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Abstract

Recently, applying computational models developed
in cognitive science to psychiatric disorders has been
recognized as an essential approach for understanding
cognitive mechanisms underlying psychiatric symp-
toms. Autism spectrum disorder is a neurodevelop-
mental disorder that is hypothesized to affect infor-
mation processes in the brain involving the estima-
tion of sensory precision (uncertainty), but the mech-
anism by which observed symptoms are generated
from such abnormalities has not been thoroughly in-
vestigated. Using a humanoid robot controlled by
a neural network using a precision-weighted predic-
tion error minimization mechanism, it is suggested
that both increased and decreased sensory precision
could induce the behavioral rigidity characterized by
resistance to change that is characteristic of autis-
tic behavior. Specifically, decreased sensory precision
caused any error signals to be disregarded, leading to
invariability of the robot’s intention, while increased
sensory precision caused an excessive response to er-
ror signals, leading to fluctuations and subsequent
fixation of intention. The results may provide a
system-level explanation of mechanisms underlying
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different types of behavioral rigidity in autism spec-
trum and other psychiatric disorders. In addition,
our findings suggest that symptoms caused by de-
creased and increased sensory precision could be dis-
tinguishable by examining the internal experience of
patients and neural activity coding prediction error
signals in the biological brain.

1 Introduction

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder that affects a broad range of cog-
nitive functions, including perception1, action2, and
social cognition3. In particular, behavioral rigidity
manifested as restricted, repetitive behavior and re-
sistance to change is a core ASD symptom4–7, al-
beit such behavioral rigidity can be also observed in
other psychiatric disorders8,9. Behavioral rigidity in
ASD consists of various behavioral categories, such
as stereotyped motor mannerisms (e.g., hand flap-
ping) and self-injurious or compulsive behavior10,11.
Although the reduced behavioral flexibility severely
limits the social adaptation of patients, its cause and
the underlying cognitive mechanisms remain unclear.
There have been many studies aiming to con-

struct theories that explain the mechanisms underly-
ing autistic symptoms3,12,13, and recently the focus
of these attempts has shifted to the idea of describing
fundamental brain function as a set of computational
processes14. In particular, theoretical explanations
based on prediction error minimization frameworks,
such as predictive coding15,16 and the free energy
principle17, have been well investigated because they
may be able to uniformly explain various ranges of
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autistic symptoms using a simple and neurologically
plausible principle18–24. The prediction error mini-
mization mechanism explains how we acquire knowl-
edge and skills (learning), and how we successively
infer the causes of sensory inputs and recognize envi-
ronments as the process of updating a model of the
world based on minimizing error between a predic-
tion about incoming sensory inputs and actual sen-
sory inputs. Within a scheme in which prediction
error causes the brain to update its model of the
world, it is crucial to estimate precision (inverse vari-
ance) of sensory information: the expected precision
of certain sensory information can provide informa-
tion about the reliability of the generated prediction
error, which influences how much weight is given to
the error when updating predictions. For example,
although prediction errors for certain sensory inputs
that contain information refuting the current expec-
tation (e.g., one looks around the seabed in clear wa-
ter and what seems like sand suddenly moves) should
cause brain to update its expectation (one recognizes
it is not sand but flatfish), errors in sensory inputs
that are very noisy (one looks around the seabed
sand of foggy water and something moves) should
not cause the update (one would think it is only
a wave causing the movement). Although the esti-
mation of such context-dependent sensory precision
(prediction about whether information is informative
or just noise) helps us to be flexible and adaptable
in an uncertain world, deficits of it are expected to
cause perceptual peculiarity and great difficulty in
social contexts that are filled with situations of par-
ticularly high complexity and uncertainty21–25. Van
de Cruys et al.21 suggested that inflexibly overes-
timated sensory precision causes autistic symptoms
and inflexible behavior may be considered as an at-
tempt to minimize prediction errors; otherwise, pa-
tients are exposed to huge error signals. Lawson et
al.22 explains autistic behaviors as the consequences
of “an imbalance of the precision ascribed to sensory
evidence relative to prior beliefs”. These aberrant
precision accounts for ASD in previous studies are
normative and testable, but only suggestive. Specif-
ically, there is a gap between the cognitive mecha-
nisms described in the theories and the actual gener-
ation of the symptoms.

This kind of problem is broadly described in psy-
chiatry, and there is a need to demonstrate ac-
tual generation of symptoms using formal compu-
tational models26–30. Indeed, several computational
simulations of psychiatric symptoms have been con-
ducted to try to understand the processes under-
lying these symptoms and clarify the relationships
between abnormalities at neurological- and behav-
ioral levels31–38. In particular, embodiment39,40 in
a robot agent acting in physical environments may
be useful or even essential for understanding the cog-
nitive mechanisms of psychiatric disorders. That
is because psychiatric disorders are characterized
by behavioral and perceptual conditions observed
through interaction with real environments and phys-
ical agents. In a related study, Yamashita and
Tani34 performed a neurorobotics experiment to in-
vestigate schizophrenic cognition by utilizing a hier-
archical neural network model. Their robotic experi-
ment showed that behaviors analogous to psychiatric
symptoms, such as fictive sensations and cataleptic,
stereotyped behaviors, can be generated in the cou-
pled dynamics describing the neural networks, body
and environment due to synaptic disconnections be-
tween different levels of the neural network.
In this study we investigated the effects of in-

