Acceptedn IEEE Transaction®n AutonomousdMentalDevelopment2013

Published:

Murata S., Namikawa J., Arie H., Sugano S., Tani J.: "Learning to reproduce fluctuating time series
by inferring their time-dependent stochastic properties: application in robot learning via tutoring",
IEEE Trans. on Autonomous Mental Development, Vol. 5, No 4, pp. 298-310, 2013

Learning to Reproduce Fluctuating Time Series by Inferring
Their Time-dependent Stochastic Properties: Application in
Robot Learning via Tutoring

Shingo Murata, Jun Namikawa, Hiroaki Arie, Shigeki Sugano, and Jun Tani *

Abstract

This study proposes a novel type of dynamic neural network model that can learn to
extract stochastic or fluctuating structures hidden in time series data. The network learns to
predict not only the mean of the next input state, but also its time-dependent variance. The
training method is based on maximum likelihood estimation by using the gradient descent
method, and the likelihood function is expressed as a function of the estimated variance.
Regarding the model evaluation, we present numerical experiments in which training data
were generated in different ways of utilizing Gaussian noise. Our analysis showed that the
network can predict the time-dependent variance and the mean, as well as that it can repro-
duce the target stochastic sequence data by utilizing the estimated variance. Furthermore,
it was shown that a humanoid robot using the proposed network can learn to reproduce la-
tent stochastic structures hidden in fluctuating tutoring trajectories. This learning scheme
is essential for the acquisition of sensory-guided skilled behavior.

1 Introduction

The ability to learn to predict perceptual outcomes of intended actions has been considered to be
essential for the developmental learning of actions in both infants [1] and artificial agents [2, 3].
Among various connectionist models, recurrent neural networks (RNNs) have been intensively
investigated for their suitability for prediction by learning [4-6]. In the context of behavior
learning for robots, Tani and colleagues have shown that RNN-based models can learn to predict
perceptual consequences of actions in navigation problems [7], as well as to predict perceptual
sequences for sets of action intentions in object manipulation tasks [8-10]. RNN-based models,
however, are considerably limited due to the deterministic nature of their prediction mechanism.
As deterministic dynamical systems, RNNs cannot learn to extract stochastic structures hidden
in noisy time series data used for training. If RNNs are forced to learn such time series data,
the learning process tends to become unstable with the accumulation of errors.

To address this problem, Namikawa and colleagues recently proposed a novel continuous-
time RNN (CTRNN) model that can learn to predict not only the next mean state, but also
the variance of the observable variables at each time step [11]. The predicted variance functions

*This study was supported by grants from the Institute for Infocomm Research, Agency for Science, Technol-
ogy and Research (A*STAR), Singapore (AH/OCL/1082/0111/I2R).
Jun Tani is the corresponding author.
S. Murata, H. Arie, and S. Sugano are with the Department of Modern Mechanical Engineering, Waseda Uni-
versity, Tokyo, Japan (e-mail: {murata, arie}@sugano.mech.waseda.ac.jp; sugano@waseda.jp).
J. Namikawa is with the Brain Science Institute, RIKEN, Saitama, Japan (e-mail: jnamika@gmail.com).
J. Tani is with the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea (e-mail: tanil216jp@gmail.com).

murata
タイプライターテキスト
Accepted in IEEE Transactions on Autonomous Mental Development, 2013.

rv411
Typewriter
Published:

Murata S., Namikawa J., Arie H., Sugano S., Tani J.: "Learning to reproduce fluctuating time series

by inferring their time-dependent stochastic properties: application in robot learning via tutoring",

IEEE Trans. on Autonomous Mental Development, Vol. 5, No 4, pp. 298-310, 2013

rv411
Typewriter

rv411
Typewriter

as an inverse weighting factor for the prediction error that is back-propagated in the process
of learning. The formulation of the model is analogous to the free energy minimization prin-
ciple proposed by Friston [12,13], in which learning, generation, and recognition of stochastic
sequences are formulated by means of likelihood maximization.

This article presents the complete formulation of this novel model referred to as stochas-
tic CTRNN (S-CTRNN) together with the results of numerical experiments and a subsequent
analysis of the dynamic characteristics of the network developed via the learning process. Fur-
thermore, we describe how the proposed model can be successfully applied in robot learning
problems dealing with fluctuating training data by conducting an experiment on sensory-guided
robot behavior demonstrated to a robot by human trainers.

Different approaches for estimating and utilizing variance for robot behavior learning have
been proposed, including combinations of Gaussian mixture model (GMM) and Gaussian mix-
ture regression (GMR) [14-16]. We consider that the implementation of a method for the
estimation or prediction of variance in the CTRNN model can be used as an alternative to the
previously proposed approaches.

The next section presents details about the forward dynamics, training, and generation
method of S-CTRNN.

2 Neural Network Model

2.1 Overview

A number of researchers have investigated the learning characteristics of CTRNN models [17-19]
for deterministic continuous-time data trajectories. The S-CTRNN proposed in the present
article makes use of a novel feature manifested by “variance prediction units” allocated in the
output layer. By utilizing these units, the network predicts not only the mean of the next input,
but also its variance. In this method, the mean and the variance can be obtained by means
of maximizing the likelihood function for the sequence data. Furthermore, upon achieving
convergence of the likelihood, the network can reproduce sequences with the same stochastic
properties as the training data by adding Gaussian noise with the variance predicted at each
time step to the predicted mean and subsequently feeding these values as input. The details of
the model scheme are described in the following section.

2.2 Forward Dynamics

Figure 1 presents a block diagram of the S-CTRNN model which can predict the variance for
each output neuron.
The internal state of the ith neuron at time step t (u¢;) is updated in accordance with

U = Ti ¢ \jerr jele (1)

Zwijcm—l—bi (1 §t/\iEIoUI\/),
Jj€lc

1 1 .
<1 — > U1, + p Z wij Ty + Z wijci—1,5 + b; (1<tniele),

where Ic, Ip, and Iy, are the neuron index sets, 7; is the time constant of the 7th neuron, w; ;
is the weight of the connection between the jth and the ith neuron, ¢; ; is the activation value
of the jth context neuron at time step ¢, x; ; is the jth external input at time step ¢, and b; is
the bias of the ith neuron.

