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Abstract

This paper discusses possible correspondences between the dynamical sys-

tems characteristics observed in our previously proposed cognitive model and

phenomenological accounts of the immanent time considered by Edmund Husserl.

Our simulation experiments in the anticiparatory learning of robot showed that

encountering sensory-motor 
ow can be learned as segmented into chunks of

reusable primitives with accompanying dynamic shifting between coherences and

incoherences in local modules. It is considered that the sense of the objective

time might appear when the continuous sensory-motor 
ow input to the robot

is reconstructed into compositional memory structures through the articulation

processes described.

1 Introduction

When a person behaves and generates continuous sensory-motor 
ow resultantly, he

may not remember the whole behavior as a continuous 
ow like a video tape, but rather

as a segmented sequence. For example, when I attempt to recollect how I turned on
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the TV in front of me just minutes ago, I only remember it as a linear sequence of

combining behavioral events as like { I �rst sat down on the couch, then grasped the

TV remote control found on the side table, and then pushed the power-on button while

pointing toward the TV.

In studies of motor systems, some (Arbib, 1981; Feldman, 1980) proposed that

various complex behavior sequences can be generated by 
exibly combining a set of

reusable behavior scheme which have been acquired in advance. In robotics applica-

tions, it was reported that a complex task of objects handling by a robot arm can

be achieved by segmenting behavior sequences by using a set of behavior scheme that

are prepared by programming(Kuniyoshi, Inaba, & Inoue, 1994). If the idea of the

segmentation is essential, a question is that how such a set of behavior scheme can be

learned from iterative sensory-motor experiences.

While we investigated possible neuronal mechanisms for the segmentation of sensory-

motor 
ow we noticed that this problem is also related to an essential phenomenological

question by Husserl (1964): how objective time could be constituted out of the subjec-

tive 
ow of temporality. Although the temporality is experienced as as a part of 
ow in

the deep level of phenomenology, it does as temporal objects and events in the shallow

level. Here, it is noted that objective time by Husserl (1964) does not mean time mod-

eled in physics, but does for the one phenomenologically experienced when recalling

rather objectively our own episodes. As illustrated previously in the TV example, in

recalling past experiences, a temporal image of the past can be reactivated as a linear

sequence of discrete events, instead of as a replay of the original continuous 
ow of

our impression. After all, the 
ow itself cannot be consciously manipulable unless it is

somehow segmented into a set of identi�able objects. Hence, we have to investigate by

what sort of mechanism the 
ow can be reconstructed into consciously manipulatable

structures.

We consider how this mechanism could be described by using adequate synthetic

approaches especially using the dynamical systems approach (Kelso, 1988; Beer, 1995;

Gelder, 1998). The dynamical systems approach attempts to describe the underlying

mechanism of cognition in macro-scopic views by using the dynamical systems lan-

guage (Beer, 1995) such as phase transitions, attractor, coherence, entrainment, etc.

There have been some lines of related research that attempt to describe phenomeno-

logical observations. Varela (1999) proposed that nonlinear dynamics theory can be

used as the formal descriptive tool for the phenomenon. By using the phenomenon of

the spontaneous 
ipping of a Necker-cube as an example, he explained that the dy-

namic properties of intermittent chaos, which is characterized by its spontaneous shifts
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between static and rapid transition modes, could explain the paradox of continuous,

yet segmented time perception. Tani (1998) also attempted to explain a possible dy-

namical system's structure behind the phenomenon of momentary self by conducting

experiments with a real autonomous robot. In this research it is claimed that the

\self" emerges momentarily when the coupled dynamics between the internal neural

network and the environment shifts from coherent to incoherent dynamics. When ev-

erything proceeds as anticipated in the coherent phase, there is no distinction between

the self and the environment in the coupled dynamics. However, the self can be per-

ceived as separate from the environment when something goes wrong, in con
ict with

the system's anticipation, leading to the incoherent phase. It is argued that the open

dynamics, which causes autonomous 
uctuations between the coherent and the inco-

herent phases, may represent the structure of the \self". This corresponds to William

James's saying that the stream of consciousness is segmented as like a bird making of

an alternation of 
ights and perchings(James, 1890).

In this paper, �rst our proposed neural network model (Tani & Nol�, 1998; ?), that

is aimed at achieving hierarchical modular learning of sensory-motor 
ow, is reviewed.

Then, the paper will review an experiment using a simulated robot(Tani & Nol�, 1998,

1999) where it is shown how a mobile robot can learn to recognize the sensory-motor


ow as segmented in multiple levels as the internal structure in the network is self-

organized. In the end, with focusing on the results obtained in our synthetic studies

we will discuss the dynamical systems account for phenomenology of immanent time.