creased and decreased sensory precision on adap-
tive behaviors by conducting experiments using a hu-
manoid robot implemented with a version of the pre-
dictive coding model. In the experiment, a task in-
volving adaptive interaction between the robot and
a human experimenter was considered. Initially, the
neural network model inside the robot learned to gen-
erate a set of sequence patterns representing different
behaviors of the robot. After the learning phase, the
level of estimated sensory precision was manipulated.
Then, the change in the robot’s behavior in response
to the alteration of the level of sensory precision was
observed through experiments in which the robot was
required to appropriately recognize situations deter-
mined by the experimenter. The results show both
increased and decreased sensory precision can cause
seemingly similar inflexible behavioral patterns, such
as inappropriate repetitive behavior and freezing; but
these behaviors are the result of different processes at
the network-level in the two cases. Our findings may
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provide a system-level account for different types of
behavioral rigidity observed in ASD and other psychi-
atric disorders, and extends computational perspec-
tives on the cognitive mechanisms underlying psychi-
atric symptoms.

2 Methods

2.1 Computational framework

We used an artificial recurrent neural network (RNN)
model to investigate the effects of increased and de-
creased sensory precision on adaptive behaviors of
a robot. An RNN is a connectionist model which
can process temporal sequences thanks to recurrent
connections between neural units41. Owing to its ca-
pacity to learn to reproduce complex dynamic behav-
iors, RNNs have been used in cognitive neurorobotics
studies aiming to understand human cognition42,43.
Murata et al.44, within the cognitive robotics scheme,
proposed an RNN model with a mechanism for esti-
mating the time-varying uncertainty of sensory infor-
mation in terms of variance (inverse precision) as in-
spired by the free energy minimization principle pro-
posed by Friston17. This RNN, called a stochastic-
continuous time RNN (S-CTRNN), can learn to pre-
dict not only sensory inputs but also their variances
based on negative log-likelihood minimization, which
is equivalent to precision-weighted prediction error
minimization. Tani45 proposed an RNN with para-
metric bias (RNNPB) which has an online adaptation
mechanism based on prediction error minimization.
In this framework, PB is encoded in a small group
of neural units which works as a higher-level neu-
ral representation of the network behavior, and the
associations between specific patterns of PB activ-
ity and different temporal training patterns are self-
organized through a learning process. Owing to this
characteristic of PB, a robot driven by RNNPB can
not only generate multiple learned behavioral pat-
terns but also switch its behavior by adaptively mod-
ulating the PB states in response to a discrepancy
between a prediction and actual sensory information.
PB states thus can be regarded as the higher-level
“intention” of a robot. Utilizing this model, Ito et

al.46 demonstrated flexible switching of ball-playing
behaviors by a humanoid robot in response to changes
in the environment.

In the present study, an S-CTRNN with PB was
adopted as the computational model for simulating
aberrant sensory precision because of its capacity to
learn to estimate sensory variance (precision) and
adapt to different environments using a prediction
error minimization mechanism. The following sub-
sections describe in detail the mathematical proce-
dures used for the forward dynamics and parameter
optimization of the S-CTRNN with PB.

2.1.1 Forward dynamics

The neuronal model is a conventional firing rate
model. The internal state of the ith neural unit at
time step t, u

(s)
t,i (t ≥ 1), is described by

u
(s)
t,i =
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(1)

Here, II, IP, IC, IO, and IV are index sets of the in-
put, PB, context, output, and variance neural units,
respectively, wij is the weight of the synaptic con-

nection from the jth neuron to the ith neuron, x
(s)
t,j

is the jth input of the sth sequence at time step t,

c
(s)
t,j is the jth context state, p

(s)
t,j is the jth PB state,

bi is the bias of the ith neuron, and τi is the time
constant of the ith neuron. From this equation, we
see that PB units can be considered to be a specific
type of context unit whose time constant is infinite.
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Figure 1: The S-CTRNN utilized in this study has five groups of neural units: input, context, output, variance, and PB
units. Input neural units receive current sensory inputs xt. Based on the inputs, PB state pt, and context state ct, the S-
CTRNN generates predictions about the mean yt and variance vt of future inputs in the output and variance units, respectively.
Parameters, such as synaptic weights wij and the internal state of PB units, are optimized by minimizing negative log-likelihood
as calculated using predictions about sensory states, their variance, and actual target sensory states ŷt.

The current study sets all initial values of the inter-
nal states of the context units to zero, while those of
the PB units are optimized for each target sequence
in the learning phase. This indicates that differences
between target sequences are represented in the ac-
tivity of the PB units.