Training Data Qt,i
w
Likelihood Lt,i <
]
Output Yt,i Ut i Variance
tanh() ‘ exp() !
Ut 5 Ut 5
Context Ct,i
tanh() { —
Ut 5
M’ .
Input Tt Ct—1,i
|

Figure 1: Block diagram of the S-CTRNN model. S-CTRNN consists of input, context, output,
and variance units. Using the recorded training sequences, the network is trained offline. The
predicted variances are then used for calculation of the likelihood function.

The respective activation values of context unit ¢;;, output unit y;;, and variance unit vy ;
are calculated as follows:

¢t = tanh(uy ;) (0<tnieln), (2)
Yyr,i = tanh(ug ;) (1<tnielp), (3)
v = exp(uy,;) (1<tAniely). (4)

2.3 Training Method

The network is trained through maximum likelihood estimation by utilizing the gradient descent
method [20]. The training process consists of the following phases.

1. Initialization of learnable parameters (weight, bias, and initial states) (described in 2.4).

2. Generation of output and variance by forward dynamics under the current parameter
settings (described in 2.2).

3. Calculation of likelihood by using training data, generated output and variance predicted
by the network.

4. Updating the parameters with the gradient descent method.
5. Repeating 2) - 4) until prediction error converges (described in 2.5).

The current section introduces phases 3) and 4).

Here, the learnable parameters of the network are denoted by 8. Let X = (z;)L_; be an
input sequence, where T' is the length of the sequence. In this case, the probability density
function of training data g, is defined as

exp ((ytz yt z) > ’ (5)

K

1
\/ 2T 4
where y;; and v;; are the outputs generated by the network and g ; is the training data. This
equation is derived with the assumption that the observable data sequence is embedded into
additive Gaussian noise. It is well known that minimizing the mean square error is equivalent
to maximizing the likelihood determined from a normal distribution. Therefore, (5) is a natural
extension of the training of the neural network.

The likelihood function Ly parameterized by 6, is denoted by

(6)

out
t=1iclp

The network generates an estimate of the prediction error in the form of a variance v;;. The
network can avoid unstable learning sequences since the variance functions as an inverse weight-
ing factor for the square error (y;; — g)t,i)Q. More specifically, the effect of the prediction error is
reduced when the variance is large (as the error is divided by the variance), whereas the effect
is increased when the variance is small. Therefore, the extent of error back-propagation can be
autonomously reduced in the case of learning parts of time sequences which display considerable
fluctuation. This relaxes the predictive learning of stochastic sequences.

The training method involves choosing the most appropriate value for the parameter 6 by
maximizing the likelihood Lgy,t. More precisely, we use the gradient descent method with a
momentum term as the training procedure. Here, the logarithm of the expression in (6) is used
to facilitate the calculation.

In 27wt i) (Y — Gt,i)?
Lo =33 (by, (7)

t=11i€lp

The model parameters at step n (8(n)) of the training process are updated in accordance
with

O(n) =0(n—1)+ Ab(n), (8)
Af(n) =« <ah;§0ut +nA0(n — 1)) , 9)

where « is the learning rate and n is a parameter representing the momentum term. The
partial differential equations 81%150““ for each learnable parameter, which can be solved by a
conventional back-propagation through time method [21], are given by

1 81nLout . .

— Ttj— 1€ lcNje),

n; N D, (ielcnjel)

T

8 In Lout 1 (9 In Lout . .
= = oS Gelongeln), 10
Ow;;j Ti;ct Ly Ouy i (i o c) (10)

T

InL
Sy P Lo (i€ ToULy Aj € Ic),
o Ouw

OlnL
iz 1 Lout .Efc),

8“1&1
= (11)

abl 3lnL t
ou . I I
Z P (i € IoUIy),

(9 In Lout

wi; 01n L OlnL
(1 . C?ﬂ‘) Z ki out + Z Wi aUt Zut

hele 'k Ot 1k keloUly ,
OlnL
91 Loy +<1—)n°““ 0 <thrielp),
P} = i) Outi, (12)
Ut 5

_Mo_yg’i) (L<tAi€lp),
Uti

L (yei — Gri)?

1<tAiely).
5 Dons (I<tAiely)

In the current study, the likelihood (or the error) was back-propagated to the initial time step
without a truncation depth.

Although we have presented only the case in which the training data set is a single sequence,
the method can be easily extended to training involving several sequences by using the sum of
the gradients for each sequence.

When several sequences are used as training data, an initial state must be provided for
each sequence. We consider that the distribution of the initial states conforms to a normal
distribution. The probability density function for u(()sg, which is the initial state of the ith
neuron corresponding to the sth training sequence, is defined as

A (s))2
s - 1 (ul B uO,i)
p(u((),z? | o, 1i) = V2ro €xp <_ 202) ’ (13)

where o2 is the predefined variance and 4; is the mean value of the initial states, which is a
learnable parameter.

(s)

The likelihood function Liyj; parameterized by i; and ug; is given by
Linit - H H p(u(()i) ‘ ag, d’b)7 (14)
selgiclc

where Ig is the sequence index set. The logarithm of the expression in (14) is used to facilitate
the calculation.

() ~5\2
In(27Tc7 (Uo i — ;)
In Llnlt == E E < - 20_2) . (].5)

s€lgiclo

The initial states are updated to maximize the likelihood In L,);, which is the sum of In Ly, and
In Linit. The partial differential equations for each parameter are given by

ahlLa]l 1 S A~
“l = N)~), (16)

O o2
v selg

OlnLay OlnLow 1, (5
8u(s) a 8u(()s) g

N2

2.4 Parameter Setting for Training

All biases and connection weights were initialized with randomly chosen values from a uniform
distribution on the interval [—ﬁ, ﬁ], where M is the number of context neurons. Each initial
internal state u(()sl) and the mean value of the initial states ; were initialized with a value of 0.
Since the maximum value of Loyt depends on the total length Tioa of the training sequences
and the dimensionality d of the output neurons, the learning rate o was scaled by a parameter
@ satisfying the relation o = T da In all experiments presented here, & and the momentum
term were chosen to be & = 0. 0001 and n = 0.9, respectively. The remaining parameters,
including the number of context neurons, the time constant, and the variance of the initial
states, are introduced in the respective section of each experiment.

