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Abstract

A novel approach to human-robot collaboration based on
quasi-symbolic expressions is proposed. The target task is
navigation in which a person with his or her covered and a
humanoid robot collaborate in a context-dependent manner.
The robot uses a recurrent neural net with parametric bias
(RNNPB) model to acquire the behavioral primitives, which
are sensory-motor units, composing the whole task. The
robot expresses the PB dynamics as primitives using sym-
bolic sounds, and the person influences these dynamics
through tactile sensors attached to the robot. Experiments
with six participants demonstrated that the level of influ-
ence the person has on the PB dynamics is strongly related
to task performance, the person’s subjective impressions,
and the prediction error of the RNNPB model (task stabil-
ity). Simulation experiments demonstrated that the subjec-
tive impressions of the correspondence between the utter-
ance sounds (the PB values) and the motions were well re-
produced by the rehearsal of the RNNPB model.

1. Introduction
Communication between people and robots requires an ef-
fective interface. The many kinds of interfaces that have been
developed so far can be categorized into two types. The first
type is those with “continuous interaction,” and they in-
clude joysticks, master-slave interfaces, and other force-
torque devices. Although users can control robot motions
directly by using these devices, skill is needed to cooperate
with the robot. The other type is those with “discrete interac-
tion” based on language and/or symbolic expressions. While
there have been many studies of human-robot speech com-
munication, in which users share a task with robots explicitly,
it is a major effort to implement the task model into the robot
dialog efficiently due to the problem of “symbol grounding”.
In this paper we discuss the possibility of a quasi-sym-
bolic interface that uses the representations robots have
acquired through experience. There have been many studies
of machine learning, by which robots acquire representa-
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tions of tasks, but they usually focused on only the analysis
of the representations acquired and used to design and/or
discuss robot intelligence. We focus on the “behavioral (mo-
tion) primitive” as an interface channel by which a robot can
communicate and interact with a person. A behavioral primi-
tive is a motion unit composes of various and complex mo-
tions inherent to biological systems [3][4].

We first describe the navigation task we used to investi-
gate human-robot interaction. Then we describe our proposed
approach, in which a person and a robot work together, us-
ing behavioral primitives self-organized in an artificial neural
net. We then present some of the results of our trial experi-
ments, and discuss the relationship between the results of
recurrent neural net (RNN) learning and the person’s subjec-
tive impressions.

2. Navigation Task

To investigate the essential mechanism of human-robot mu-
tual interaction, we designed a navigation task [1] in which a
humanoid robot called Robovie, developed at ATR [2], and a
person work together to navigate a given workspace. Robo-
vie has various features enabling it to interact with people:
two arms with four degrees of freedom, a head with audiovi-
sual sensors, and many tactile sensors attached to its body.
Photographs of Robovie and of Robovie and a person per-
forming the navigation task are shown in Figure 1. The ex-
perimental workspace was a 5x5-m course in which the out-
side walls were marked red and blue (Figure 2). Robovie and
the person held their arms together and attempted to com-
plete the course as quickly as possible without hitting the
wall. Since the course had various branches, various kinds
of experiments could be configured. The movement of the
robot and the person was determined by a motor vector gen-
erated by the neural net in the robot. The person could affect
the output of the neural net by using the tactile sensors on
the arms of the robot, the detailed mechanism of which is
described in Section 3. 3. The performance metric was by the
time taken to complete the course.
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Figure 2 Experimental Course

It should be noted that the sensory information was quite
limited for both the robot and the person in this collaboration
task (“hidden state problem™). The robot could access only
local sensory information from ultrasonic sensors and a poor
vision system (which could only detect vague color informa-
tion for its surroundings), not exact global position informa-
tion. While the person was allowed to survey the course
before the trial began, his eyes were covered during the en-
tire trial. The person had to estimate his/her situation or po-
sition based on the image retained of the course geometry.
During the trial the robot and the person had to help each
other, utilizing the poor sensory information of different mo-
dalities and utilizing the history of the sensory-motor se-
quence (contextual information).

3.Proposed Approach

This section describes how the robot acquires motor primi-
tives and uses them to interact with person. Some models
which generate the motion primitives by articulating observed
motions, have been proposed [3][4]. In our experimental tasks,
because of the “hidden state problem” of the robot, we imple-
mented the RNN, which can use and self-organize contextual
information for the sensory-motor sequences, into the robot.
We use the FF-model (forwarding forward model) proposed
by Tani [3]. This model is also called the recurrent neural
network with parametric bias (RNNPB) model. It articulates
complex motion sequences into motion units, which are en-
coded as the limit cycling dynamics and/or the fixed-point

dynamics of the RNN.