The activation values of each neural unit are cal-
culated as

p
(s)
t,i = tanh

(
u
(s)
t,i

)
(0 ≤ t ∧ i ∈ IP) , (2)

c
(s)
t,i = tanh

(
u
(s)
t,i

)
(0 ≤ t ∧ i ∈ IC) , (3)

y
(s)
t,i = tanh

(
u
(s)
t,i

)
(1 ≤ t ∧ i ∈ IO) , (4)

v
(s)
t,i = exp

(
u
(s)
t,i

)
(1 ≤ t ∧ i ∈ IV) . (5)

2.1.2 Parameter optimization

The neural network performs parameter optimization
based on the gradient decent method aiming to min-
imize the objective function

L
(s)
t,i =

ln
(
2πv

(s)
t,i

)
2

+

(
ŷ
(s)
t,i − y

(s)
t,i

)2
2v

(s)
t,i

, (6)

where ŷ
(s)
t,i is the ith target value corresponding to the

sth sequence. Minimizing this negative log-likelihood
can be regarded as minimizing the precision-weighted
(inverse variance-weighted) prediction error, and is
formally equivalent to minimizing free energy in the
active inference scheme proposed by Friston17.
In the learning phase, parameters, including synap-

tic weights wij , biases bi, and the initial internal
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states of PB units u
(s)
0,i (i ∈ IP), are updated in an

offline manner. Parameter optimization is performed
by minimizing the sum of the negative log-likelihood
over all dimensions, time steps, and sequences as

L =
∑
s∈IS

T (s)∑
t=1

∑
i∈IO

L
(s)
t,i , (7)

where IS and T (s), respectively, represent the index
set and the length of the sth target sequence. The
partial derivative of each parameter, (∂L/∂θ), can
be found using the back-propagation-through-time
(BPTT) method described in44,47.
In the adaptation phase, after learning, only the

internal states of the PB units are optimized online
and other parameters are fixed. The negative log-
likelihood within a short time window W is accumu-
lated as

L =

t∑
t′=t−W+1

∑
i∈IO

L
(s)

t′ ,i
. (8)

The time window of length W moves along with the
increment of the network time step t. Using the ac-
cumulated negative log-likelihood, the internal states
of the PB units at time step t − W are optimized.
The partial derivatives of the internal states of PB
units are also calculated by the BPTT algorithm.
In both the learning and adaptation phases, pa-

rameters which are allowed to be optimized are col-
lected as a vector θ, and θ at the nth epoch is up-
dated using gradient decent on the accumulated neg-
ative log-likelihood L:

θ (n) = θ (n− 1) + ∆θ (n) , (9)

∆θ (n) = −α
∂L

∂θ
+ η∆θ (n− 1) . (10)

Here, α is the learning rate, and η is a coefficient
representing the momentum term. In this study, α
and η are set at 0.0001 and 0.9, respectively.

2.2 Task setting

In order to provide the robot with a task suitable
for testing our hypothesis that aberrant sensory pre-
cision induces behavioral rigidity, we require a dy-
namical interaction setup in which the robot needs

to perceive sensory information with intrinsic uncer-
tainty and flexibly recognize situations determined by
others. We chose a ball-playing scheme involving in-
teraction between a robot and a human experimenter
that was used in a previous study by Chen et al.48.
The behavioral patterns of the robot consist of four
different ball-playing behaviors (See Fig. 2a). In the
“right” and “left” behaviors, the robot is required to
wait for the ball coming from the human subject and
then return it. “Self-play” behavior consists of rolling
the ball in front of itself, and the “attract” behavior
is an up-down motor action with the arms while the
partner engages in the “self-play” behavior of mov-
ing the ball left and right. After the S-CTRNN with
PB learned to reproduce these visuo-proprioceptive
temporal patterns, the behavioral performance of the
robot with the trained neural network model was
tested in the task of adaptive ball-playing interaction
with a human subject.

2.3 Experimental environment

We employed a small humanoid robot NAO (Alde-
baran) that has a body corresponding to only the
upper half of the human body. The robot sat in front
of a workbench and engaged in a ball-playing inter-
action with a human experimenter standing on the
opposite side of the bench. The robot’s action in-
volved only movements of the arms with 4 degrees
of freedom for each arm (2 shoulders and 2 elbows).
In addition, a camera located in the robot’s mouth
obtained the center of gravity coordinates for the yel-
low object which was used as 2-dimensional inputs for
ball position. Using the minimum and maximum val-
ues of each piece of sensory information, the values
of joint angles and the ball position were mapped to
values ranging from -0.8 to 0.8. The size of the work-
bench and the diameter of the ball are approximately
45× 5× 30 cm and 9 cm, respectively.

2.4 Training

Training of the neural network was conducted in
an offline manner by supervised learning using tar-
get perceptual sequences recorded in advance. The
target perceptual sequences were recorded while the
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Figure 2: (a) Four interactive behavioral patterns learned by a robot controlled by an S-CTRNN with PB. The upper-left
and -right figures show the right and left behaviors, respectively. The lower-left and -right figures show the self-play and attract
behaviors. (b) System overview during adaptive interaction between a robot and a experimenter. The solid lines for prediction
and sensory input represent visual information about the ball position. The dotted lines represent proprioceptive information
about the robot’s joint angles. The neural network generates predictions about sensory states yt and their variances vt based
on current sensory inputs xt, and also recognizes situations by updating PB activity online in the direction of minimizing the
negative log-likelihood calculated using the predictions and the target signal (actual sensory feedback) ŷt.

robot repeatedly performed each ball-playing behav-
ior, where the arm movement was generated exactly
following preprogrammed trajectories instead of the
ones generated by the neural network model. Each
of the 4 behavioral patterns was obtained as a se-
quence of 10-dimensional vectors (8 dimensions for
joint angles and 2 dimensions for ball position). For
the training, 3 sequences were prepared for each be-
havioral pattern. The time lengths of the sequences
were approximately 1600 time steps for “right”, 1900
time steps for “left”, 1600 time steps for “self-play”,
and 1200 time steps for “attract”.

