of the network.

After the learning is completed, the sensory-motor sequences can be generated by

means of the forward dynamics of the RNNPB with the PB vectors fixed as shown in

Figure 1(b). The PB vectors could be given from another network, as in the behavior-

language association task described later, or self-determined through the recognition

process, as in the imitative interaction task with the humanoid robot. In the genera-

tion phase, the RNNPB can be operated in a closed-loop mode where the next step’s

sensory-motor prediction outputs are fed back to the current step as inputs, as denoted

by a dotted line on the left-hand side in Figure 1(b). Thus, the RNNPB can generate

imaginary sensory-motor sequences without receiving the actual sensory inputs from
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Figure 1: The system flow of RNNPB in learning phase (a) and testing phase (b).
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the environment.

Figure 1(c) illustrates how the PB vectors can be inversely computed for the given

target sensory sequences in the recognition phase. The RNNPB, when receiving the

current sensory inputs st, attempts to predict their next vectors, ˆst+1, by utilizing the

temporarily obtained PB vectors. The generated prediction error from the target value

st+1 is back-propagated to the PB units and the current PB vectors are updated in

the direction of minimizing the error. The actual computation of the PB vectors is

conducted by using the so-called regression window of the immediate past steps, by

which the PB vectors can be modulated smoothly through the steps. (This mechanism

will be detailed in the next section.) If pre-learned sensory sequence patterns are

perceived, the PB vectors tend to converge to the values that were determined in the

learning phase.

It is noted that the role of the PB vector is similar to the integration units introduced

in layered networks by Yamauchi, Ohta, and Ishii (1999) where the integration units

encode multiple static patterns through the self-supervised learning. The RNNPB

could be regarded as the developments of their model in order to deal with dynamic

patterns.

3 Computing the PB values

The PB vectors are determined through regression of the past sequence pattern. In

the recognition phase, the regression is applied for the immediate past window steps L,

by which the temporal profile of the PB, pt from L steps before to the current step ct,

is updated. The window for the regression shifts as time goes by while pt is updated

through the iterations. In the learning phase the regression is conducted for all steps

of the training sequence patterns. (This means that the window contains the whole

sequence and it does not shift.)

The temporal profile of pt in the sequence is computed via the back-propagation

through time (BPTT) algorithm (Werbos, 1990; Rumelhart et al., 1986). In this

computation ρt, the internal value of the parametric bias, is obtained first.

The internal value ρt changes due to the update computed by means of the error

back-propagated to this parametric bias unit, which is integrated for a specific step

length in the sequence. Then the parametric bias, pt, is obtained by a sigmoid function

of the output of the internal value. The utilization of the sigmoid function is just a

way of computationally bounding the value of the parametric bias to a range of 0.0

to 1.0. In this way, the parametric bias is updated to minimize the error between the
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target and the output sequence.

For each iteration in the regression of the window, L steps of look-ahead prediction,

starting from the onset step of the window, are computed by the forward dynamics of

the RNN. Once the L steps of the prediction sequence are generated, the errors between

the targets and the prediction outputs are computed and then back-propagated through

time. The error back-propagation updates both the values of the parametric bias at

each step and the synaptic weights. The update equations for the ith unit of the

parametric bias at time t in the sequence are:

δρt
i = kbp ·

t+l/2∑

step=t−l/2

δbp
t

i
+ knb(ρ

i
t+1 − 2ρi

t + ρi
t−1) (1)

4ρi
t(s+1) = ε · δρt

i + η · 4ρt(s) (2)

pi
t = sigmoid(ρt) (3)

In Eq. (1), δρt, the delta component of the internal value of the parametric bias unit, is

obtained from the summation of two terms. The first term represents the summation

of the delta error, δbp
t

i
, in the parametric bias units for a fixed time duration l. δbp

t

i
,

which is the error back-propagated from the output units to the ith parametric bias

unit, is summed over the period from t−l/2 to t+l/2 time steps. By summing the delta

error, the local fluctuations of the output errors will not affect the temporal profile of

the parametric bias significantly. The parametric bias should vary only with structural

changes in the target sequence. Otherwise it should become flat, or constant, over

time.