2.5 Error Evaluation

In order to evaluate the error of the trained network, we computed the following mean square
error (MSE) for each sequence s,

, I d A(S

:ﬁzzytz_ytl) (18)

t=1 i=1

where ygi) is the output and QE? is the training data corresponding to the sth sequence. Al-
though there is not an explicit MSE value as a criterion for determining the success or failure
of training, it converges a certain value that depends on the stochastic properties of the train-
ing data, especially values for the noise variance. For example, the MSE corresponding to the
training data with larger noise variance converges to a larger value than that of the training
data with smaller noise variance. The MSE after training is described in the respective section
of each experiment.

2.6 Generation Method

After achieving convergence for the likelihood (or the error) through the training process, the
network was able to predict the input state for the next time step from the current input state.
There are the following two different ways to feed the current input x;; into the network:

{ Gt—1i (19a)

Tt —
’ Y14 + €—1, (19b)

)

where ;1 is an external input state representing a recorded training state or actual sensory
information acquired by the robot, y;_1 ; is an output state or a predicted input state generated
by the trained network, and €;_1; is Gaussian noise given by

€t—1, = €(Vt-1,), (20)

where e(0?) is a Gaussian noise generator with a zero mean and a standard deviation of o
(Fig. 2). In (19a), the current input is the current external input, and this case is referred to
as the “open-loop mode.” On the other hand, in (19b), the current input is derived from the
predicted mean value to which the noise estimated at the previous step is added, and this case
is referred to as the “closed-loop mode with the addition of estimated noise.” Equation (19b)
can autonomously generate stochastic sequences whose ensembles are assumed to reproduce the
stochastic structure of the training data.

*yt,i

*’Ut,i

Output

Variance

Recorded Training Data or

\/

Actual Sensory Information
Context State
External Input H.m A
Open-Loop Input
Dynamics A T = Yt—1,
(a)
+ €ty Gaussian Noise
Closed-Loop + Generator
Dynamics Yt A Ot
Output Variance

\/

Context State

A

Input

A

Tt = Yt—1,i T €1,

Figure 2: Generation method: (a) open-loop mode and (b) closed-loop mode with the addition

of estimated noise.

3 Numerical Experiments

To demonstrate how S-CTRNN learns to extract stochastic dynamic structures hidden in train-
ing data, we conducted three numerical experiments with various values for the variance of
the added Gaussian noise. The first experiment, described in Section 3.1, involved learning a
one-dimensional stochastic sine curve with added Gaussian noise with a time-dependent vari-
ance in order to test whether the network was capable of predicting the noise variance in a
simple setting. The second experiment, described in Section 3.2, involved learning stochastic
Lissajous curves with multiple constant values for the noise variance. In this experiment, we
tested whether a set of stochastic spatiotemporal patterns could be reproduced as multiple
attractors of the trained network.

In these experiments, Gaussian noise was added to the reference trajectories of the sinusoidal
or Lissajous patterns at each time step. In Section 3.3, we present the results for a case in which
the target patterns were generated by attractor dynamics, namely a one-dimensional limit cycle,
which is perturbed by time-dependent noise.

3.1 Experiment 1: A Stochastic Sine Curve with Time-Dependent Noise
Variance

The training sequence was a one-dimensional sine curve with a period P = 25. We added
Gaussian noise & = ¢(67) to the sine curve at each time step as follows:

ot
j = 0.8sin (;) +é (21)

Here, 6; is the standard deviation of the added Gaussian noise, which is defined by

12
0? (t —nP) +0.01

(p i< @0p)

o1 = 0.12 (22)

where n is a non-negative integer (i.e., n = {0,1,2,---}). In this task, we used one training
sequence with a length 7" = 1000 (= 40P).

The number of context neurons, the time constant, and the variance of the initial states
were chosen to be M = 10, 7 = 2, and o2 = 1, respectively. We trained the network for 100,000
training steps, and the MSE converged to 0.000951. Time series were then generated with the
closed-loop dynamics with addition of the estimated noise by following Eq. (19b).

The result of generating time series is shown in Fig. 3. As can be seen from Fig. 3,
the output of the trained network reproduces the stochastic structure of the training sequence,
which consists of a periodic pattern with a time-dependent variance. Furthermore, the predicted

variance of the trained network v; is close to the true value 9; = 67.

Training Data

Output

|
=

o
o
S
=)

Variance
o
o
o
w
T

0.000
0 150 300

Time Step

Figure 3: Generation of time series. Training sequence (first row), output of the trained network
with closed-loop dynamics with addition of the estimated noise (second row), and variance
predicted by the trained network (third row). In the third row (time series of variance), the
blue line indicates the variance vy predicted by the trained network, and the red dashed line
indicates its true value 0.

3.2 Experiment 2: Stochastic Lissajous Curves with Multiple Constant Val-
ues for Noise Variance

The training sequences in this case were 12 Lissajous curves with a period P = 25, which were
generated as combinations of the following sine curves Y ;.

27t
Yi1=-04 <cos <;__T)> — 1> ,

2t
Y; 2 = 0.8sin (;) ,

drt
Yis=-04 <cos <;> — 1) ,
drt
Yia = 0.8sin <;> .
() _

We added Gaussian noise &;; = e({&gs)}2) to each Lissajous curve at each time step. The value
of the standard deviation of the added Gaussian noise for both axes of each pattern was the
same, and it was defined as

0.01 (s€4n+1),

() _ ~(s)) 0.03 (sedn+2),

71792 79 0.05 (sedn+3), (24)
0.07 (s€4dn+4),

where 7 is non-negative integer smaller than 3, that is, n = {0, 1,2}.
For example, training sequences were expressed as follows (refer to the Appendix for details

about all expressions):
(3715,11):1775,12)) = (Y1 + €§,11)7 Yio+ €§,12)),
: (25)
G, 95) = Mo+ &P Vi +).
In the task, we used a training data set of 12 Lissajous curves with a length 7" = 1000 (= 40P).
It was considered that those 12 Lissajous patterns can be embedded as multiple attractors in a
single S-CTRNN by self-determining the corresponding initial context states.

The number of context neurons, the time constant, and the variance of the initial states
were chosen to be M = 60, 7 = 2, and 0 = 100, respectively. Here, in order to embed multiple
attractors into a single network, a large value was chosen for the variance of the initial states.
We trained the network for 500,000 training steps, and each averaged MSE of the 4 groups
consisting of 3 sequences whose standard deviation is the same value (refer to (24)), converged
t0 0.0000482 (s € 4n+1), 0.000432 (s € 4n+2), 0.00126 (s € 4n+3), and 0.00233 (s € 4n+1).
Time series were then generated with the closed-loop dynamics with addition of the estimated
noise by using (19b) with the corresponding initial states uésl) .