The neural network learned to reproduce these
target visuo-proprioceptive sequences. The objec-
tive of the learning is to find the optimal values
of the parameters (synaptic weights, biases, and in-
ternal states of PB units) minimizing negative log-
likelihood, or precision-weighted prediction error. At

first, each parameter was initialized with a random
value and the network produced random sequences.
The parameters were updated in the direction of min-
imizing negative log-likelihood accumulated through
the duration of the target sequences. Repeating the
update process many times, the network became able
to produce visuo-proprioceptive sequences with the
same stochastic properties as the target sequences. In
addition, the associations between a particular pat-
tern of target sequence and specific internal states of
PB units self-organized.

2.5 Online adaptation

After the learning process, the robot engaged in an
adaptive interaction with a human experimenter by
updating PB states (intention) online. In this phase,
the robot’s intention was first set to a certain state
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corresponding to a learned behavior, and situation
(ball dynamics pattern) was controlled by the exper-
imenter. The goal of the robot was to flexibly rec-
ognize situations using visual cues. Real-time adap-
tation during task execution by the robot was per-
formed based on an interaction between a top-down
prediction generation process and a bottom-up pa-
rameter adaptation process. In the top-down pre-
diction generation process, the network generated a
temporal sequence corresponding to time steps from
t −W + 1 to t, based on the sensory inputs at time
step t−W+1 and the constant PB states (intention).
The visuo-proprioceptive sequence was generated by
a “closed-loop” procedure, meaning that predictions
about mean values of the sensory states at a certain
time step were used as inputs at the next step. The
initial inputs for proprioceptive states at time step
t−W+1 were taken from the generated mean predic-
tions at t−W , and those for vision states were taken
from the vision data caught by the camera at time
step t−W +1. In the bottom-up adaptation process,
the negative log-likelihood at each time step within
time window W was calculated by using the predic-
tions about vision states, their variance, and the ac-
tual visual feedback (see Fig. 2b). The PB states
(intention) were updated in the direction of minimiz-
ing the accumulated negative log-likelihood. Based
on the updated PB states, the temporal sequence
within the time window was re-generated. After re-
peating these top-down and bottom-up processes for
a certain number of times, the network generated its
predictions for time step t + 1 and the predictions
about proprioceptive states are sent to the robot as
the target for subsequent joint positions. This pro-
cedure, where recognition and prediction in the past
are reconstructed based on current sensory informa-
tion, is more properly regarded as a “postdiction”
process49,50, and generated predictions for time steps
from t−W + 1 to t are more suitably referred to as
postdiction of the past rather than prediction in the
literal sense.

2.6 Parameter setting for the experi-
ment

The number of input, output, and variance neu-
ral units were NI = NO = NV = 10, corre-
sponding to the dimension of the robot’s sensory
states, and the number of PB units was NP = 2.
The number and time constant of the context units
were NC = 50 and τi = 4, respectively. In the
learning phase, the weights of synaptic connections
wij (j ∈ II, IC) and biases bi were initialized with ran-
dom values following uniform distributions on the in-
tervals [− 1

NI
, 1
NI

] (j ∈ II) and [− 1
NC

, 1
NC

] (j ∈ IC) for
weights, and [−1, 1] for biases, and the internal states
of PB units were initialized as 0. These parame-
ters are updated offline 300, 000 times in the learning
phase. In the adaptation phase, the internal states
of PB units were updated online 20 times, and the
length of the time window was W = 10.

2.7 Simulating aberrant sensory pre-
cision

This study simulated increased and decreased sen-
sory precision by altering estimated sensory variance
(inverse precision). After the network learned to re-
produce the set of behavioral patterns, the activation
values of the variance units were modified as

v
(s)
t,i = exp

(
u
(s)
t,i +K

)
+ ϵ (i ∈ IV) , (11)

where K is a constant determining the level of the
estimated variance and ϵ is its minimum value, set
as 0.00001. K is set as 0 in the normal condi-
tion, while K is set to negative values in the de-
creased sensory variance conditions and positive val-
ues in the increased sensory variance conditions (K ∈
{−8,−4, 0, 4, 8}).