The second term plays the role of a low pass filter through which frequent rapid

changes of the parametric bias are inhibited. knb is the coefficient for this filtering

effect. ρt is updated based on δρt obtained in Eq. (1). The actual update 4ρt(s+1) at

s + 1 learning step from that at s learning step is computed by utilizing a momentum

term to accelerate convergence as shown in Eq. (2). Then, the current parametric bias

pt is obtained by means of the sigmoidal outputs of the internal values ρt in Eq. (3).

4 Imitative interactions

In this experiment (see the details in (Ito & Tani, 2003b)), we examined how the robot

can recognize the user‘s hand movement patterns in the sensory inputs and generate

corresponding imitative movement patterns of its own by retrieving from the learned

memory as a result. In this task setting, the movement patterns of the robot have to

be generated synchronously with the sensation of the user hand movement patterns.
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Figure 2: A user is interacting with the Sony humanoid robot QRIO SDR-4XII.

4.1 Task setting

The Sony humanoid robot QRIO SDR-4XII (Fujita, Kuroki, Ishida, & Doi, 2003) is

used as the experimental platform in this experiment (see Figure 2). In this experiment,

only movement patterns of both arms are considered. Other movements are frozen.

The robot task consists of learning and interaction phases. In the learning phase, a

set of robot cyclic movement patterns with different periods is learned and associated

with the corresponding user’s visually perceived hand movement patterns. The target

trajectories of the robot movement patterns are obtained by mapping the user’s arm

position to the robot joint angles. This mapping is done through engineering using

optical measuring as described in (Ito & Tani, 2003b). As summarized in Figure 3(a),

the learning process utilizes the paired trajectories of the robot joint angles (8DOF),

obtained by the mapping, and the user’s hand positions (4DOF), as visually perceived

by the robot. The training of the employed neural network model (RNNPB) is con-

ducted by using a set of training patterns, corresponding to multiple robot and user

movement patterns.

In the interaction phase, the robot attempts to follow synchronously the user’s hand

movement patterns. This is done by utilizing a mirror system characteristics of the

RNNPB in which the recognition of other’s hands and the generation of its own are

carried out simultaneosuely. As shown in Figure3(b), while the robot perceives the

user’s hand movement patterns visually, the PB vectors are iteratively adapted in real
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Figure 3: System configurations in learning phase (a) and interaction phase (b).
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time in order to minimize the sensory prediction errors; the robot movement patterns

in joint angle are generated simultaneously by means of the forward dynamics of the

RNNPB with the PB vector of the current updates. The robot’s ability to follow the

user depends on the degree to which the user patterns are familiar to the robot, based

on prior learning.

The RNNPB used in these experiments has 12 input nodes and 12 prediction out-

put nodes for learning the forward dynamics of movement patterns. The patterns are

composed of 4 vectors, representing the positions of user hands, and 8 vectors, repre-

senting the joint angles of the robot arms. It also has 4 parametric nodes, 40 hidden

nodes, and 30 context nodes.

Demiris and Hayes (2002) introduced multiple pairs of forward and inverse models

for imitation tasks in which a currently perceived companion’s behavior pattern is

recognized by one of the forward models by means of its prediction of the patterns and

then the paired inverse model generates the corresponding own movement patterns.

Although their ideas of the imitation by means of prediction is similar to ours, their

architecture is different from ours in the current paper since they employ the localist

representation which is similar to the models shown by Tani and Nolfi (1998) and

Wolpert and Kawato (1998).

4.2 Experiments and analysis

In this experiment, the robot is trained with 3 different cyclic movement patterns as-

sociated with the corresponding user hand movement patterns in the learning phase.

Then, in the interaction phase we examine how the robot can follow target patterns

while the user switches to demonstrate among various learned patterns. More specif-

ically, the user demonstrates patterns 1, 2, and 3 sequentially for about 20 seconds

each.