Figure 4 presents phase plots of the training data, the output of the trained network, and
two selected context neurons. By comparing both sets of the phase plots of the training data
and the output in Fig. 4, we can see that the trained network produces stochastic sequences
similar to the training data. Because all 12 patterns were reproduced stably by starting from
the corresponding initial context states, it is considered that they were successfully embedded as
multiple attractors. On the other hand, it appears that the context states lacked such stochastic
properties corresponding to the training data. This finding is revisited in the discussion section.

The time series of the predicted variances and their true values for each pattern are shown

in Fig. 5. Although the values of the variance U,ES) predicted by the trained network oscillate,

(

we can see that they are close to the true value @ts) = {&gs)}z. In order to evaluate the accuracy
(s)

of the predicted variance, we computed the following temporal mean of predicted variance v,

of the trained network for each sequence s,

_ 1
o = =3, (26)
t=1
where T" = 1000 is the length of the sequence, as mentioned above. Table 1 shows the calculated
mean and standard deviation (SD) values of the predicted variances 7

(2
~(S
true values vg),

and their corresponding

3.3 Experiment 3: A Stochastic Limit Cycle with State-Dependent Noise
Variance

In this experiment, state-dependent noise was added to the dynamic state of the attractor, such
that the noise can affect not only the current but also subsequent trajectories. The training
sequences were generated by using the following piecewise stochastic differential equations.

{ dj(t) = z(t)dt + o (4(t))dB(t), (27)
dz(t) = (f(2(t)) — k19(t))dt.

k‘gz(t) (|Z(7§)‘ < Za)a
FE0) = —ka(z(t) = 220) (20 < 2(1), (28)
—kjg(z(t) + 22(1) (Z(t) < _Za)a

10

Training Data
o) L@

?jt,Q o 2 0 — O
-1 I 1 I I
-1 [1 -1 [1] 1
(5) (6)
?JtTQ o 5 0 — m
-1 I -1 1 I
-1] 1 -1 V] 1 o 1
NG L 19 : N : N N L 19 (1) : L2
Jt2 of - o - of g o 4 Y2 of < of g uv) -
1 L = L -1 L -1 L -1 . -1 . -1 - -1 -
-1 o 1 -1 o 1 -1 o 1 -1 o 1 -1 o 1 -1] 1 -1 o 1 -1 o 1
Y1 Y1 Y1 Y1 Yt,1 Yt,1 Yt,1 Y1
Context
LM : . @ @ :
[17 | 1O
. !
-1 o 1 -1 o 1 -1 o 1 -1 o 1
(5) (6) U (8)
T T
Ct.QU’N’ 07@ B o/ u/
1 ! 1 I 1 I 1 !
-1 [1 -1] 1 -1 o 1 -1 o 1
(9) : L9 Ly (12)
-1 I -1 I -1 T -1 1
-1] 1 -1] 1 -1] 1 -1 o 1
Ct,1 Ct,1 Ct,1 Ct,1

Figure 4: Comparison of phase plots. Top left: 12 Lissajous curves of training data for different
values of the noise variance. Gaussian noise égi.) is added to 91 and g» for each pattern. In each
row, the noise variance increases from left to right ({6(*}2 = 0.0001, 0.0009, 0.0025, 0.0049). Top
right: output of the trained network with closed-loop dynamics with the addition of estimated

noise. Bottom: two selected context neurons of the trained network.

11

1 (3 4
0.0002 T 0.002 T 0.004 T 0.006 T

0.0001 0.001 faasaaamantaamaa] 0.002 0.003 B
IMAMMMMMAMNI
0.0000 L 0.000 L 0.000 L 0.000 L
500 600 700 500 600 700 500 600 700 500 600 700
5 6 7 8
0.0002 ®) - 0.002 ©) - 0.004) - 0.006 ®) -
0.0001 Wmm 0.001 [a a o a a o - 0‘002B “h i i n 0.003 -
AULATAY)
0.0000 L 0.000 L 0.000 L 0.000 L
500 600 700 500 600 700 500 600 700 500 600 700
(9) (10) (11) (12)
0.0002 - 0.002 - 0.004 - 0.006 -
MM
0.0001 FAbAMAM MM 0001 | - 0002 |- ~ 0.003
VVVVVVY YA
0.0000 L 0.000 L L L

0.000 0.000
500 600 700 500 600 700 500 600 700 500 600 700

Figure 5: Time series of the predicted variances of the trained network in the case of closed-loop
dynamics with addition of the estimated noise for time steps 500-700. The blue line indicates

the predicted variance vt(i) of the trained network, and the red line indicates its true value ﬁis).

where B(t) denotes Brownian motion. In fact, training sequences were computed according to
the following equations, which are numerical approximations of Egs. (27) and (28).
{ Ot = Jt—1 + 210t + &, (29)

ze = z—1 + (f(zi-1) — k1ge—1) At.

kozi—1 (|zi-1] < za),
f(zim1) = ¢ —ka(zi—1 — 220) (20 < 24-1), (30)
—ko(zt—1 4+ 22q) (2t—1 < —2q)-

The parameter settings were At = 0.1, ky = 1.0, ks = 2.0, z, = 0.25, and we defined the
standard deviation 6; of the added Gaussian noise ¢; as follows:

. { 0.03@,571 (0 < @t,1),
Ot =

0 (else). (31)

In this task, we used 10 training sequences, each with a length T" = 1000. Here, only one-
dimensional sequences g; were used for learning (z; was used for calculation of ;).

The number of context neurons, the time constant, and the variance of the initial states
were chosen to be M = 10, 7 = 5, and 02 = 1, respectively. We trained the network for 500,000
training steps, and the averaged MSE of all 10 sequences converged to 0.0000742. Time series
were then generated with closed-loop dynamics with addition of the estimated noise by using
(19b).

The result of generating time series is shown in Fig. 6. As can be seen from Fig. 6, the
output of the trained network reproduces the stochastic structure of the training sequence, which
contains a non-periodic pattern of the state-dependent variance. Furthermore, the predicted
variance vy of the trained network provides a close approximation of the correct value, which is
calculated by 0; = 62 = (0.03y;_1)2.