2.8 Analysis of robot’s behavior

To judge whether the robot’s behavior generated dur-
ing the test phase is appropriate, the generated time
series of joint angles was compared with the tar-
get (learned) time series. A simple way to compare
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two time series is to calculate the distance between
the value at each corresponding pair of time steps
within a certain time window. However, this method
is not necessarily appropriate for comparing a gen-
eral characteristic of time series because a phase shift
will increase the distance between the series. Here,
this would increase the distance even when the robot
generates the appropriate action. Thus, this study
considered histograms of time-series values within a
specified time window and then compared the his-
togram of the time series generated through the test
experiment with the target time series. Because a
histogram of time series values can be considered
as a probability distribution, two time series can be
compared by calculating the Kullback–Leibler (KL)
divergence. Although the probability distribution
lacks some information regarding temporal ordering,
this comparative approach is suitable for our pur-
pose because a general characteristic of a time se-
ries can be extracted. By considering the amount of
the state change and calculating the KL divergence
from the learned time series, the behaviors observed
in the experiments could be classified into one of four
types: “outwardly normal”, “freezing” (maintaining
one posture), “unlearned movement” (engaging in an
unlearned action), and “inappropriate learned move-
ment” (engaging in a learned action other than the
target action). These are explained in more detail in
below.
To assess the robot’s behavior in the experiment,

an 8-dimensional time series of joint angles was re-
duced to a 2-dimensional time series by applying
principal component analysis. To extract the prob-
ability distribution of the 2-dimensional time series,
the 2-dimensional space [−N,N ]× [−N,N ] (with N
the maximum of the absolute value of time series
S(t) = {z1(t), z2(t)} across all data, where z1 and
z2 represent the first and second principal compo-
nents, respectively) is divided into N2

bin subspaces
(here, Nbin = 20). Then, the occurrence frequen-
cies of states within the time series were counted.
Based on the acquired probability distributions of the
time series, the KL divergence between the probabil-
ity distribution of the time series generated in the
test experiment and the target (learned) time series
was calculated. The robot’s behavior is judged as

“outwardly normal” if the KL divergence is less than
a threshold ξ, set here as half of the minimum of KL
divergence between each pair of learned time series.

DKL(p∥q) < ξ =

0.5×minqi,qj∈Uŝ∧qi ̸=qjDKL(qi∥qj).
(12)

Here, p is the probability distribution of the gener-
ated time series through the test experiment, q is the
probability distribution of the target movement, and
Uŝ is a set of the probability distributions of each
learned movement.
Atypical behaviors can be classified into one of

three types of behaviors according to whether the
movements were almost stopped and whether they
were close to a learned movement other than the tar-
get. We call these “freezing” (if d < 0.02 and ∀q ∈
Uŝ, DKL(p∥q) ≧ ξ), “unlearned movement” (if d ≧
0.02 and ∀q ∈ Uŝ, DKL(p∥q) ≧ ξ), and “inappro-
priate learned movement” (if d ≧ 0.02 and ∃q ∈
Uŝ, DKL(p∥q) < ξ). In these, d is the amount of the
state change defined as

d =
1

T

T∑
t=0

∑
i∈IOjoint

|yi,t+1 − yi,t|. (13)

Here, T is the length of the time series, IOjoint is the
index set of the joint outputs, and yi,t is output of
the ith output neural unit at time step t.

3 Results

3.1 Open-ended ball interaction

First, we observed the effects of increased or de-
creased sensory variance (inverse precision) on the
robot’s behavior through an open-ended ball interac-
tion where situations (ball dynamics patterns) were
changed unpredictably by the experimenter. To as-
sess the robot’s behaviors, the joint-angle output of
the time series was quantitatively assessed every 100
time steps and classified into one of the four types
of movements (see Section 2.8). Fig. 3 and Fig. 4
show some representative examples of the robot’s be-
haviors under each condition. Fig. 5 focuses on the
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Figure 3: Generated time series data from interacting with the experimenter under normal conditions. The robot with a
normal network (K = 0) successfully adapted to the changing situations (time steps 400–499, in red box) by flexibly switching
its intention (PB state) in the direction of minimizing the increased negative log-likelihood. “Output joint” indicates predictions
about selected 4-dimensional joint angles. “Input vision”, “variance vision”, and “negative log-likelihood vision”, respectively,
indicate the 2-dimensional ball position and corresponding estimated variance and precision-weighted prediction error. The
negative log-likelihood at time step t is the value after the postdiction process inside the error regression window between time
steps t − W + 1 and t. PB indicates activation values of the two PB units. The joint-angle output of the time series was
quantitatively assessed every 100 time steps as described in Section 2.8.

network-level processes during the trials shown in
Fig. 3 and Fig. 4.

Fig. 3 shows a successful interaction between the
experimenter and the robot with a normal network.
The robot and the experimenter first performed a
“right” interaction during time steps 0–399, then the
experimenter externally changed the situation (ball
dynamics pattern) to a “left” interaction during time
steps 400–499 (red box in Fig. 3). The unpredictable
situation switch caused conflict between the robot’s
intention (PB states) and the actual situation. How-
ever, the robot’s intention was soon updated in the
direction of minimizing the increased negative log-
likelihood (precision-weighted prediction error) (see
also Fig. 5a), and the robot generated behavior ap-
propriate to the situation. This indicates that the
robot with a normal network could flexibly recognize
and adapt to changing environments.