The results of the experiment, including the time course of the interaction and the

PB of the RNNPB, are plotted in Figure 4. In Figure 4, the plot in the top row shows

the target position of user hands. The plot in the second row shows the user hands’s

positions predicted by the RNNPB. The plot in the third row shows the robot joint

angles generated by the RNNPB (Only 6 DOF are plotted out of a total of 8 DOF). The

plot at the bottom shows the parametric bias of the RNNPB. It is observed that when

the user hand movement pattern is switched from one pattern to another, the patterns

in the sensory prediction and the motor outputs are also switched correspondingly

by accompanying substantial shifts in the PB vectors. Although the synchronization
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Figure 4: Switching of the robot movement pattern among three learned patterns as

initiated by switching of user hand movement.
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between the user hand movement pattern and the robot movement pattern is lost once

during the transitions, the robot movement pattern is re-synchronized to the user hand

movement pattern within several steps. During the experiments, it was also observed

that the patterns once synchronized between the two were preserved robustly against

certain perturbations in the repetions of the user’s hand movements.

Phase space analyses were conducted to analyze the dynamical structure self-

organized in the RNNPB through learning. In order to examine the attractor cor-

responding to each memory pattern in the RNNPB, the RNNPB is set to a closed-loop

mode (the outputs of the current step predictions are fed back to the inputs in the

next time step) and its forward dynamics is computed for 1000 steps for the PB vec-

tor determined for each learned pattern. Its trajectory, in terms of the values of two

arbitrarily selected context units, is then plotted in the two dimensional state space.

The initial transient trajectory is excluded. We also conducted phase space analyses

for the open-loop dynamics of the RNNPB during the user interactions. The forward

computation and the regression for updating the PB are simultaneously conducted

while one of the learned user movement patterns is fed to the RNNPB repeatedly as

the sensory target. Then, the trajectories of the same two context units used in the

closed-loop mode are plotted. In Figure 5 (a) shows that three different shapes of

attractors appeared in the closed-loop dynamics of the RNNPB as corresponding to

each of the learned patterns. They turn out to be limit cycling attractors. In Figure

5 (b) shows the attractor obtained during the user interactions. It is observed that

their shapes in the closed-loop and open-loop dynamics are mostly the same for each

learned pattern. These analyses confirm that each learned pattern is embedded in the

RNNPB as a distinct limit cycling attractor. This intrinsic dynamics of the RNNPB

is preserved when it is coupled with the corresponding user movement pattern. This

sort of the coherence is achieved by the entrainment of the intrinsic dynamics of the

RNNPB by the external dynamics of the user hand movement. This reminds us of

entrainments of walking patterns by environmental sensory feedback shown by Beer

(1995), Taga (1996), Miyake (2002).

Based on these observations and the analysis, one may conclude that the attrac-

tor dynamics system with its bifurcation mechanism by the PB makes the behavior

system to be manipulatable by the users as well as robust enough against possible

perturbations.
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Figure 5: (a) three attractors appeared in the closed-loop dynamics of the RNNPB and

(b) their corresponding attractors in the open-loop dynamics with the user interactions.
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5 Learning both end-point and cyclic movements

In the second experiment using an arm robot, we demonstrate that the robot can

learn two different types of movement patterns, fixed end-point movements and cyclic

movements, simultaneously in the RNNPB. End-point movement means that the robot

reaches a target position and stops there. In cyclic movements, the robot repeats a

periodic pattern. The focus of this experiment is to examine how the mapping from

the PB vectors to movement patterns is generated for embedding different types of

attractor dynamics.

5.1 Task setting

The robot used in the experiments has 4 degrees of freedom in its arm rotational joints.

A hand attached to the arm can sweep over the task table horizontally as shown in

Figure 6. The hand has a color mark and its position in X-Y coordinates on the table

can be recognized by the vision camera mounted on the robot by using a color filtering

scheme. A handle is attached to the hand so that a trainer can teach behavior to the

arm manually.

The RNNPB deals with 4 DOF motor outputs and 2 DOF sensory inputs in terms

of the visually perceived hand position. It has 20 hidden units and 8 context units.

It also has 4 parametric bias units in the input layer. The robot was simultaneously

trained for 3 different end-point movement patterns and 2 different cyclic movement

patterns through manual guidance of the arm trajectories. Those 5 trajectories are

shown in Figure 7. The BPTT learning for all the training sequences was iterated

20,000 times starting from randomly set initial synaptic weights.

5.2 Experiments and analysis

We tested the robot’s ability to successfully regenerate each trained movement pattern

by setting the corresponding PB vector. In this behavior regeneration test, the PB

vectors are sequentially switched from those obtained for one cyclic movement pattern

to those for another cyclic movement pattern, and then to those for an end-point move-

ment. This sequential switching of the PB is done manually in the current experiment.