3.1 RNNPB model

The RNNPB model has the same architecture as the conven-
tional Jordan-type RNN model [5] except for the PB nodes in
the input layer. Unlike the other input nodes, these PB nodes
take a constant value throughout each time sequence and
are used to implement a mapping between fixed length val-
ues and time sequences.

Like the Jordan-type RNN model, the RNNPB model learns
data sequences in a supervised manner. The difference is
that in the RNNPB model, the values that encode the se-
quences are self-organized in the PB nodes during the learn-
ing process. The common structural properties of the train-
ing data sequences are acquired as connection weights by
using the back propagation through time (BPTT) algorithm
[6], as used also in the conventional RNN. Meanwhile, the
specific properties of each individual time sequence are si-
multaneously encoded as PB values. As a result, the RNNPB
model self-organizes a mapping between the PB values and
the time sequences.

The learning algorithm for the PB vectors is a variant of the
BPTT algorithm. The step length of a sequence is denoted
by [. For each of the sensory-motor outputs, the back-propa-
gated errors with respect to the PB nodes are accumulated
and used to update the PB values. The update equations for
the ith unit of the parametric bias at the ¢ in the sequence are
as follows,

0=k, 3 I +k(R, 200D ()
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In Eq. (1), the dforce for the update of the internal values of
the PB p, is obtained from the summation of two terms. The
first term represents the delta error, 8" back-propagated from
the output nodes to the PB nodes: it is integrated over the

period from the #—//2 to the #+1/2 steps. Integrating the delta
error prevents the local fluctuations in the output errors from
significantly affecting the temporal PB values. The second
term is a low-pass filter that inhibits frequent rapid changes
of the PB values. Internal value p, is updated using the delta
force, as shown in Eq. (2). Then, the current PB values are
obtained from the sigmoidal outputs of the internal values.
After learning the sequences, the RNNPB model can gener-
ate a sequence from the corresponding PB values.

Furthermore, the RNNPB model can be used for recogni-
tion processes as well as for sequence generation processes.
For a given sequence, the corresponding PB value can be
obtained by using the update rules for the PB values (Egs.
(1) to (3)), without updating the connection weight values.
This inverse operation for generation is regarded as recogni-
tion.

The other important characteristic of the RNNPB model is
that relational structure among the training sequences can
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Figure 3 Architecture of RNNPB Model

be acquired in the PB space through the learning process.
This generation capability enables the RNNPB model to gen-
erate and recognize unseen sequences without any additional
learning. For instance, by learning several cyclic time se-
quences of different frequencies, it can generate novel time
sequences of intermediate frequencies.

3. 2 Implementation
Figure 3 shows the architecture of the RNNPB model used in
the robot. The model has two parameter bias nodes, and op-
erates in a discrete time manner by synchronizing each event.
The input layer of the RNNPB model consists of the cur-
rent sensory inputs and the current motor values. The sen-
sory inputs are comprised of the output of the ultrasonic
range sensors and the color area acquired from an omni-
direction camera mounted on the robot’s back. The motor
values are the forward velocity and the rotation velocity. The
output layer is the prediction of the next sensory input and
next action. The activations of the context outputs in the
current time step are copied to those of the context inputs in
the next time step. The context unit’s activities are self-orga-
nized through learning processes. The robot obtains the color
area, range sensor data, and vehicle conditions every 0.1 s.
This data is compressed and filtered. The RNN receives this
preprocessed data as input and generates the output with a
time interval of 1 s.

3. 3 Interface
We designed the interface using the PB values, by which the
person and robot interact.

Since the person’s eyes were covered in the experiments,
the robot had to inform the condition of the PB values using
sounds. As described in the previous section, the RNNPB
model has two parameter bias nodes. While it would be best
if the person were informed of the analog values of these two
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Figure 4 Correspondence between
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nodes directly, it is quite difficult to express slight changes in
the node values by sound. Therefore, we designed the robot
to utter four different symbolic sounds (numbers) correspond-
ing to the conditions of the PB nodes during navigation (Table
1). The activation of each parameter node was divided into
two states (high and low) with the threshold set to 0.5. For
example, if the perameter 1 is 0.7 and the parameter 2 is 0.3,
then the output number becomes “3”.