On the other hand, we observed similar patterns

of abnormal overt behaviors, such as freezing or in-
appropriate repetitive behavior by the robot, under
conditions of both increased and decreased sensory
variance. Fig. 4a shows freezing behavior under the
increased sensory variance condition. In this case,
the robot first successfully performed a “right” in-
teraction (time steps 0–399), but the robot almost
stopped and maintained a single posture after the
situation was switched to “attract” (time steps 500–
699). Fig. 4b shows an unlearned repetitive behavior
under the decreased sensory variance condition. The
robot’s action in this case was initially unstable (time
steps 0–199) and then converged to an unlearned pe-
riodic movement (time steps 200–399), but the robot
generated the appropriate movement after the situ-
ation was changed (time steps 500–699). These ab-
normal behaviors, such as freezing and inappropri-
ate repetitive behavior, were observed in both the
increased and decreased sensory variance conditions.
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Figure 4: Generated time series data from interacting with the experimenter under increased or decreased sensory variance
conditions. (a) Robot’s behavior under increased sensory variance condition (K = 8). With increased sensory variance, the
robot’s intention was invariant through the interaction with a situation change (time steps 400–499, in red box) due to highly
reduced precision-weighted prediction error, leading to a freezing behavior. (b) Robot’s behavior under decreased sensory
variance condition (K = −8). With decreased sensory variance, the robot experienced huge precision-weighted prediction
error signals, and its intention first quickly changed and then fixed at a certain point, leading to an unlearned repetitive
movement. Note that the ranges for negative log-likelihood shown in the graphs for the high variance condition and the low
variance condition are different. The joint-angle output of the time series was quantitatively assessed every 100 time steps as
described in Section 2.8. Abnormal behavioral patterns, including freezing and inappropriate repetitive, were observed under
both increased and decreased sensory variance conditions, and these figures show representative examples.
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Figure 5: Dynamics of internal PB states (upper figures) and error signals (bottom bar graphs) for each condition during the
interactions shown in Fig. 3 and Fig. 4. Colored dots in the upper figures represent PB dynamics during different periods of time
(early: time steps 0–199; middle: time steps 200–499; late: time steps 500–699). Bottom bar graphs show the corresponding
mean of the negative log-likelihood per time step during each time span. (a) Flexible intention switching under normal condition
during the interaction shown in Fig. 3. During the situation change in the middle period, generated error signals caused intention
switching and error signals were successfully reduced during interaction in the new situation in the late period. (b) Deficits
in intention switching for high sensory variance during the interaction shown in Fig. 4a. Even when the situation changed in
the middle period, PB states were almost unchanged due to the under-estimated precision of prediction error. (c) Large shift
of network behavior for low sensory variance during the interaction shown in Fig. 4b. Internal PB states first dynamically
fluctuated in the early period, but, after the middle period, they became almost fixed at a certain value although generated
error signals were still very large.

The videos of the ball interactions and graphs for
abnormal behaviors under increased and decreased
sensory variance conditions are attached as supple-
mentary information.

In order to distinguish between the mechanisms un-
derlying the similar abnormal behaviors observed in
the increased and decreased sensory variance condi-
tions, an analysis was performed on the network-level
processes and the level of precision-weighted predic-
tion error the robot experienced (see Fig. 5b and
c). In Fig. 5b (see also Fig. 4a), increased sensory
variance caused highly reduced precision-weighted
prediction error and consequent invariability of the
robot’s intention (PB states), regardless of the situ-
ation change during time steps 400–499 (red box in

Fig. 4a). This caused a mismatch between the robot’s
intention and the situation, leading to freezing be-
havior. In Fig. 5c (see also Fig. 4b), which shows
a decreased sensory variance condition, the internal
PB states first quickly but incorrectly changed, pos-
sibly because the robot experienced huge precision-
weighted prediction errors, which may have included
errors associated with inherent noise of the ball dy-
namics. However, the speed of the changes slowed
down when the absolute values of the internal PB
states became large. After the repetitive quick state
changes and a subsequent slowing down, the inter-
nal PB states were fixed at inappropriate values even
though the robot was still exposed to error signals as
large as, or even larger than, it experienced before the



This manuscript has been accepted in Computational Psychiatry 12

intentional states became fixed. The fixation of inten-
tion caused a mismatch between the robot’s intention
and the situation, leading to unlearned repetitive be-
havior. The fixation of PB states may be considered
to be the result of fixing at a suboptimal local so-
lution (suboptimal critical point) of the prediction
error minimization.
The abnormal behavioral patterns characterized by

resistance to change, such as freezing and inappropri-
ate repetitive behavior, may have appeared as a result
of the network dynamics converging to fixed points
when there was a discrepancy between the robot’s
intention and the actual situation. In addition to
the behavioral abnormalities, generating appropriate
behavior in a restricted situation (time steps 0–399
in Fig. 4a and 500–699 in Fig. 4b) was a remark-
able characteristic of the observed inflexible behav-
iors induced by aberrant sensory variance. Thus, the
difficulties of the robot should not be attributed to
deficits in generating organized behaviors per se, but
to deficits in adaptability. This behavioral rigidity
characterized by resistance to change may be consid-
ered to be analogous to the characteristics of autistic
behavior.