12

Training Data
o
T

2
5 0 1
o
-1
0.0012
)
)
c
£ 0.0006
"l JUAAA
0.0000 \
0 500 1000
Time Step

Figure 6: Generation of time series. Training sequence (first row), output of the trained network
with addition of the estimated noise (second row), and variance predicted by the trained network
(third row). In the third row (time series of variance), the blue line indicates the variance vy
predicted by the trained network, and the red dashed line indicates the true value ©;. Here, the
true value can be calculated by substituting the output of the trained network y; into (31) as
follows: 9441 = (6¢41)% = (0.03y,)2.

Training Data Output

Ct,1
Figure 7: Comparison of phase plots. Top left: training data g — z;. Top right: output of the

trained network with closed-loop dynamics with addition of the estimated noise 4; — z;. Bottom:
two selected context neurons of the trained network.

13

Table 1: Comparison between Mean of Predicted Variances and the Corresponding True Values.

Index of | True Mean and SD of

Sequence | Value Predicted Variance
s B(e) g sp{ o5 SN
1 0.0001 | 0.000084 | 0.0000090 | 0.000080 | 0.0000058
2 0.0009 | 0.000874 | 0.0000919 | 0.000901 | 0.0000827
3 0.0025 | 0.002452 | 0.0002574 | 0.002414 | 0.0002623
4 0.0049 | 0.004813 | 0.0005368 | 0.004799 | 0.0005712
5 0.0001 | 0.000090 | 0.0000094 | 0.000086 | 0.0000101
6 0.0009 | 0.000837 | 0.0000717 | 0.000854 | 0.0000912
7 0.0025 | 0.002525 | 0.0002705 | 0.002448 | 0.0001840
8 0.0049 | 0.004602 | 0.0004271 | 0.004654 | 0.0003304
9 0.0001 | 0.000094 | 0.0000130 | 0.000094 | 0.0000090
10 0.0009 | 0.000846 | 0.0000679 | 0.000854 | 0.0000700
11 0.0025 | 0.002614 | 0.0002061 | 0.002521 | 0.0002025
12 0.0049 | 0.004581 | 0.0005425 | 0.004545 | 0.0004428

Figure 7 presents phase plots of the training data ¢; — z;, the output of the trained network
Yyt — 2¢, and the two selected context neurons. Comparing the phase plots of the training data
and the closed-loop dynamics, we can see that the trained network can generate a stochastic
dynamic sequence similar to the training data. Furthermore, it appears that the context state
also shares the same stochastic dynamic structure.

4 Robot Experiment

We also conducted a robot experiment involving training and reproduction of sensory-guided
stochastic behavior in order to evaluate the performance of the S-CTRNN model in more realistic
situations, in which it is difficult to identify possible sources of noise and the characteristics of
the noise.

4.1 Obtaining Training Sequences

In this experiment, a trainer was instructed to repeatedly demonstrate visually guided movement
patterns (reaching toward a visually perceived object) to a small humanoid robot called “NAO”
by physically guiding its arm. The robot was seated on the floor facing a workbench. In
generating the training patterns, the trainer was instructed to guide the robot’s hand precisely

14

until it touched a red sphere affixed to the workbench and to subsequently retract the hand
without following a precise trajectory, as illustrated in Fig. 8. The red sphere could be located at

Touch Retract

Figure 8: Movement sequence learned during the training session. The task for the robot was
simply to touch a red sphere placed on the workbench with its right hand and then retract its
hand. This touch-and-retract action was repeated several times to obtain a training sequence
that included various trajectories.

different positions with respect to the plane of symmetry between the left and right sides of the
robot. What can be expected after successfully training the S-CTRNN with fluctuating training
trajectories demonstrated by a human trainer is that the closed-loop forward dynamics with an
accurate estimate of the mean values and their variances at each time step, can reproduce the
trajectories learned through visual guidance by inferring the stochastic structure hidden in the
training sequences.

The joint angles of the robot’s head were controlled to fixate automatically on the center of
the target object, regardless of the robot’s actions both while it was being guided by the trainer
to obtain training data and in generating actions using the trained network. Therefore, the
direction of the head provided visual information about the relative location of the object in
this experiment. Reading the two joint angles of the head (yaw and pitch) provided information
about the visual target (position of the red sphere), and reading the joint angles of the right
arm (shoulder pitch, shoulder roll, elbow yaw, and elbow roll) provided information about
the proprioceptive inputs. The angles of the remaining joints were fixed. During the process
of guiding the robot’s hand, the changes in the joint angles of the head and right arm were
recorded. These joint angles were mapped to values ranging between —0.8 and 0.8 because the
activation function of the output used for S-CTRNN was tanh (ranging between —1.0 and 1.0).

The object was located at one of three positions (denoted by Positions 1-3) (Fig. 9) in the
tutoring phase, and it was affixed at the same position while the trainer repeatedly demonstrated
the touch-and-retract action. Here, Position 3 was the center of the workbench on the line of
Position 1

Position 2

Position 3

3 —

Figure 9: Three positions of the object. The distance between two neighboring positions was 7
cm.

symmetry between the left and right sides of the robot.

The touch-and-retract action guided by the trainer was repeated 15 times for one training
sequence. Note that the touch-and-retract action in each training sequence was not always
completely periodic, although the trainer attempted to generate precise periodic patterns by

15

using a metronome. The actual learning took place with such noisy data. To ensure robust
learning, 10 training sequences were recorded for each of the 3 object positions. Therefore,
the total number of training sequences used in the learning phase was 30, for a total of 450
touch-and-retract actions. The training sequences were recorded every half a second, and the
length of each sequence was about L = 180. After the period of training the network, the robot
was tested for reproduction of the learned visually guided actions with the object located in
learned as well as in new positions.