2 Model

This section reviews the neural network proposed by Tani and Nol� (1998, 1999)and

also explain how the model is applied to a speci�c robot learning task.

2.1 Anticiparatory learning by a mobile robot

Before going to detailed descriptions of our models, it is better to explain the objec-

tives of sensory-motor learning in our experimental tasks. We focus on the navigation

capability of a mobile robot that moves around certain environment. The simulated

mobile robot is equipped with a set of range sensors by which distances to its sur-

rounding environment can be measured in multiple directions. The robot is assumed

to maneuver in the workspace by changing its motion direction while its motion speed

is kept as a constant. Figure 1 shows an example of robot travel in the employed
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Figure 1: (a) Simulation workspace consisting of two rooms connected by a door. (b)

the time development of the simulated range image while the robot traveled. Redrawing

with permission, from (Tani & Nol�, 1999) copy right (1999) Elsevier Science.

task environment and its corresponding sensory-motor 
ow. The goal in this setting

is that the robot becomes able to anticipate coming sensory-motor 
ow based on the

current situation/context of the robot through iterative learning. This can be done

by utilizing the ideas of the forward model (Uno, Kawato, & Suzuki, 1989; Jordan &

Rumelhart, 1992) in which the sensory state in the next step is anticipated with the

sensory state and the motor commands given in the current step. In our experiment

setting it is assumed that collision avoidance maneuvering controller is prepared as

an innate function. We employed a variant of the potential method (Khatib, 1986)

by which the robot tends to move toward the direction of open space sensed by the

range sensors. This controller works as independent of the neural network functions
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described in the following subsections. The Anticiparatory learning takes a place in

a given environment based on this pre-implemented collision-free maneuvering control

scheme. What we assume is that certain internal model of the environment will be self-

organized in the the forward model structure as the robot repeatedly travels around the

same environment. After learning the network should become able to predict encoun-

tering sensory-motor inputs while it travels in the same environment. . The central

issue, however, in this experiment is to see how the internal structures of segmenting

continuous sensory-motor 
ow appear in the course of this prediction learning.

2.2 Neural network model

The following three sections explain the basic functions, the architecture and the com-

putation algorithm for the neural network model employed in the experiments. Our

proposal is to use multiple module RNNs, each of which competes to become an expert

at predicting the sensory-motor 
ow for a speci�c behavior. This idea is inspired by the

mixture of experts �rst expounded by Jacobs and Jordan (1991). The experts achieve

their status through learning processes. For example, one module RNN would win

in predicting the sensory-motor 
ow while traveling around a corner; another would

win while following a straight wall. The switching between the winning RNN modules

actually corresponds to the temporal segmentation of the sensory-motor 
ow. The

essential point in this scenario is that the segmentations take place by means of pro-

nounced changes in the observed dynamical structure in the sensory-motor 
ow, rather

than just in temporal di�erences in the sensory-motor state. These highly pronounced

changes correspond to switching between the dynamical functions, each of which is

embedded in an RNN through having learned the speci�c sensory-motor 
ow. One

might ask how each RNN can choose to learn its corresponding sensory-motor 
ow.

The speciality of each module is determined during the processes of on-line learning.

The competition between the modules during the simultaneous processes of recognition

and learning result in generating their specialties. The next section will introduce a

new architecture called the mixture of RNN experts which has been extended from the

original idea of the mixture of experts (Jacobs & Jordan, 1991).

2.3 Architecture

Figure 2 shows the proposed architecture for the mixture of RNN experts (MRE) which

is used for the prediction-learning of the sensory-motor 
ow.

5



sensory motor  context

target: (s*
t+1, m

*
t+1)

(c)

gate opening state context

target:

(b)

Time

Time

RNN1

RNN3

RNN4

RNN5

Room A

RNN1

RNN2

RNN3

Gate

Time

Time

RNN1

RNN2

RNN3

RNN4

RNN5

Room A

RNN1

RNN2

RNN3

Gate Gate

higher
level

lower
level

left
turn

straight
right
turn

gate
2

gate
3

gate
4

(a)

gateH

gT+1
1. . . . . .gT+1

n

gT
1. . . . . . . .gT

n cT

g*
T+1

1. . . . . .g*
T+1

n

st+1 mt+1

st mt ct

Figure 2: The complete architecture of the mixture of RNN experts for anticiparatory

learning. (a) In hierarchical learning architecture, a gate of speci�c module corre-

sponding to current sensory-motor is opened by turns in the lower level, then a speci�c

module in the higher level is activated by receiving this gate opening sequence pattern,