3.2 Evaluation of adaptability and er-
ror signal level

To quantitatively evaluate the frequencies of abnor-
mal overt behaviors described in the previous section,
an additional simpler experiment was conducted. In
this experiment, the situation set by the experimenter
was not changed, but there was a discrepancy be-
tween the robot’s initial intention (PB states) and
the situation. For example, intention of the robot
was first set to the value for “left” behavior, but the
experimenter rolled the ball to the right. To flexi-
bly interact with the experimenter, the robot thus
needed to switch its intention using the visual cue
and generate the appropriate behavior. There were
six combinations of initial PB states and ball dynam-
ics: initial PB states were “left” or “right” and the
experimenter used one of the three other patterns of
ball dynamics. Two trials were performed for each
combination.
We evaluated the robot’s behavior in the five con-
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Figure 6: Changes in the robot’s behavior and negative log-
likelihood associated with various levels of sensory variance.
(a) The occurrence rates of each behavioral trait over 120 tri-
als for each variance level determined by a parameter K are
shown. Behavioral traits observed at time step from 150 to 250
were assessed (see Section 2.8). (b) Negative log-likelihood per
time step for each level of sensory variance are shown. Bars
in the graph correspond to mean values over 120 trials for
each parameter K. One-way repeated-measures ANOVAs in-
dicated significant differences between the five conditions for
the frequencies of the sum of the three abnormal behaviors
(F (4, 36) = 51.0, p < 0.05) and levels of negative log-likelihood
(F (4, 36) = 110.24, p < 0.05). Adjusting for multiple com-
parisons using the Holm-Bonferroni method, significant differ-
ences were found between the normal condition (K = 0) and
other unusual variance conditions (K = −8,−4, 4, 8) in fre-
quencies of abnormal behaviors (all p < 0.05). In addition,
significant differences in levels of negative log-likelihood be-
tween all pairs were reported (all p < 0.05).

ditions (K = −8,−4, 0, 4, 8) for ten networks trained
with differently randomized initial synaptic weights.
Fig. 6 shows the changes in robot’s behavior and
negative log-likelihood (precision-weighted prediction
error) per time step associated with the levels of
sensory variance. Behavioral traits observed during
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time steps 150–250 were assessed and divided into
four overt behavioral patterns (“outwardly normal”,
“freezing”, “unlearned movement”, and “inappropri-
ate learned movement”), as described in Section 2.8.
Outwardly normal behavior basically means that the
robot successfully switched its intention and gener-
ated appropriate behavior. However, it also includes
behaviors for which the robot’s intention was fixed
in an inappropriate state due to altered sensory vari-
ance but the robot nevertheless managed to generate
appropriate behavior using only lower-level network
processes based on sensory inputs.

One-way repeated-measures ANOVAs and post
hoc multiple comparison adjustments using the
Holm-Bonferroni method51 were conducted for the
frequencies of the abnormal overt behaviors and the
levels of negative log-likelihood. The level of statis-
tical significance was set at p < 0.05. The repeated-
measures ANOVAs indicated significant differences
among the five conditions in the frequencies of the
sum of the three abnormal movements (F (4, 36) =
51.0, p < 0.05), and the levels of negative log-
likelihood (F (4, 36) = 110.24, p < 0.05). In ad-
dition, adjusting for multiple comparisons using the
Holm-Bonferroni method indicated significant differ-
ences between the normal condition (K = 0) and the
other unusual variance conditions (K = −8,−4, 4, 8)
in the frequencies of abnormal movements (all p <
0.05). Significant differences in the levels of negative
log-likelihood were indicated between all pairs (all
p < 0.05). These indicate unusual sensory variance
led to unusual levels of precision-weighted prediction
error, which may directly affect the perceptual pro-
cesses of the robot using a prediction error minimiza-
tion mechanism, thereby leading to reduction of be-
havioral performance.

4 Discussion

In this study we tested the hypothesis that aberrant
sensory precision (inverse variance) causes behavioral
rigidity, a core autistic behavior. In particular, using
a prediction error minimization mechanism, we in-
vestigated the effects of increased and decreased sen-
sory variance on adaptive behaviors. We conducted

experiments based on a ball interaction between a
humanoid robot and a human experimenter, where
the robot was required to recognize situations de-
termined by the experimenter. Although the robot
with the normal network flexibly recognized situa-
tion changes and generated appropriate interactive
behaviors, both increased and decreased sensory vari-
ance (inverse precision) led to seemingly similar ab-
normal behaviors resulting from resistance to change,
such as freezing and inappropriate repetitive behav-
ior. However, the analysis aiming to discriminate be-
tween the mechanisms underlying similar abnormal
behaviors induced by the unusual variance conditions
shows there were significant differences between the
network-level processes underlying the symptoms and
the levels of precision-weighted prediction error sig-
nals the robot experienced. Specifically, increased
sensory variance resulted in disregarding any error
signals, leading to invariability of intentional state,
while decreased sensory variance caused an excessive
response to error signals, leading to incorrect inten-
tion change and its subsequent fixation.
Our results demonstrate that increased sensory

