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In this study, we attempted to bind the simple linguistic processes of combining

verbs, objects, and the simple behavioral processes of object-related actions by using

the RNNPB scheme (Sugita & Tani, 2003). The study was inspired by Arbib (2002)’s

hypothesis that mirror neurons, which become active both for generating and recogniz-

ing object handling behaviors, play crucial roles in language development, especially

in pairing verbs and objects.

Modeling and task setting

Figure 1 (a) illustrates the RNNPB scheme used in the co-learning of word sequences

and their corresponding behavior patterns. The linguistic module on the left-hand

side receives word sequences, beginning with a “start symbol” for each sequence. The

behavior module on the right-hand side receives sensory-motor sequences. During co-

learning, word sequences are bound to the corresponding behavior sequences. More

specifically, PBl in the linguistic module and PBb in the behavior module are simul-

taneously updated, under the constraint that the difference between these two vectors

be minimized for each bound sequence. In the ideal situation, PBl and PBb become

equal at the end of co-learning for each sequence. Figure 1 (b) illustrates the RNNPB

scheme utilized in the recognition and generation phases. The PBl in the linguistic

module is determined by recognizing a given word sequence. Its vector is set to PBb

in the behavior module for generating the corresponding behavior.

The mobile robot experiment is conducted in the environment shown in Figure 2,

where red, blue, and green objects are located in the left, center, and right positions

respectively in front of a white rear wall. The robot learns to “POINT” with its

arm, “PUSH” with its body, and “HIT” with its arm these three objects repeatedly

associated with corresponding sentences. (See Figure 2 (b) for a trained trajectory

corresponding to “HIT red”.) Each sentence consists of two words, a verb followed

by a noun. The verbs used are point, push, hit, and the nouns are red, blue, green,

left, center, right. There can be 9 different combinations of behavior categories and 18

different sentences in this setting. Note that “red”, “blue” and “green” turn out to be
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Figure 1: (a) Model for co-learning of word sequences and corresponding behaviors,

(b) model for recognizing word sequences and generating corresponding behaviors.
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Figure 2: (a) The task environment consists of red, blue and green objects placed

in left, center, and right positions, respectively. The mobile robot is at the starting

position. (b) A trained behavior trajectory of “HIT red”.

equivalent to “left”, “center” and “right”, respectively, in this task context. In order

to investigate the generalization capability, especially in the linguistic learning, only

14 sentences out of 18 possible sentences are trained.

Results and analysis

Recognition and generation tests were conducted after learning was completed. The

appropriate corresponding behaviors were generated for all 18 word sequences, includ-

ing the 4 unlearned ones. In order to analyze the internal structures self-organized in

the co-learning process, a phase space analysis was conducted for PBl and PBb. In

this analysis, the original 6-dimensional PB space was projected onto the 2-dimensional

surface determined by principal components analysis. In Figure 3 (a) the PBl vectors,

corresponding to all possible 18 word sequences, are plotted in the 2-dimensional space.

The PBl vector is inversely computed during the recognition of each word sequence in

the linguistic module. The PBl vectors for 4 unlearned word sequences are surrounded

by dashed circles. Figure 3 (b) shows the PBb vectors that are determined for 90 be-

havior sequences in the co-learning phase. Figure 3 (c) shows the averaged PBb vector

for each of 9 behavior categories.

There are some interesting findings in these figures. First in Figure 3 (a), two
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Figure 3: In each plot, the PB vectors for recognized sentences in the bound linguistic

module (a), the PB vectors for training behavioral sequences in the bound behavioral

module (b), and the averaged PB vectors of (b) over each behavioral category (c) are

plotted. All the plots are projections of the PB spaces onto the same surface determined

by the PCA method.
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congruent sub-structures can be observed among the PB points corresponding to word

sequences. There are 6 word sequences, each of which has the same verb followed by

one of 6 nouns. All 3 of the hexagons, made up of the 6 PB points for each verb, seem

to be congruent. Similarly, 6 congruent triangles can be seen for the 3 verbs preceded

by the same noun. This doubly congruent structure is crucial for representing the

compositionality hidden in the learned sentences i.e.– each verb can be followed by

one noun in the same noun set. The combinatorial relationship between the verbs and

the nouns is well represented in the multiplication of these two congruent structures.

An interesting fact is that this structure was self-organized without using all possible

combinations of word sequences during learning. However, 4 PB points, corresponding

to unlearned word sequences, are actually found to come to the right positions in the

structure when they are inversely computed in the recognition processes (thus correct

behaviors can be successfully generated for them). This sort of generalization became

possible because each word sequence is learned not as an independent instance, but

rather in the form of relational structures among others, which is the compositionality

of nouns and verbs in the current case.

Second, a cluster structure can be seen in the PBb vectors in the behavior module,

as shown in Figure 3 (b). Although there are certain distributions in each cluster due

to the perturbations in the sensory-motor sequences in the learning set, the layout of

the averaged center of those clusters seems to have the same congruent structures as

the linguistic module, as shown in Figure 3 (c). It is interesting to note that this sort

of congruent structure cannot self-organize when the behavior module is trained with-

out binding with the linguistic module. The linguistic structure affects the behavior

module, allowing generation of the observed congruent structure. On the other hand,

the behavior constraints can also affect the structure self-organized in the linguistic

module. In Figure 3 (a), the PB points for pairs of sentences ending with “red” and

“left”, “blue” and “center”, and “green” and “right”, are quite close in the space. This

is due to the fact that those pairs of nouns have the same meaning in the behavioral

context in the current task.

Based on these observations, one may conclude that certain generalizations are

achieved in recognizing sentences and generating behaviors by self-organizing adequate

structures in the PB mapping, utilizing both linguistic and behavioral constraints.
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