(b) RNN module for learning the gate opening dynamics in the higher level, and (c)

details of each RNN module for learning the sensory-motor 
ow in the lower level.
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Fig. 2(a) shows a hierarchical architecture consisting of two levels; more levels are

possible in general. Each RNN module in the lower level receives the sensory-motor

inputs, Xt : (st;mt), and outputs the prediction of the sensory-motor inputs at a time

�t afterwards in the form Xt+1 : (st+1;mt+1), as shown in Fig. 2(b). The RNN can

also conduct look-ahead prediction for multiple steps without receiving the inputs but

feeding back its prediction outputs in the previous step(Tani, 1996). This enables the

robot to perform simulations by the inner world of a Hesslow (2002)'s sense. An essence

of the RNN is the so called context loop in which the state of the context output units

are fed-back to that in the context input units. By utilizing this mechanism, the pre-

diction of the RNN is performed in a context dependent way which means that the

sensory-motor values at each step is anticipated utilizing not just the sensory-motor

values at the previous step but also its past history. It is well known that by using the

back-propagation through time (BPTT) algorithm (Rumelhart, Hinton, & Williams,

1986) the activation patterns of context units at each step are self-organized such that

necessary information received in the past can be retained in the internal state mem-

ory(Jordan, 1986; Elman, 1990; Tani & Fukumura, 1995). This memory is dynamical

one which is inherent to nonlinear dynamical systems of multiple dimensions. Although

these memory e�ects are retained during certain period depending on the conditions

of the tarining, they generally decay as time goes by. The possible signi�cance of this

context memory will be discussed in the later section in the context of the retention in

Husserl phenomenology.

The total output of the network is obtained from the weighted average of each

output with its associated value of gate opening at the time git for all modules. The

gate opening is computed dynamically with time using the prediction errors of each

module, which are obtained from the di�erence between the prediction (st+1;mt+1)

and the outcome (s�t+1;m
�
t+1). The gate opens more if its module produces a relatively

lower prediction error than the other modules. By having the winner-take-all dynamics

among modules, the module with the lowest error over a suitable time interval becomes

the winner. The original work on the mixture of experts (Jacobs & Jordan, 1991) used a

gating network which selected the module with the closest correspondence to the target

outputs. In our architecture, without using a gating network the module is activated

autonomously as the result of dynamical competition between all modules over some

time interval, utilizing on-line monitoring of the prediction errors. The winning module

changes from one module to another as the pro�le of the sensory-motor 
ow changes

with time. The learning in each module is accelerated if its gate opens more. By using

this selective learning scheme, the expertise is developed intensively at each module.
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In the proposed on-line learning scheme, the winner-take-all dynamics among modules

and the learning in those modules are proceeded as tightly coupled. Therefore, in the

early stage in the robot travel before the expertises are fully developed, the module

activations tend to be merely ambiguous.

The higher level network learns the gate opening dynamics of the lower level net-

work. More speci�cally, each RNN module in the higher level samples the gate opening

state of the lower level in the current time step GT : (g1T ; g
2
T ::::g

n
T) and makes a pre-

diction for the next time step GT+1, as shown in Fig. 2(c). T denotes the time step

in the higher level; the higher level sampling interval �T is much larger than that in

the lower level. The modules in the higher level compete for gate opening g0 iT , in the

same way as shown for the lower level, and the resultant gate opening can be sent to

yet higher levels in a recursive manner. The higher level network observes the lower

level activities by means of receiving its gate opening dynamics while the lower level

network receives the sensory-motor 
ow. In this manner, the signal is \bottom-up" as

abstracted from one level to the next.

2.4 Algorithm

This subsection describes the mathematical formulae for the proposed scheme of the

MRE. Suppose a single level network consists of n RNN modules, where xi
t, y

i
t+1, y

�
t+1

and git are the inputs, the outputs, the target outputs for teaching and the gate opening

of the i-th module RNN, respectively. xt and yt+1 correspond to the sensory-motor state

or the gate opening state depending on the levels of the network.

The \soft-max" activation function is used to represent the i-th gate opening git

given by:

git =
es

i
t

Pn
j=1 e

s
j
t

(1)

where sit is the current internal value of the i-th gate opening. The total output of the

network is yt+1, given by:

yt+1 =
nX

i=1

git � y
i
t+1 (2)

We de�ne the following likelihood function L which is maximized for prediction learn-

ing: it has been obtained by modifying the original de�nition of Jacobs and Jordan

(1991).

lnL = ln
nX

i=1

git � e
�1

2�2
ky�t+1�yit+1k

2

(3)

� denotes a scaling parameter.
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Both the weight of each RNN and the gate opening are updated simultaneously

such that the likelihood function is maximized. This point is essential for the on-

line learning scheme. In order to obtain the update rules for these two processes, we

consider the partial derivatives of the logarithm of the likelihood function with respect

to the internal value si and with respect to the output of the i-th RNN yi given by:

@lnL

@sit
= g(i jxt; y

�
t+1)� git (4)

@lnL

@yit
= g(i jxt; y

�
t+1)

(y�t+1 � yit+1)

�2
(5)

where g(i jxt; y
�
t+1) is the a posteriori probability that the i-th module RNN generated

the target vector y�t+1, in terms of xt. Explicitly, this is given by

g(i jxt; y
�
t+1) =

git � e
�1

2�2
ky�t+1�yit+1k

2

Pn
j=1 g

j
t � e

�1

2�2
ky�t+1�y

j
t+1k

2
(6)

where ky�t+1�y
j
t+1k

2 represents the square of the error of the current prediction. Eq. (4)

denotes the direction of update for the internal gate opening value sit. The di�erenti-

ation of lnL with respect to yit+1 involves the error term y�t+1 � yit+1 weighted by the

a posteriori probability associated with the i-th module RNN as shown in Eq. (5).

Thus the connective weights of the RNN are adjusted to correct the error between the

output of the i-th RNN and the global target vector, but only in proportion to the

a posteriori probabilities. By this means, the individual RNN which is the expert for

the on-going input sequence tends to learn exclusively. The error distributed to each

module RNN is:

errorit+1 = g(i jxt; y
�
t+1) � (y

�
t+1 � yit+1) (7)

The details of the derivation of Eq. (4) to Eq. (7) are given in Ref. (Jacobs & Jordan,

1991).

Upon obtaining the mathematical formulae, the actual update of the gate opening

and the connective weights for each RNN are computed through the use of the back-

propagation through time (BPTT) algorithm (Rumelhart et al., 1986). In this compu-

tation, the sequence of the sensory-motor inputs as well as the gate internal states for

the previous l steps are stored temporally in the window of short term memory. When

new sensory-motor inputs are received, their prediction errors are back-propagated in

the window memory. Then, the sequence of l steps of the gate internal states in the

window as well as the connective weights for each RNNmodule are updated. When the

update is �nished, the window memory is shifted one step forward in order to process
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the sensory-motor inputs of the next time step. The update for sik, which is the ith

gate internal state in the kth step in the window memory, is obtained as being:

�sik = �g �
@lnL

@sik
� �g � (s

i
k � sik�1) (8)

The �rst term in the right-hand side of the equation represents the direction of the

update obtained in Eq. (4); the second term represents the damping term which sup-

presses abrupt changes in the gate opening; �g and �g are parameters. This update is

computed in the forward direction in the window memory from k=1 to k=l.

This dynamic gate opening scheme using the window steps was necessary in order

to avoid sudden opening and closing of the gates at every step. Eq. (8) makes the

gate opening pro�le smooth along the window steps. At the same time, this treatment

makes the gate opening sluggish. When new sensory-motor values are input and stored

in the top of the window memory at t = tc, the corresponding gate openings are set

as neutral. As the time goes by, the sensory-motor values at t = tc shift back in the

window memory and the gate openings of t = tc gradually change by following the

dynamics de�ned in Eq. (8). It takes a certain delay time until the winner-take-all

dynamic for the gate opening with processing the currently encountered sensory-motor

inputs converges. The same scheme is employed for computing the gate opening in

the higher level. The lower level gate opening values of d steps delay in the window

memory is sampled in every �T and they are fed into the higher level sequentially.

The error obtained from Eq. (7) is back-propagated (Rumelhart et al., 1986) through

the window memory for each RNN; the update of the connective weights is obtained

by means of the steepest descent method utilizing parameters for the learning rate �

and for the momentum �.

Before concluding the modeling section, it is noted that recently some other neural

network scheme have been proposed for the purpose of segmenting sensory-motor 
ow

into chunks. Ziemke and Thieme (2003) proposed so-called the extended sequential

cascade network in which the network connectivity is adapted by using the genetic

algorithm, Tani (2003) proposed so-called the RNN with parametric bias, and Bakker,

Linaker, and Schmidhuber (2002) applies the scheme of the short-term and long-term

memory architecture (Hichreiter & Schmidhuber, 1997) to the sensory-motor learning.

These three neural network scheme are common in a sense that multiple behavior

primitives are distributedly represented in a single network with a parameter vector.

The mapping between the parameter vector and behavior primitives are self-organized

through adaptation processes. A speci�c behavior primitive of learned can be activated

by switching the values of the parameter vector. Linaker and Niklasson (2000) showed
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that a simple vector quantization network based on change detection can perform

well on this purpose. The author assumes that those models could also explain some

mechanisms of time perception as well as the model proposed by the author. It is also

noted that Wolpert and Kawato (1998) independently proposed a modular network for

pairs of forward and inverse models as inspired by cerebellum anatomy. Their model,

however, did not address the issues of segmentation and level structures.