4.2 System Architecture

Figure 10 presents an overview of the system architecture for the generation mode. Inputs to the

Predicted Proprioception Gaussian Noise

Target Closed-Loop Generator
Joint Angle | Dynamics | ®) gy Avgm ________ M) _________
Variance

Context State D
A

S-CTRNN
; Input §
vitual | L T (Forward Model) |
Open-Loop Proprioceptive Feedback xl(tp) x,(fv)
Dynamics Actual Vision (Target Direction)

Figure 10: System architecture for the generation mode. The S-CTRNN model was used as

a forward model for controlling the robot. Inputs to the network were in the form of visuo-

proprioceptive sequences xgv) and xgp). The network was trained to predict the inputs for the

next time step. The predicted proprioceptive sequence yt(p) with addition of the estimated noise

egp) corresponding to the predicted variances v,ﬁp) was sent to the robot in the form of target

joint angles, which acted as motor commands for the robot to generate movements. By adding
Gaussian noise, the network was able to reproduce the stochastic dynamical structure of the
training sequences.

network were in the form of visuo-proprioceptive sequences a:gv) and a:ﬁp)

the input state for the next time step as output sequences yt(v) and y,gp), and also predicted the

(v) (p)
t

variances v
(»)
Yt

. The network predicted

and v, corresponding to each output. The predicted proprioceptive sequences

with addition of the estimated noise egp) corresponding to the predicted variances ng) was

fed into the next input state, and network output values were remapped into joint angles. The
remapped values were sent to the robot in the form of target joint angles, which acted as motor

commands for the robot to generate movements. However, the predicted visual sequence yt(v)

and variance vlgv) were not used for action generation because the joint angles of the robot’s

head were controlled independently, as mentioned above. Therefore, the inputs to the network

16

were expressed as follows:

(v) _ 4

{ xi(,‘p) = yt(}i)l + 6%@17 (32)
Ty = Y1

. . o e S .
For action generation, initial states ué 2 corresponding to each sequence s were not used,
b

and instead the mean value 4; of the initial states of all training sequences was used. Therefore,
differences in behavior trajectories are not due to the initial state of the trained network but
arise from differences in the visuo-proprioceptive sequences (i.e., location of the object) and the
added Gaussian noise.

4.3 Results

The number of context neurons, the time constant, and the variance of the initial states were
chosen to be M = 30, 7 = 2, and 02 = 0.001, respectively. We trained the network for
500,000 training steps, and the averaged MSE of all 30 sequences converged to 0.000763. Action
sequences performed by the robot were then generated by the trained network.

Figure 11 illustrates an example of visuo-proprioceptive sequences in the training data,
output sequences and variance generated by the trained network. As can be seen from Fig.

Position 1 Position 2 Position 3

PAMMMEMYg

ining Data

Time Step

Figure 11: Generation of time series for each object position (Positions 1-3). Training sequence
(first row), output of the trained network with closed-loop dynamics with addition of the es-
timated noise (second row), and predicted variance of the trained network with closed-loop
dynamics with addition of the estimated noise (third row). Each panel shows a plot of 1 out
of 2 vision dimensions (blue: head pitch) and 2 out of 4 proprioception dimensions (green:
right shoulder pitch, red dashed: right elbow roll). The upper parts of the trajectories of the
training data and the output correspond to movement directed towards touching the object,
and the lower parts correspond to retraction of the robot’s arm. The gray areas correspond to
the moments at which the robot touched the object.

11, the output of the trained network with closed-loop dynamics with addition of the estimated
noise reproduces the stochastic structure of the training sequence, which contains cyclic patterns
with stochastic variances. Furthermore, the regions of increase and decrease can be observed in
the predicted variances, where we see that the variance decreases to the minimum at the very
moment of touching the object (at the crests highlighted in gray) and increases after the robot
retracts its arm (at the intermittent valleys).

Figure 12 shows snapshots capturing the moments of touching and after retracting for each
object position. As seen in Fig. 12, the position of the robot’s hand is centered at the point
corresponding to the position of the object. However, it varies when the robot retracts its hand
after touching the object.

17

Position 1 Position 2 Position 3
Touch Touch Touch

Figure 12: Snapshots of action sequences performed by NAO controlled by the trained network
for each object position (Positions 1-3). The upper panels correspond to movement directed
towards touching the object, and the lower panels correspond to the moment after the robot
retracts its arm.

The robot equipped with the trained network was able to reproduce the corresponding
stochastic behavior not only in the cases where the object was located at the learned positions,
but also when it was placed in new positions which did not appear in the training data, for
example, between Positions 1 and 2 and between Positions 2 and 3, by means of generalization.
Moreover, the robot was able to adapt to perturbations such as sudden changes in the object
location in the action generation stage, although the robot had never experienced such situations
in the learning process. Specifically, as long as the object was within the range between Positions
1 and 3, including new positions, the robot was able to touch the object even if the object was
shifted from its original position when the robot started to move.

Figure 13 presents phase plots of the training sequence, the output of the trained network
and the two selected context neurons of the trained network for each position, including cases
where the object is located between learned positions. In comparing Fig. 13, the phase plots
of the training sequence and those of the output of the trained network share similar stochastic
dynamical structures in which the trajectories tend to converge in the upper right corner of the
phase plot for the shoulder and the upper left corner of the phase plot for the elbow (correspond-
ing to the moment of touching the object), and diverge in the lower left corner of the phase
plot for the shoulder and the lower right corner of the phase plot for the elbow (corresponding
to the moment of retracting the arm). Furthermore, the same stochastic properties can be seen
in context states. Additionally, the trajectories of output and context states for new positions
appear to be situated between those of the two learned positions and show the same stochastic
properties.

These results suggest that the proposed S-CTRNN model can reproduce the observed fluc-
tuating trajectories to some extents by inferring hidden stochastic structures in terms of time-
dependent means and variances of the network outputs. Furthermore, the generalization capa-
bilities via learning for new sensory inputs (e.g., new object locations) were also confirmed.

5 Discussion

In the numerical experiments with various values for the variance of Gaussian noise, the pro-
posed S-CTRNN was able to reproduce the stochastic properties hidden in the training data
by estimating the variance correctly. In the first experiment, described in Section 3.1, we con-

18

N Midpoint between . Midpoint between N
Position 1 Position 1 and 2 Position 2 Position 2 and 3 Position 3

Training Data Training Data Training Data

a1 L

Shoulder Pitch

Shoulder Roll
T
.
Shoulder Roll
T
.
Shoulder Roll
T

o1 L =

1 o
Shoulder Pitch

3 3 5
o -4 o
2 ok g 2 ok g 2z of g
o [=] o
Q Ee Q
w w w
1 L -1 L 1 L
T o 1 1 o 1 1 o 1
Elbow Yaw Elbow Yaw Elbow Yaw
Output Output Output Output
1 T 1 T 1 T T
& & & & &
5.0 i gl i o g S ok B of]
3 . 3 3 > >
2| 2 g 2 g
v [4] w w
o I 5 | o . N . o .
1 o 1 o 1 I o 1 T o 1 -1 o 1
Shoulder Pitch Shoulder Pitch Shoulder Pitch Shoulder Pitch Shoulder Pitch
1 T 1 T * T 1 T 1 T
& & & & &
2 o B z ol 1 2 of B 2 ob g z o B
o o o o o
Fe] Q Q Qo Q
E o f i a2
o L 2 L o L o L o L
Y o 1 = o 1 B o 2 1 o) Y o 3
Elbow Yaw Elbow Yaw Elbow Yaw Elbow Yaw Elbow Yaw
Context Context Context Context Context
1 : 1 . 1 : 1 1
N\) 7
‘ N)
Ct,2 o 1 /) 1 > L// 1 Ct,2 o ¥ R Ct,2 o 1
W 7
Y DR o . o . N . . .
1 o 1 1 o 1 E o 2 1 o 1 Y o 3
Ce1 Ct1 Ct,1 Ct,1 Ct1