Figure 8 shows motor pattern generation in the open-loop mode over time and the

corresponding PB vectors in the top and bottom rows, respectively. Observe that the

trained behavior patterns appear one by one, corresponding to the switching of the PB

vectors. The results, indicate that different types of dynamic patterns, corresponding
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Figure 6: The arm robot with a vision system.
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Figure 7: 4 DOF trajectories of 3 different end-point movements in (a), (b) and (c)

and those of 2 different cyclic movements used in training.

Figure 8: The results of generating two oscillatory movements followed by one end-point

movement. The change over time of the motor outputs and the parametric biases are

shown in the top and bottom rows, respectively. Time steps are shown in the abscissa.
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to end-point and cyclic movements, can be learned simultaneously in a single RNN by

changing the PB vectors.

In addition to the regeneration experiments for learned movement patterns, we

examined how the movement patterns are modulated when the PB vectors are changed

from the ones determined in the learning phase. Figure 9 shows successive modulations

of movement patterns as one value of the PB vector is varied from 0.0 to 1.0. Observe

that the movement patterns can be modulated significantly even with small changes

of the parametric bias, although they are less sensitive to change in different ranges of

parametric bias.

In order to clarify the mapping structure between the PB vectors and the resultant

movement patterns, phase analyses of the PB vectors were conducted. Figure 10 shows

how amplitude and period of one motor output in the generated movement patterns

were modulated upon changing two values of the PB vector (the other two values

were fixed). In Figure 10 (a), the degree of tile whiteness is directly proportional

to the amplitudes of the movement patterns. The black tiles denote the regions of

the end-point movement. The degree of tile whiteness is directly proportional to the

period in Figure 10 (b). Again, the black tiles denote the regions of the end-point

movement. When aperiodic movement patterns are generated, their amplitudes are

measured by the difference between the maximum and minimum values in the sampling

period. Their periods are regarded as infinite. These two plots show that the PB

space is partitioned into regions of fixed-point dynamics, corresponding to end-point

movements, and regions of limit cycling dynamics with various periods and amplitudes,

corresponding to cycling movement patterns. An important observation is that the

characteristic landscape is quite rugged in the region of the cyclic movement patterns.

However, further analysis showed that the characteristics in the region of the end-

point movement patterns are different. Figure 11 shows the variations of the end-point

positions reached in the region of the fixed point dynamics in the 2 dimensional PB

space. The end-point positions, in terms of the 1st and the 2nd joint angles of the arm,

are represented by graded tile colors. It is observed that the end-point position angles

fluctuate rather smoothly in the PB space. This observation suggests that the mapping

between the parametric bias and the generated behaviors is quite nonlinear, in that

the mappings in some regions fluctuate greatly while others are relatively smooth.
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Figure 9: 6 motor activity patterns are plotted with a PB value incrementally increased

from top to bottom. Ordinate: Motor Output; Abscissa: Time Step.
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Figure 10: The phase plots for (a) the amplitude and (b) the period for one of the

motor outputs using 2 values of the parametric biases.

Figure 11: The phase plots for the end-point position in 2 dimensional PB space

represented in terms of the first joint angle (a) and the second joint angle (b).
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6 Linguistic-behavior binding

Language learning has been conducted in various contexts using RNNs, where it has

been shown that certain linguistic structures can be captured from examples. Elman

(1990) demonstrated that similarity in the semantics of words can be represented in-

ternally through prediction learning of word sequences using normal sentences. Pollack

(1991) analyzed attractor structures self-organized in RNNs in learning some classes

of artificial grammars. Miikkulainen (1999) showed that semantic slots for learned

sentences can be automatically assigned by using error backpropagation to the input

space, which is similar to the current scheme of determining the PB vector. The goal

of this section is to learn not only word sequences, but to learn them as associated with

sensory-motor sequences of the corresponding behaviors.