3 Simulation Experiments

3.1 The environment

The scheme proposed above was examined through the simulation of the mobile robot

navigation learning as have been described in the earlier section. For our simulations,

we adopted two di�erent rooms, namely Room A and Room B connected by a door, as

shown in Figure 1 (a). In this workspace, the robot travels around one room three times,

then enters the other room going through the newly opened door and travels around

the other room three times. (When the door is opened, the robot autonomously enters

into a new room by just conducting the collision-free maneuvering.) The direction

of these round travels are the same for all times. The on-line learning experiment

was conducted while the robot moved between rooms for a total of 5 room encounters

without stoping. The entire travel of the robot in this simulation took about 2100 �t

steps. The robot trajectory repeats the same one at each round travel in the same room

since no noise is assumed in the collision-free maneuvering and the characteristics of

the controller is constant independent of the neural learning.

The lower level network, which consists of 5 RNN modules each of which has 6

inputs, 6 outputs, 4 hidden units and 2 context units, learns to predict the sensory-

motor state in the next step. The higher level network, which consists of 5 RNN

modules each of which has 5 inputs, 5 outputs, 4 hidden units and 2 context units,

learns to predict the gate opening state in the lower level network in the next step.

Other parameter settings for the networks are � = 0.002, � = 0.9, �g = 0.007, �g =

0.02, l = 80, d = 20, nepochs=10. These settings are the same for both levels. The

sampling interval in the higher level is 10 times longer than that in the lower level

(�T = 10 � �t). We observed how modules become self-organized in a hierarchical

manner by looking at the gate opening dynamics taking place during the prediction

learning of the two levels.
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3.2 Results

We recorded gate opening dynamics in the window memory both in the lower and in

the higher levels during the entire learning process. First, let us consider the gate

opening processes in the lower level network. Figure 3 shows the time development of

each gate opening state, appeared in the window memory of 20 steps delay, and of the

motor input in the lower level for three di�erent periods.

Figure 4 illustrates when and which module wins in the lower level network along

the course travelled for each of the three di�erent periods. Fig. 3 (a) shows the pro�les

for the period from step 130 to step 300 while the robot travelled in Room A for the

�rst time. It can be seen that gate4 and gate3 open in turn as the pro�le of the motor

command changes. In Fig. 4 (a), it is seen that the opening of gate4 corresponds to

following a straight wall, while the opening of gate3 corresponds to both a left turn at

a corner and to passing a T-junction. Fig. 3 (b) shows the pro�les for the period from

step 380 to step 550, when the robot experienced Room B for the �rst time. One can

see that gate4, gate2 and gate3 open in turn. Fig. 4 (b) shows that these opening events

corresponded to following a straight wall, making a right turn at a corner and making

a left turn at a corner, respectively. Fig. 3 (c) shows the pro�les for the period from

step 820 to step 990, when the robot travelled around Room A for the second time. A

remarkable �nding is that the gate opening dynamics for this period di�er from those

observed during the �rst encounter with Room A. From Fig. 4 (c), one can see that the

opening of gate3, which corresponded to both making a left turn at a corner and passing

a T-junction in the previous encounter, now corresponds only to making a left turn

at a corner, and that the opening of gate1 now corresponds to passing a T-junction.

After this period, the learning processes in the network appeared to have stabilized and

no further dramatic changes in the correspondence of the gate openings were found.

By the end of the simulation, four types of sensory-motor primitives were generated

using 4 RNN modules out of the 5 modules available to the lower level network. It is

considered that those 4 primitives of left or right turn at at corner, passing a T-junction

and following a straight wall are generated because they appear repeatedly in a stable

way in their sensory-motor 
ow during the learning travel. An important observation

is that the process of generating primitives is totally dynamic in the sense that the

correspondence between the RNN modules and their associated behavior is not static

during the on-line learning process. Next, we describe the gate opening dynamics in the

higher level network. Figure 5 shows the opening of the 5 gates, appeared in the window

memory of 20 steps delay, for the whole period of on-line learning. (The step number in
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Figure 3: Time development of the opening of 5 gates and of a motor input in the

lower level network for three di�erent periods. The number near the data denotes the

current winning gate. Redrawing with permission, from (Tani & Nol�, 1999) Elsevier

Science.
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ses denotes the step number when the module switching took place. Redrawing with

permission, from (Tani & Nol�, 1999) copy right (1999) Elsevier Science.
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Figure 5: Gate opening dynamics in the higher level network during the whole process

of learning. Redrawing with permission, from (Tani & Nol�, 1999) copy right (1999)