Figure 13: Phase plots of the training data, the output of the trained network, and the two
selected context neurons of the trained network for each object position. Shoulder space of the
training data (first row), elbow space of the training data (second row), shoulder space of the
output (third row), elbow space of the output (fourth row), and context space (fifth row). The
gray areas correspond to the moments at which the robot touched the object.

19

sidered a simple task in which the training sequence was a one-dimensional sinusoidal curve
with added Gaussian noise with a time-dependent variance in order to compare the variance
estimated by the trained network and that in the training sequence. In Fig. 3, we can see
that the estimated variance is close to the target one. From this result, it was concluded that
the proposed S-CTRNN can predict the time-dependent noise variance added to the reference
trajectory. In the second experiment, described in Section 3.2, the task involved learning mul-
tiple Lissajous curve patterns with different shapes with added Gaussian noises with different
values of the constant variance. The experimental results revealed that the training patterns
can be reproduced as multiple limit cycle attractors with variance which has been adequately
estimated for each pattern through the learning process. It should be noted that in both of
the abovementioned experiments, Gaussian noise was added not to the intrinsic dynamics of
generating those patterns but directly to the reference trajectories of the training data at each
time step. In contrast, in the third experiment (described in Section 3.3), we added Gaussian
noise to the dynamics of the limit cycle attractor itself. In this case as well, the network was
able to predict the variance correctly (see Fig. 6) and to reproduce the stochastic structure
hidden in the training data (see the training data and the output in Fig. 7). By comparing the
context states in Figs. 4 and 7, we can see a qualitative difference between their trajectories.
In the case where noise was added to the reference trajectories, such as in the experiments
in Sections 3.1 and 3.2, future states are independent of any noise added at previous steps.
Therefore, the hidden stochastic structures did not appear in the context state trajectories of
the trained network (see context states in Fig. 4). On the other hand, in the case where noise
was added to the dynamic system generating the training data, such as in the case described in
Section 3.3, stochastic structures appeared in the context trajectories in the trained network,
such that noise added at previous steps affected future states (see context states in Fig. 7).

In the robot experiment, S-CTRNN was also able to reproduce fluctuating trajectories
demonstrated by human trainers. The robot controlled by the trained network reproduced
the sensor-guided behavior and exhibited fluctuations with a structure similar to that of the
training trajectories. Although it is difficult to identify sources of noise or to estimate the
characteristics of noise directly in this real-world situation, at least it was observed that the
network was capable of reproducing fluctuating trajectories with a structure similar to that of
the tutored trajectories. Such behavioral trajectories were generated successfully even for new
sensory input through generalization of learning. Moreover, the robot was able to adapt to
perturbations such as sudden changes in the object position during action generation. These
results suggest that the proposed model can achieve generalization and adaptation to some
extent by learning.

These numerical and robot experiments indicate that the proposed mechanism of estimat-
ing variance shows certain advantages in the process of learning and reproduction of target
stochastic sequences. In particular, it should be noted that the proposed learning scheme based
on estimating variance in training sequences can facilitate the learning processes because the
weight of error signals for noisy sequences is reduced before back-propagation as it is divided
by the variance. Our preliminary investigation suggested that most of the present results can
be regenerated robustly for a variance of up to 30% in the presented parameters, including the
number of context neurons, the time constant and the learning rate. The crucial part of the
parameter setting is that the learning rate should be scaled by the total length of the training
sequences and the dimensionality of the output neurons as described in Section 2.4 because the
maximum value of the likelihood depends largely on them.

Several issues remain to be examined in future studies. One such issue is the “temporal
registration” problem. In the probabilistic approach employing a combination of GMM and
GMR [14-16], dynamic time warping (DTW) is used for temporal normalization because GMM

20

contains time as a variable, and the mean and variance information for a given time step is
calculated with GMR. For performing expert-level aerobatics by an autonomous helicopter,
Coates et al. [22] proposed an algorithm that extracts the unobserved target trajectory that
an expert pilot was trying to demonstrate from multiple suboptimal demonstrations, and then
constructs an accurate dynamics model by using the extracted trajectory for controlling the
helicopter. In the former process, they also used DTW to enable the model to be simpler. In
the current study, temporal registration was not applied to the training sequence because there
is no time warping in the data. Although it can be argued that the context states can absorb
time warping to a certain extent as well as other dynamical systems approaches [23,24], the
acceptable range should be investigated in future work.

Another issue concerns the utilization of the predicted variance for the robot’s action gen-
eration. For example, when the humanoid robot ASIMO was given a pouring task in [16], the
learned variance information was interpreted as a measure of the importance of parts of the
pouring movement. In parts with high variance, the robot’s movement diverged more from the
actual learned movement in the case of avoiding self-collision because the required movement
precision in this part of the task execution was lower. Although the predicted variance was
used only to reproduce stochastic structures in the training data in the current study, it is
considered that our proposed model can also be applied to the acquisition of skilled behavior by
mediating physical constraints and the variability in generating trajectories, as demonstrated
in the aforementioned example.