We demonstrate that linguistic and behavioral processes can be bound using the

RNNPB scheme. Our study has been inspired by Arbib (2002)’s hypothesis that the

abilities of mirror neurons for conceptualizing objects manipulation behaviors might

lead to the origin of language, initially consisting of related verbs and objects. After the

binding learning, a mobile robot becomes able to understand meanings of given, simple

word sequences consisting of verbs and objects and then to generate corresponding

object related behaviors. The meaning of a given sentence is recognized by means of

the recognition mechanism of the RNNPB in the linguistic module. The determined PB

vectors are passed to the RNNPB in the behavior module, by which the corresponding

behaviors are generated. Note, however, that the learning in this scheme is not merely

generating a mapping from each sentence to a behavior pattern. Instead, we investigate

how meaningful structures can be self-organized in the mutual, interactive learning

between the linguistic and behavior modules. We will discuss how such structures

can enhance learning generalization, and also account for compositionality, which is

especially required in the linguistic processes.

6.1 Modeling and task setting

The mobile robot utilized in the experiment has a vision camera, two motor wheels, a

1 DOF arm, and torque sensors in the arm and wheels. Figure 12 (a) illustrates the

RNNPB scheme used in the co-learning of the word sequences and their corresponding

behavior patterns. The linguistic module on the left-hand side receives word sequences,

beginning with a “start symbol” for each sequence. Each word is locally encoded in

a corresponding unit in the inputs and the outputs. There are 10 output units, 6 PB

units, 50 hidden units, and 4 context units in this module. The behavior module on
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Figure 12: (a) Model for co-learning of word sequences and corresponding behaviors,

(b) model for recognizing word sequences and generating corresponding behaviors.
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the right-hand side receives sensory-motor sequences consisting of 3 motor values (for 2

wheels and the arm) and 23 sensory values (2 torque values and 21 values encoding the

visual image). It has 26 input/output units, 6 PB units, 70 hidden units and 4 context

units. During co-learning, word sequences are bound to the corresponding behavior

sequences. More specifically, PBl in the linguistic module and PBb in the behavior

module are simultaneously updated, under the constraint that the difference between

these two vectors be minimized for each bound sequence. In the ideal situation, PBl

and PBb become equal at the end of co-learning for each sequence. Note that the

time steps in the word and sensory-motor sequences are not synchronized. The word

sequence contains up to 3 word steps, including the starting symbol, and the sensory-

motor sequence contains up to about 50 sensory-motor steps. The learning is conducted

as off-line by using all pairs of the training sequences once stored in a computer. In

this off-line learning process, the PB vector for each pair is updated every after the

BPTT computation is conducted for the pair of sequences. The synaptic weights are

updated after all pairs are swept for the BPTT computation.

Figure 12 (b) illustrates the RNNPB scheme utilized in the recognition and gener-

ation phases. The PBl in the linguistic module is determined by recognizing a given

word sequence. Its vector is set to PBb in the behavior module for generating the

corresponding behavior.

The robot experiment is conducted in the environment shown in Figure 13, where

red, blue, and green objects are located in the left, center, and right positions respec-

tively in front of a white rear wall. The robot learns to “POINT” with its arm, “PUSH”

with its body, and “HIT” with its arm these three objects. Each sentence consists of

two words, a verb followed by a noun. The verbs used are point, push, hit, and the

nouns are red, blue, green, left, center, right. There can be 9 different combinations of

behavior categories and 18 different sentences in this setting. Note that “red”, “blue”

and “green” turn out to be equivalent to “left”, “center” and “right”, respectively, in

this task context.

In order to investigate the generalization capability, especially in the linguistic

learning, only 14 sentences out of 18 possible sentences are trained. All of the 9

behavior categories are trained for the behavior module in the co-learning. This means

that 14 sentences are bound to their corresponding 7 behavior categories in the co-

learning process, while the 2 remaining behavior categories are learned without any

binding constraints in determining their PBb vector.

For each sentence, its corresponding teaching sensory-motor sequence is sampled

five times by manually guiding the robot along the desired trajectory. The object
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robot  hand camera
mobile robot
at home position

red, blue and green objects

Figure 13: The task environment consists of red, blue and green objects placed in left,

center, and right positions, respectively. The mobile robot is at the starting position.

positions and starting position of the robot are perturbed within 20 percent of the

robot travel distance for each sampling, in order to make each sensory-motor sequence

slightly different. This was necessary to make the robot generate the trained behaviors

robustly. In summary, 70 (14 x 5) pairs of linguistic and sensory-motor sequences

are learned and bound to each other. Further, 20 (4 x 5) sensory-motor sequences

are learned without binding. The learning is iterated for 50,000 steps. The mean

square errors converged to 0.0091 and 0.025 for the linguistic and the behavior modules,

respectively.