Elsevier Science.

this graph denotes the sensory-motor step number in the lower level, for clarity.) One

can see that the stable switching of the gate opening between gate4H and gate1H takes

place after 800 steps. This switching actually corresponds to the movement between

rooms during the travel, where the open state of gate4H and gate1H correspond to

travel in Room A and in Room B, respectively. We observe that gate0H opened only

in the beginning while the robot traveled in Room A for the �rst time. The dynamic

replacement of module0H by module4H for the representation of Room A evidently

took place because the module representation in the lower level network also changed,

as noted above. It is readily understood that the dynamics in higher level network can

be stabilized only after stabilization occurs in the lower level network.

From so far we have obtained results in the simulation experiments, it can be

concluded that the proposed MRE architecture was successful in learning about the

environment in a hierarchical way through the sensory-motor interactions of the robot.

The lower level network learned to anticipate the row pro�le of the sensory-motor 
ow

by embedding the sensory-motor 
ow of speci�c behavior such as going straight, left

or right turning at corner and passing through T-junction into corresponding mod-

ules. The higher level network did likewise for the sequences of segmented behavior by

generating the forwad models for di�erent rooms.

This learning experiment was repeated for �ve times with setting of di�erent initial

conditions including the starting position of the robot in either Room A or Room B

and with di�erent random initial connective weights of the networks. By looking at
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structures self-organized in the higher level network in these �ve experiments, equiv-

alent module structures to those in the previous results, representing Room A and

Room B, were found in four cases out of the �ve. Following this, we observed the lower

level structures for these four cases and found that equivalent module structures to

the previous result appeared in three cases, while the structures were di�erent in one

case. In the case where we did not observe clear module structure corresponding to

two separate rooms in the higher level, it was observed that the lower level structures

continued to change gradually which prevented the higher level structures from stabi-

lizing. The stability in the higher level depends substantially on that in the lower level.

These results reveal that the self-organization processes do not always arrive at one

optimal solution. They can generate unstable and non-optimal structures by chance.

4 Dynamical systems analysis

In order to understand how the switching of modules takes place dynamically as corre-

sponding to room entering, we examined the time series of prediction outputs by each

RNN module in the higher level network. Figure 6 shows the time series of prediction

outputs and the corresponding error for each RNN module in the higher level network

recorded from step 1400 to step 2000 during which period the robot moved from Room

B to Room A. In Fig. 6 (a), the upper �ve rows represent the sequence of prediction

outputs by the �ve RNN modules. The �ve squares aligned vertically in each row

represent the values predicted for the �ve coming inputs (the sampling of the �ve gate

openings in the lower level network) by their size. The largest square area corresponds

to the value of 1.0 and zero area corresponds to a value of 0.0. The bottom row repre-

sents the sequence of �ve inputs. The robot moved from Room B to Room A at around

step 1770 (denoted by a dashed line in the �gure). Fig. 6 (b) shows the time series of

the prediction error for each module. By looking at Fig. 6 (b), it is observed that the

prediction error by RNN 1 remains the lowest among the ones by other RNNs until

step 1770. During this period, it is seen, from Fig. 6 (a), that the output sequence by

RNN 1 keeps coherence with the input sequence to a certain extent; RNN 0, RNN 2

and RNN 3 are not activated at all, while RNN 4 is activated but is incoherent with the

input sequence. On the other hand, the output sequence by RNN 4 becomes coherent

with the input sequence after step 1770 with showing the lowest error among others

while the output sequence of RNN 1 loses coherence with the input. This switching of

the winning RNN modules takes place rather quickly within several iteration steps of

the RNNs.
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Figure 6: (a) shows the sequence of inputs (shown in the bottom row) and the corre-

sponding prediction outputs by each RNN module (shown in the upper �ve rows) in the

higher level network. (b) indicates the time dependence of the prediction error by each

RNN module (the plots of RNN 0, 2 and 3 happen to be superimposed). Redrawing

with permission, from (Tani & Nol�, 1999) copy right (1999) Elsevier Science.