Finally, the last issue concerns the learning capabilities of the S-CTRNN. In numerical
experiments, the network was able to estimate both the time-dependent noise variance added
to the reference trajectory and the noise variance added to the intrinsic dynamics. For evaluating
the learning capabilities in similar setups, we conducted additional numerical experiments in
which the standard deviation of the added Gaussian noise was three times larger than that in
each numerical experiment described in Section 3. Consequently, we found similar results in
the additional experiments. In the robot experiment, the same network was able to reproduce
fluctuating trajectories with structures similar to those of the observed trajectories. The current
model of S-CTRNN predicts mean of x(t + At) and its variance with x(t) given, where x(t)
and x(t+ At) are input state (e.g., visuo-proprioceptive state for the robot experiment) at time
step ¢t and t + At, respectively. If At is sufficiently small, the mapping function from x(t) to
x(t + At) can be approximated as a linear one by which its likelihood should have a single
peak normal distribution. Therefore the assumption of normal distribution should work for one
step prediction with small At. If At becomes large, the assumption of normal distribution for
the likelihood cannot be held because of the nonlinearity in the prediction mapping from ¢ to
t + At. The assumption is not a general limitation of the proposed approach, since it can be
extended to other probability distributions. We demonstrated only one successful example of
reproducing fluctuating structures via observation, and therefore future studies should evaluate
the availability and limitations of the proposed scheme in more diverse cases.

6 Conclusion

In this study, we presented results indicating that the proposed S-CTRNN model can learn
and reproduce both artificial and human-made stochastic time series by estimating both the
time-dependent mean and the variance of observed trajectories. In order to evaluate the capa-
bilities of the S-CTRNN model, we conducted three experiments with various conditions for the
fluctuating trajectories. In all three experiments, S-CTRNN was able to learn and reproduce
trajectories by extracting the stochastic structures hidden in the target training trajectories.
Furthermore, the results of the robot learning experiment suggest that the proposed scheme

21

can be applied to real-world problems, including teaching skilled behavior to humanoid robots.
Future studies should evaluate the possible scope of application of the proposed scheme.

Appendix Training Data: Stochastic Lissajous Curves with Mul-
tiple Constant Values for the Noise Variance

The equations for the Lissajous curves in training data in Section 3.2 are as follows

(1)

@0, 50) = (Vir + &), vio + &), (33)
@2,53) = (Vi1 + 2, Via + &2, (34)
3%, 5% = (Vo + 6@, vy +), (35)
39, 38) = (Vio + 8, —vir +9), (36)
@3, 59) = (Vir + €0, Vg +€)), (37)
69,58 = (~Ver + &9, Via + €9, (38)
G, 3)) = Via+ &0, via + &), (39)
@17.9%) = Va+ &7, ~Yer + &), (40)
@17.3%) = Vs +&7 Vi +é3), (41)
G 915)) = (~Yos + &) Vi + ey, (42)
@Y 95)) = Mz + ey Vis+eh)), (43)
G 95 = e+ ey —Yis+és). (44)

References

[1] Eleanor J. Gibson and Pick Anne D. An Ecological Approach to Perceptual Learning and
Development. Oxford University Press, 2000.

[2] DM Wolpert and M Kawato. Multiple paired forward and inverse models for motor control.
Neural Netw, 11(7-8):1317-29, 1998.

[3] Martin V. Butz, Olivier Sigaud, Giovanni Pezzulo, and Gianluca Baldassarre, editors.
Anticipatory Behavior in Adaptive Learning Systems: From Brains to Individual and Social
Behavior, LNAI 4520 (State-of-the-Art Survey). Springer-Verlag, Berlin Heidelberg, 2007.

[4] Michael I Jordan. Forward models: Supervised learning with a distal teacher. Cognitive
Science, 16:307-354, 1992.

[5] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

[6] Ronald J Williams and David Zisper. A learning algorithm for continually running fully
recurrent neural network. Neural Computation, 1(2):270-280, 1989.

[7] Jun Tani. Model-based learning for mobile robot navigation from the dynamical systems
perspective. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics,
26(3):421-436, 1996.

22

8]

[15]

[16]

Masato Ito, Kuniaki Noda, Yukiko Hoshino, and Jun Tani. Dynamic and interactive gen-
eration of object handling behaviors by a small humanoid robot using a dynamic neural
network model. Neural Networks, 19:323-337, 2006.

Yuichi Yamashita and Jun Tani. Emergence of functional hierarchy in a multiple timescale
neural network model: a humanoid robot experiment. PLoS Comput Biol, 4(11):e1000220,
2008.

Shun Nishide, Jun Tani, Toru Takahashi, Hiroshi G. Okuno, and Tetsuya Ogata. Tool—-
body assimilation of humanoid robot using a neurodynamical system. IEEFE Transactions
on Autonomous Mental Development, 4(2):139-149, 2012.

Jun Namikawa, Ryunosuke Nishimoto, Hiroaki Arie, and Jun Tani. Synthetic approach
to understanding meta-level cognition of predictability in generating cooperative behavior.
Proceedings of the Third International Conference on Cognitive Neurodynamics, in press.

Karl Friston. The free-energy principle: a rough guide to the brain? Trends Cogn Sci,
13(7):293-301, 2009.

Karl Friston, Jérémie Mattout, and James Kilner. Action understanding and active infer-
ence. Biol Cybern, 104(1-2):137-60, 2011.

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing and gener-
alizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics
Part B: Cybernetics, 37:2:286-298, 2007.

Sylvain Calinon and Aude Billard. Statistical learning by imitation of competing constraints
in joint space and task space. Advanced Robotics, 23:15:2059-2076, 2009.

Manuel Muehlig, Michael Gienger, Sven Hellbach, Jochen J. Steil, and Christian Goerick.
Task-level imitation learning using variance-based movement optimization. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA 2009), pages 1177-84, 20009.

Kenji Doya and Yoshizawa Shuji. Adaptive neural oscillator using continuous-time back-
propagation learning. Neural Netw, 2:375-385, 1989.

Kenichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by contin-
uous time recurrent neural networks. Neural Netw, 6:801-806, 1993.

Randall D. Beer. On the dynamics of small continuous-time recurrent neural networks.
Adaptive Behavior, 3(3):469-509, 1995.

Jun Namikawa and Jun Tani. A model for learning to segment temporal sequences, utilizing
a mixture of rnn experts together with adaptive variance. Neural Netw, 21(10):1466-75,
2008.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. In David E Rumelhart and David McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1,
chapter 8, pages 318-362. MIT Press, Cambridge, MA, 1986.

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control from multiple
demonstrations. In Proceedings of the 25th international conference on Machine learning,
pages 144-151, 2008.

23

[23] Elena Gribovskaya, S. Mohammad Khansari-Zadeh, and Aude Billard. Learning nonlinear

multivariate dynamics of motion in robotic manipulators. International Journal of Robotics
Research, 30(1):80-117, 2011.

[24] S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable non-linear dynamical
systems with gaussian mixture models. IFEE Transactions on Robotics, 27(5):943-957,
2011.

24