6.2 Results and analysis

Recognition and generation tests were conducted after learning was completed. The

appropriate corresponding behaviors were generated for all 18 word sequences, includ-

ing the 4 untrained ones. In order to analyze the internal structures self-organized in

the co-learning process, a phase space analysis was conducted for PBl and PBb. In

this analysis, the original 6-dimensional PB space is projected onto the 2-dimensional

surface determined by principal components analysis. In Figure 14 (a) the PBl vectors,
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corresponding to all possible 18 word sequences, are plotted in the 2-dimensional space.

The PBl vector is inversely computed during the recognition of each word sequence in

the linguistic module. The PBl vectors for 4 unlearned word sequences are surrounded

by dashed circles. Figure 14 (b) shows the PBb vectors that are determined for 90

behavior sequences in the co-learning phase. Figure 14 (c) shows the averaged PBb

vector for each of 9 behavior categories.

There are some interesting findings in these figures. First in Figure 14 (a), two

congruent sub-structures can be observed among the PB points corresponding to word

sequences. There are 6 word sequences, each of which has the same verb followed by

one of 6 nouns. All 3 of the hexagons, made up of the 6 PB points for each verb, seem

to be congruent. Similarly, 6 congruent triangles can be seen for the 3 verbs preceded

by the same noun. This doubly congruent structure is crucial for representing the

compositionality hidden in the learned sentences i.e.– each verb can be followed by

one noun in the same noun set. The combinatorial relationship between the verbs and

the nouns is well represented in the multiplication of these two congruent structures.

An amazing fact is that this structure was self-organized without using all possible

combinations of word sequences during learning. However, 4 PB points, corresponding

to unlearned word sequences, are actually found to come to the right positions in the

structure when they are inversely computed in the recognition processes (thus correct

behaviors can be successfully generated for them). This sort of generalization becomes

possible because each word sequence is learned not as an independent instance, but

rather in the form of relational structures among others, which is the compositionality

of nouns and verbs in the current case.

Second, a cluster structure can be seen in the PBb vectors in the behavior module,

as shown in Figure 14 (b). Although there are certain distributions in each cluster due

to the perturbations in the sensory-motor sequences in the learning set, the layout of

the averaged center of those clusters seems to have the same congruent structures as the

linguistic module, as shown in Figure 14 (c). It is interesting to note that this sort of

congruent structure cannot self-organize when the behavior module is trained without

binding with the linguistic module (Sugita & Tani, 2003). The linguistic structure

affects the behavior module, allowing generation of the observed congruent structure.

On the other hand, the behavior constraints can also affect the structure self-organized

in the linguistic module. In Figure 14 (a), the PB points for pairs of sentences ending

with “red” and “left”, “blue” and “center”, and “green” and “right”, are quite close in

the space. This is due to the fact that those pairs of nouns have the same meaning in

the behavioral context in the current task. It is also noted that the robot achieved each
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Figure 14: In each plot, the PB vectors for recognized sentences in the bound linguistic

module (a), the PB vectors for training behavioral sequences in the bound behavioral

module (b), and the averaged PB vectors of (b) over each behavioral category (c) are

plotted. All the plots are projections of the PB spaces onto the same surface determined

by the PCA method.
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goal-directed behavior quite robustly against perturbations. For example, even when

the object was moved slightly toward the left or right during the “PUSH” behavior, the

robot could follow the directional changes of the target as long as the target was within

its vision sight. This robustness is achieved because the training of each behavior, using

bundles of sensory-motor sequences, results in generalization in the acquired sensory-

motor mapping. (Note that the same robustness could not be achieved when fewer

sensory-motor sequences were utilized in the training.)

Based on these observations, one may conclude that certain generalizations are

achieved in recognizing sentences and generating behaviors by self-organizing adequate

structures in the PB mapping, utilizing both linguistic and behavioral constraints.