17



Here, we need to contemplate further why the memories for traveling around Room

A and Room B are organized as separated chunks rather than a merged one. This

is because a single RNN in the higher level cannot learn to predict the room tran-

sition events by the door opening while it can predict perfectly the input sequences

of traveling around in a single room. It is diÆcult for the RNN to learn to predict

this transition event since it takes place only once in three times traveling around the

rooms. Therefore, each RNN tends to learn an event sequence encountering during

its round travel in a speci�c room as a chunk of a periodic pattern by ignoring rather

infrequent events of the room transitions. It is highly assumed that a single RNN can

learn a whole sequence as a single chunk if the door opens always since the transition

events become deterministic ones. The same can be applied to the way of memory

organization in the lower level. If the behavior of left turn at corner always follows

that of going straight corridor, those two are memorized as one chunk. Those two

in our experimental setting is separated because whether left turn at corner or right

turn at corner follows after going straight corridor cannot be predicted. (Since both

combinations are possible depending on situations in the same environment.) The

message here is that unpredictability which arises from compositional nature in the

event sequences initiates segmentation in the sequence that is physically realized by

incoherence between the internal dynamics and the external inputs. Since the whole

robot travel is organized in a compositional way in the current simulation, those com-

positional units for reconstructing the input sequences during the travel is generated

as chunks both in the lower and the higher level. It is noted that each chunk could be

segmented into further fractions if each sequence is too long or more complex to learn

by a single RNN. However, generations of such fractions can be avoided by adequately

adjusting network size of the RNN. Theoretically speaking, if the learning targets are

truly compositional and size of the RNNs are allocated enough, the memory structures

should be self-organized solely based on the underlying compositionality.

5 Correspondences to phenomenological time

Finally, we attempt to make correspondences between our dynamical systems account

and Husserl's phenomenological ideas of immanent time.

Husserl (1964) introduced the famous idea of \retention" and \protention" for ex-

plaining this paradoxical nature of \nowness". He used an example of hearing a sound

phrase such as \Do Mi So" for explaining the idea. When we hear the note \Mi", we

would still perceive a lingering impression of \Do", and at the same time we would
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anticipate hearing the next note of \So". The former is called retention and the latter

protention. These terms are used to designate the experienced sense of the immediate

past and the immediate future. They are a part of automatic processes and cannot be

controlled consciously. Husserl believed that the subjective experience of \nowness"

is extended to include fringes both in the experienced sense of the past and the fu-

ture in terms of retention and protension. This description of retention and protention

in the so-called pre-empirical level by Husserl seems to directly correspond to what

each RNN is performing. The prediction of the RNN is performed by retaining the

past 
ow in a context dependent way as have been described in the previous section.

This self-organized contextual 
ow of the RNN's forward dynamics could account for

phenomena of retention.

After coming to understand Husserl's idea of \nowness" in terms of retention and

protention, the following question arises. Where is the \nowness" bounded? Husserl

believes that the immediate past does not belong to a representational conscious mem-

ory, but just to an impression. Yet how could the immediate past, experienced just

as an impression, slip into a distant past which can be retrieved through a conscious

memory operation? What kind of mechanism qualitatively changes an experience from

just an impression to an episodic conscious retrieval event? Furthermore, Husserl's goal

was to explain the emergence of objective time from the pre-empirical level of reten-

tion and protention (Husserl, 1964). Husserl seems to feel that the sense of objective

time would emerge as a natural consequence of organizing each experience into one,

consistent linear sequence. But, what is the underline mechanisms for this?

The idea of articulation could be a key to answering these questions. Our main idea

is that the \nowness" can be bounded where the 
ow of experience is segmented. The

sequential notes of \Do Mi So" constitute a chunk within which a perfect coherence is

organized in the coupling between the neural dynamics and the sound stimulus 
ow.

Within the chunk, everything proceeds smoothly, automatically, and unconsciously.

However, when we hear a next phrase of \Re Fa La" after \Do Mi So", a temporal

incoherence emerges in the transition between the two phrases since this second phrase

is not necessarily predictable from the �rst one. (Here, it is assumed that \Re Fa La"

and \Do Mi So" are frequently heard phrases.)

In our neural network model, the winner module is switched from one to another

when the external sensory-motor 
ow cannot be matched with the internal 
ow of the

anticipation. It is noted that this matching is actually conducted in the window of

short-term memory, as have been described previously. When the coherence is broken

between the sensory-motor 
ow and that of anticipated in the window memory, the 
ow
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is segmented into chunks. Those segmented chunks are no more just parts of the 
ow,

but the events that are identi�ed, by an activated module, as one of the sensory-motor

categories. This identi�cation process takes a certain time period because of delays

in the convergence of the winner-take-all dynamics among the modules, as have been

explained in the previous section. This might explain the phenomenological observation

that the 
ow of the immediate past is experienced just as an impression, which later

becomes a consciously retrieval object after segmented.

Then after, the higher level RNN learns the sequences of the identi�ed events and

becomes able to regenerate them. In the memory retrieval, however, the sensory-motor


ow can be reconstructed only in an abstract way since the 
ow is now represented by

combining a set of behavior units. Although such ways of reconstructions could pro-

vide compositionality as well as generalization in representing the sensory-motor 
ow

while they might lose subtle di�erences or uniqueness in each instance of experience.