The person had to learn the relationship between these
sounds (PB vectors) and the actual robot motions (RNNPB
outputs). The person then adjusted the PB values by touch-
ing the appropriate tactile sensors attached to the robot so
as to move around the course as quickly as possible. The
four utterance numbers corresponded to the four tactile sen-
sors on the forearms and the wrists of the robot, as shown in
Figure 4. The PB value was switched to the value correspond-
ing to the number of the tactile sensor touched by the per-
son. This process was implemented by modifying of the Eq.
(1) as follows.

t+f2 ;
Op, =k, 207 +k, (P, —2p P )k, 10 (4
-2
Here, 1)’ is either +1 or —1 depending on the input from the
person, and k,-n,mt is the influence level.

4 Experiments
4. 1 Pre-experiment on RNNPB model
A pre-experiment using only the robot was carried out to
confirm the basic characteristics of the RNNPB model. In this
experiment, the RNNPB model had only one PB node, facili-
tating observation of its change.

Figure 5 shows the sensory-motor data and the PB value
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Figure 5 Sensory-Motor Data and Parameter Bias
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output when the robot moved twice around the course shown
in Figure 6. Here, “learning” curve means the result of PB
learning, and “recognition” curve is the result of real-time PB
identification. There was a delay between learning and rec-
ognition due to the time it took to calculate the updated PB
value.

Although the dynamics of the sensory-motor data were
quite complex, the curve of the PB vector showed that the
actual motion could be clearly divided into two parts. The
RNNPB model can thus convert complex dynamics into a
combination of simple units.

4. 2 Experiments on Human-Robot Collaboration
We tested human-robot collaboration using six male partici-
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Figure 7 Three Courses for Pre-Learning and Experiment

pants to determine how well people can cooperate with the
robot by using the PB interface and to determine how people
might interpret the meanings of the four sounds (numbers)
uttered by the robot. We also investigated the effect of the
influence level (k,-n,,m in Eq. (4)).

Before the experiment, the robot’s RNNPB model (Figure
3) was trained (acquired motion primitives) using courses A
and B, which are shown schematically in Figure 7. The actual
course used in the collaboration experiment was course C,
which is also shown in Figure 7. Since the RNNPB model
mainly uses the contextual information (sensory-motor se-
quence), the differences between the three courses are quite
large from the robot’s point of view. Furthermore, because
the RNNPB model was not further trained during the collabo-
ration experiment, the robot required the participant’s sup-
port and had to “reuse” the acquired motion primitives to
move around the unfamiliar course as quickly as possible.

The experiment had 14 trials and was divided to two parts
7 trials). In each part, k,-n,,m was set to either 0.05 or 0.01. After
each trial, there was a break during which the participant
completed a questionnaire based on NASA-TLX [7]. In total,
we obtained 84 (14 trials x 6 subjects) sets of data (all-play-
all). The parts were presented to the participants in random
order to avoid the effects of a fixed-order presentation.

4. 3 Results
The average completion times are shown in Figure 8. The
time was reduced when the robot received support from a
person. However, the variance was greater with the higher
influence level.

The average prediction errors of the RNNPB model are
shown in Figure 9. While the errors were almost the same
with only the robot and with human assistance (k, =0.01),

input

that with human assistance (kl.”pm:0.0S) was quite large. These
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Figure 9 Comparison of the Prediction Errors of RNN
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Figure 10 Comparison of Primitive Switching

results indicate that although a higher influence level can
result in the better performance, the human-robot collabora-
tion tends to be less stable.

Figure 10 shows representative examples of the transition
in utterance number switching for the three cases. The switch-
ing frequency with only the robot” was much higher than
with human assistance. In particular, the primitive switched
quite frequently around the branch points in the course (at
about 10-30, and 70-90 sec in Figure 10(a)).

4. 4 Subjective Impressions
The results of the NASA-TLX questionnaire are plotted in
Figure 11. The significant values for the 1 and 5 % levels
were calculated using a t-test. The higher influence level re-
sulted in a higher evaluation for all items. Note, however, that
only “mental load” showed a substantial difference (p<0.01).
This could have been due to the instability in the perfor-
mance when the influence level was high, as mentioned in
Section 4.3.