7 Discussion and summary

The current paper reviewed the RNNPB, which can learn multiple behavior schemata

distributively encoded in a single network. The scheme is characterized by the PB

vector, which plays essential roles both in generating and recognizing patterns as a

mirror system by self-organizing adequate structures internally. The model was imple-

mented in three different robot platforms. Imitative interactions, learning to generate

different types of dynamic movement patterns, and linguistic-behavior binding were

demonstrated. In the experiment on imitative interaction with the humanoid robot,

it was shown that multiple cyclic movement patterns can be learned as limit cycling

attractors with different PB values self-determined. Each of learned patterns was ro-

bustly regenerated by means of the entrainment by the user’s hand movements. In

the experiment with the arm robot, it was shown that limit cycling and fixed point

attractor dynamics can be simultaneously embedded in the PB phase space of a single

network. Our dynamical systems analysis clarified the nonlinear characteristics of the

PB mapping. In the last experiment of linguistic-behavior binding, it was shown that

the robot becomes able to generate corresponding goal-directed behaviors by recogniz-

ing given, two-word sequences through supervised learning processes. It was shown

that a compositional structure of combining verbs and objcets, as related to the object

manipulation behaviors, were self-organized in the PB mapping. This resulted in the

generalization by which unlearned word sequences could be recognized by analogy with

learned ones.

The hallmark of the current study was explaining how internal memory structures

self-organized, and how such structures could account for the generalization and behav-

ioral diversity observed in each experiment. The proposed scheme differs significantly
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from the localist scheme in this aspect. In the localist scheme, no structures exist

for memory organization since each behavioral schema is memorized as an indepen-

dent template in a corresponding local module. On the other hand, in the proposed

distributed representation scheme, learning is considered as not just memorizing each

template of behavior patterns, but as reconstructing them by extracting the structural

relationships among them. If there are tractable relationships among a set of learning

patterns, those relationships should appear in the memory structures. Ito and Tani

(2003a) have shown such an example in simulations of learning a set of sinusoidal pat-

terns, each of which has a different amplitude and frequency. After learning it was

found that the same shapes of sinusoidal patterns were regenerated by modulating

their amplitudes and frequencies in 2-dimensional PB space, as when they were gen-

erated by interpolating the learning set. Similar observations were made in the fixed

point dynamics in the PB phase space, as shown in Figure 10, where the end-point arm

configurations change smoothly in the PB phase space. This generalization was made

since all training trajectories of end-point behaviors share similar profiles but have dif-

ferent end-point configurations. In the linguistic-behavior binding experiment, it was

observed that the relationships among verb and noun compositions were captured by

self-organizing congruent structures in the PB space. On the other hand, fluctuations

in the PB mapping are generated when no structural relationship can be found among

learned patterns. Such an example was seen in the limit cycling dynamics region of

Figure 10, where even small changes in the PB vector could induce sudden bifurcations

in pattern generation. Note that two cyclic movement patterns in the learning set have

no tractable relations in their trajectory profiles. On the other hand, the diversity in

pattern generation was dramatically enhanced in the fluctuating PB space.

Haruno, Wolpert, and Kawato (2001) proposed that an explosion in the number

of local modules needed for arbitrary movements could be avoided through a linearly

weighted combination of a given set of modular outputs. However, one question with

their model is how generalization can be achieved simply through linear interpolation

among the arbitrarily obtained modules. It is assumed that certain kernel modules have

to be self-organized through their mutually interactive computations for the purpose

of attaining the generalized internal representation.

The scheme presented here may provide an abstract account for the requirement

of memory consolidation in the organization of long-term memory (Squire, Cohen, &

Nadel, 1984) in cortex, as opposed to short-term memory in the hippocampus. It is

known that memory consolidation processes take relatively long time from days to

years, which is assumed to be necessary for organizing generalized structures in the
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cortical distributed representation while interleaving various behavioral experiences.

Behavioral experiences, initially stored independently in short-term memory, begin

to interfere with each other, either cooperatively or destructively, as the relational

structures among them are gradually shaped in the cortex during consolidation.

We assume that memory consolidation plays important roles in generating diversity

of ideas and behaviors in humans. The hypothesis derived from our experimental

results is that conflicts among memory episodes may cause fluctuations in the self-

organized memory structure, where diverse false memories are generated. Although

this hypothesis has little empirical support so far, its characteristics can be applied

to various adaptive entertainment agents, including humanoid robots. Entertainment

agents should exhibit diverse behavior in user interactions in order to avoid boring the

user.