Consequently, it is presumed that the sense of objective time may appear when the

experience of the sensory-motor 
ow is reconstructed in a compositional form while

loosing its peculiarity.

An interesting suggestion drawn from our proposed model is that the time percep-

tion might deal with hierarchical structures. Indeed, this can be explained phenomeno-

logically. For example, let us assume that we repeatedly hear \Re Fa La" followed by

\Do Mi So" as a sequence. In such a case, we can imagine generating a new chunk

in the higher level which ties these two phrases into a familiar sequence. Therefore,

when we hear the phrase of \Re Fa La", we would have retention of \Do Mi So". In

this situation, a question is whether the nowness is bounded inside of \Do Mi So",

or if it is extended to the newly tied chunk of \Do Mi So" and \Re Fa La". Let us

suppose a situation in which we hear a phrase \Ti Re So" instead of \Re Fa La" after

\Do Mi So". We would then feel a sense of incompatibility in this new phrase which

was not anticipated after \Do Mi So", and we would say that \now" I hear a strange

phrase. However, it would be di�erent if we heard a phrase like \Re Re Fa" in which

the second note was generated by mistake. The sense of incompatibility comes from

the note level in this situation and we would say that \now" I hear a strange note.

The point of interest is that the sense of nowness can be directed to di�erent levels

depending on the level at which coherence is broken. And the underlying mechanism

of this phenomena can be explained by the proposed model in which the sensory-motor


ow input to the system is reconstructed by employing the multiple levels of represen-

tations. Goguen (2004) considers a similar ideas in his studies of musical qualia. He

proposed that the structure of consciousness in musical experiences are hierarchically
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organized by their saliency, with emotional tone determined by their resonance with

protention. He also considered that the anticipation plays an essential roles where its

errors generates segments that are actually musical qualia. He suggested to use dy-

namic neural network models like our models for musical protention. Poppel (1997)

proposed a hierarchical model of temporal perception in which system states of 30 ms

and integration intervals of 3 s, together with a memory store, provide an explanatory

neuro-cognitive machinery for di�erential subjective duration. The possible relations

between his model and ours should be investigated in the future.

Husserl considered a further deeper level that is named the absolute 
ow level

(Husserl, 1964). In this level neither retention nor protention yet appears. Only 
ow

exists there. The 
ow is continuous and 
uent but it can be stagnant sometimes.

Husserl seems to believe that this stagnancy initiates certain retentional dynamics

that leads to conscious perception of time in the end.

The author has been considering that this absolute 
ow level might be related to

so-called the pure dynamics level in the author's cognitive robotics studies. When we

conduct robotics experiments of either simulations or physical ones, we observe the

system dynamics in terms of sensory-motor 
ows or neural activations as on-line. By

this on-line observation, various impressions are obtained as like, now the system pro-

ceeds smoothly, it falls into stagnant, or it changes dramatically in all sudden. This

level of observations are primitive but the purest since they have not been articulated

yet using any a priori assumptions or knowledge. The observations in this pure dynam-

ics level is crucial since they often provide important intuitions that could correspond

to experiences in the absolute 
ow level of phenomenology. In the next level, analy-

sis are conducted for the state trajectories recorded during the experiments by using

dynamical systems language such as convergence, divergence, attractors, coherence,

incoherence, etc. The impressions obtained in the previous level is now described ra-

tionally with using the dynamical system terms. Varela (1999) introduced the idea of

intermittent chaos in order to account for the absolute 
ow that can shift from 
uent to

stagnant intermittently. Tani (1998) also discussed open dynamics in a similar fashion.

Finally, the obtained dynamical systems descriptions should be further examined in

the cognitive level. If particular dynamical systems phenomena appear, they should be

examined in terms of various cognitive constraints that act on the dynamical systems

as boundary conditions or initial conditions. By going through these levels of exam-

inations, the intuitive impressions obtained in robotics experiments might be shaped

up to concrete theories accounting for both of phenomenology and cognition.

In summary, the current paper related the robotics experiments of the sensory-
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motor articulations in multiple levels to the phenomenological discussions of time

perception by Husserl. It was shown that the sensory-motor 
ow is segmented into

sequences of identi�ed events through the dynamic competition process among the

expert modules. Those sequences are further segmented into larger time-scale chunks

in the higher level. These experiments demonstrated the developments from the pure

dynamics level where frequent transitions between 
uency and stagnancy of the system


ow was observed to the cognitive level where the 
ow is reconstructed in a compo-

sitional structure. The author considers that this development might account for the

phenomenological question of how objective time emerges out of subjective time if the

human brain is organized along functional principles similar to those discussed in the

current paper.
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