Interviews with the participants about their impressions of
the correspondence between the uttered numbers and actual
motions of the robot revealed that all the participants had
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Figure 11 Results of NASA-TLX Questionnaire

Table 2 Correspondence between Number and Motion (Interview)

Number Motion
" Moving Straight
"2 Turning Right
"3 Moving Straight
"4 Tuming Left

almost the same impressions after the 14 trials. The impres-
sions are shown in Table 2.

5. Discussion

5.1 Fluctuation in PB Values at Branch Points

The uttered numbers tended to fluctuate at the branches in
the course, as shown in Figure 10. Although the RNNPB
model predicts the sensory-motor flow by using contextual
information, it cannot predict the PB output by itself. Each
branch in the course is thought to be a “saddle point” in the
dynamical-system sense. Therefore, the robot requires higher
level information concerning the PB dynamics to select the
correct direction at a branch point. In our experiment, the
person predicted the PB dynamics based on experience, and
supported the RNNPB model’s output.

5. 2 Influence Level

As described in Section 4.1, robot control was easier with the
higher influence level k. However, the prediction error in-
creased, and the performance became unstable, that is, the
performance sometimes failed.

In our experiment, the person (with covered eyes) and the
robot had to collaborate in a context dependent manner, be-
cause neither had enough sensory information to complete
the task. A high influence level thus effectively improves
task performance because a person can basically utilize con-
textual information better than a robot (RNN). However, once
a prediction error occurred in the person’s mental image, it
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Figure 12 Simulated Trajectories of RNNPB model

was quite difficult to recover the contextual image without
the support of the robot. This is a main reason why the vari-
ance in transit time was large. Efficient human-robot collabo-
ration is thus achieved only when the influence level is set to
an appropriate degree.

5. 3 Subjective Impression and RNNPB Learning

The dynamic properties of the RNNPB model we used were
investigated in simulation experiments. Figure 12 shows the
four trajectories generated when the RNNPB model rehearsed
four times, each time with the PB values indicated in paren-
theses. For example, when the trajectory of number “2” was
generated, the parameter 1 was set to “0.1” and the parameter
2 was set to “0.9” respectively. In rehearsal, copies of the
current sensory-motor prediction outputs are fed back to the
next inputs (closed loop). This enables RNN prediction for
an arbitrary number of future steps.

The trajectories shown in Figure 12 correspond exactly to
the subjective impressions listed in Table 2. Actually, it was
not easy for the participants to establish the correspondence
because the PB condition was not clearly categorized into
one of the four states. For example, we observed that the
robot sometimes changed the utterance number drastically,
possibly due to the fluctuation in PB values around the thresh-
old of 0.5. Nevertheless, the participants could still guess the
meaning of the uttered numbers based on their experience.
This shows the feasibility of human-robot collaboration based
on quasi-symbolic expressions using behavioral primitives.

6. Conclusion

We have described a new approach to human-robot collabo-
ration based on quasi-symbolic expressions. The target task
is navigation in which a person (with his or her eyes cov-
ered) collaborates with a humanoid robot called Robovie in
context dependent manner. The robot uses a recurrent neural
net with parametric biases (RNNPB) to acquire the behav-
ioral primitives, i.e., the sensory-motor units, composing the

whole task. The robot expresses the PB dynamics as primi-
tives using symbolic sounds, and the person influences the
robot’s dynamics by touching tactile sensors attached to the
robot. Experiments carried out with six male participants dem-
onstrated that the level of influence is strongly related to
task performance, the subject’s subjective impressions, and
the prediction error of the RNNPB model (task stability). Simu-
lation experiments demonstrated that the impression of the
correspondence between the uttered sounds (the PB values)
and the robot’s motions were well reproduced by the rehearsal
of the RNNPB model.

Our future work has two main objectives. One is to intro-
duce a method for incremental learning. The RNNPB model
we used was trained prior to the collaboration experiments,
not during the experiment. When real-time incremental learn-
ing is introduced, we need to solve the problem of conflic-
tion between new memory and past memories [1]. The sec-
ond is to apply human-robot verbal communication based
on the proposed method. By preparing more expressions
translated from the PB values, we should be able to use our
method for more complex tasks. Examination of the binding
between sentences and sensory-motor sequences (embod-
ied language) [8] will thus be quite important.
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