In the imitative interaction experiments, the humanoid robot often generated vari-

ous emergent behaviors when the users attempted to demonstrate novel hand movement

patterns in front of the robot (Ito & Tani, 2003b) 1. Although one may be aware that

this behavior is simply due to the nonlinear dynamic characteristics of the RNNPB as

described in this article, it is difficult to avoid feeling as if “live cognition” emerges from

the interactions with the robot. Such emergent features are indispensable for producing

future humanoid robots capable of achieving close interactions with humans.

Nevertheless, it is also true that local representation schemes have their advan-

tages. They have fewer memory interference problems (McCloskey & Cohen, 1989).

Such a characteristic is advantageous when the system is required to learn in a dy-

namic environment (Wang & Yuwano, 1996). One important future research direction

is to explore an intermediate representation scheme between the two extremes of dis-

tributed and local representations. The degree of distribution in the representation

might be controlled by modulating the sparseness of activated neurons in the network.

If the activations become more sparse, the overlap of activated neurons among learned

patterns becomes smaller, possibly reducing interference between them. The degree

of distribution should be determined in the trade off between generalization and fast

learning capabilities. Such learning schemes should be investigated in future studies.

An important issue that has not been addressed in the current paper is how hier-

archical organization with level structures can be organized in the behavior learning

context. When the agent attempts to generate complex motor behaviors, it is rea-

sonable to assume that an abstract event sequence is generated in a higher level and

1It was observed that the diversity of behavioral responses becomes larger as the number of trained
movement patterns is increased.
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that its detailed motor program is generated in a lower level. The question is how this

sort of abstraction of information in the processes of behavior generation and recogni-

tion can be achieved based solely on the sensory-motor experiences of the agent. The

authors showed that continuous sensory-motor flow can be articulated hierarchically

by self-organizing repeatedly utilized behavior primitives in the lower level. Combi-

nations of primitives are learned in the higher level in both the localist scheme, using

gated modules (Tani & Nolfi, 1998), and the distributed representation scheme, us-

ing the RNNPB (Tani, 2002, 2003). Doya, Samejima, Katagiri, and Kawato (2002)

proposed multiple model-based reinforcement learning, which adaptively decomposes

a task based on the predictability of the environmental dynamics using the localist

modular representation. Ziemke and Thieme (2002) showed that their proposed ex-

tended sequential cascaded network can be evolved to solve delayed response tasks in

robot navigation. However, all of these studies assume predetermination of explicit

level structures in the network architecture in which essential parameters, such as time

constant for each level, have to be carefully tuned depending on the task environment.

The crucial question is whether such explicit level structures are necessary or not. If

necessary, how could such hierarchical structures be self-organized through adaptation

in the task environment without having much pre-programming. These questions are

also left for future studies.

Another important issue which is missing in the current studies is the “goal-

directedness” in generating or recognising behaviors. Although the current imple-

mentation has achieved only trajectory level repetitions of given movement patterns,

its extensions to imitation through understanding others’ goals as well as one’s own

(Tomasello, 1999) are important future research topics. It is also true that many mirror

neurons are found in rather goal-directed task settings, where they seem to encode not

exact movement patterns, but their abstraction or goals (Rizzolatti et al., 1996). In

order to achieve goal-directed behavior generation or recognition, certain hierarchical

architectures which are capable of abstracting and conceptualizing behavior patterns

in multiple levels, as discussed previousely, might be required. This problem should be

also open for future studies.

This article has discussed the advantages of the distributed representation scheme

in building learning robots. It may be true that the authors are merely rephrasing

what the PDP research group (Rumelhart, Mclelland, & PDP Research Group, 1986)

discussed in the mid 1980s:

“Distributed representations are efficient whenever there are underlying

regularities which can be captured by interactions among microfeatures. By

31



encoding each piece of knowledge as a large set of interactions, it is possible

to achieve useful properties like content-addressable memory and automatic

generalization, and new concepts can be created without having to create

new connections at the hardware level.(Hinton, Mclelland, & Rumelhart,

1986)”.

This idea still seems worth considering today in order to understand and reconstruct

behavioral cognitive systems.
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