precision (decreased sensory variance) can lead to the
behavioral rigidity characteristic of ASD, supporting
the system-level accounts that consider increased sen-
sory precision as the core cognitive trait of individuals
with ASD21–23,25. Within a theoretical study, abnor-
mal behavioral patterns and resistance to change in
individuals with ASD were proposed as strategies to
provide a reassuring sense of predictive success in a
world otherwise filled with error21. This indicates
that precision-weighted prediction errors should be
reduced to some extent while generating inflexible
behavior. However, in our experiment, error signals
could be even larger when the robot generated in-
flexible behavior than they were before the robot’s
intention was fixed. The symptoms observed in the
experiment might be understood as consequences of
a suboptimal solution of prediction error minimiza-
tion rather than consequences of successfully reduc-
ing the sense of prediction error. However, the differ-
ence might be explained by the simplicity of our ex-
perimental setting. For example, in the experiment,
the visual input to the robot was only from an exter-
nal cause (a ball), but if visual inputs from internal
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causes, such as the movements of the arms, were also
considered, the robot might generate characteristic
behaviors aiming to minimize the total error signal
from the two causes by actively changing the internal
causes of vision inputs. This consideration of visual
inputs from internal causes might also lead to differ-
ent effects on the robot’s behaviors under increased
or decreased sensory precision conditions.
Recently, problems with flexible adjustment of re-

actions to sensory states in response to volatile envi-
ronments have been suggested to be associated with
psychiatric disorders25,38. From previous studies, not
only the unusual level of reactions but also the un-
usual context-sensitive adjustment of reactions, such
as adaptation of precision weighting of prediction er-
rors, might explain psychiatric symptoms. In par-
ticular, a recent empirical study indicated that autis-
tic perception may be associated with over-estimated
volatility of the sensory environment, with less dis-
tinction between reactions to unexpected and ex-
pected situations52. In this study, sensory precision
was persistently increased or decreased, indicating
that influences of its context-dependent adjustment
on behavioral flexibility were not considered. Future
study into the effects of unusual adaptation of the
precision weighting of prediction errors may facili-
tate understanding of finer mechanisms underlying
unusual reactions to volatile environments by people
with ASD. In addition, investigations will be needed
of the effects of aberrant sensory precision on learning
and how aberrant sensory precision can be generated
through development and learning.
Our study extends attempts to understand cog-

nitive processes underlying autistic behavior by us-
ing computational models. As a part of these at-
tempts, Rosenberg et al.37 conducted neural net-
work simulations confirming that peculiarities of vi-
sion in ASD can be induced by an altered divisive
normalization. Another study by Barakova et al.33

associated poor motor skills in ASD with the poor
goal-directed movements of a physical mobile robot
induced by a deficit in temporal visuo-proprioceptive
sensory integration. We have confirmed that aber-
rant sensory precision can induce behavioral rigidity,
utilizing a humanoid robot controlled by a recurrent
neural network model. The behavioral abnormality

was observed through a real-time human-robot in-
teraction, where the robot was required to flexibly
recognize changing environments. In such uncertain
and unpredictable situations, reduced cognitive flex-
ibility of individuals with ASD has been generally
reported5,6. Furthermore, this study demonstrated
the generation of dysfunction in intentional control
(i.e., executive dysfunction) caused by aberrant sen-
sory precision, clarifying the direct relationship be-
tween distinct proposed cognitive abnormalities in
ASD12,21.
Our results provide the perspective that we could

consider autistic behavior as being the result of a
phenomenon generally observed in natural systems.
Specifically, the process leading to the qualitative
shift of network behavior in the decreased sensory
variance (increased sensory precision) condition may
be similar to critical transitions, which are abrupt
behavioral shifts observed in natural dynamical sys-
tems, including the climate, ecosystem, and cells’ sig-
naling pathways53–55. Critical transitions are sug-
gested to have characteristic early warning signals,
such as the slowing down of changes in a system (crit-
ical slowing down) and back-and-forth switches be-
tween states in response to relatively large impacts
(flickering), although they can also occur suddenly
due to a large external impact on the system55,56.
These characteristic phenomena were observed in
network behavior in the decreased sensory variance
condition. This suggests that some types of behav-
ioral rigidity and resistance to change might result
from a critical transition in the hierarchical predictive
control system attributed to excessive sensory pre-
diction errors. This perspective might be implicative
because pathophysiological experiments have demon-
strated that dynamical features of network behavior
in epileptic seizures, which relatively high numbers of
individuals with ASD experience57, are very similar
to the process of critical transition58,59.
Finally, findings from this study also provide an

implication for clinical studies aiming to classify the
different types of inflexible behavior observed in ASD
or to understand differences between the behavioral
abnormalities observed in ASD and other psychi-
atric disorders, such as obsessive-compulsive disor-
der and schizophrenia. Our results show that seem-
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ingly similar inflexible behaviors can result from dif-
ferent network-level processes, and also abnormalities
of network-level processes may not necessarily lead to
external alterations of behavior. This indicates that
measurements and classifications of behavioral ab-
normalities based on external observation might be
confusing and create difficulties in terms of under-
standing their etiology as broadly described in psy-
chiatry14. However, our findings also indicate that
symptoms induced by increased or decreased sen-
sory precision were substantially different in terms
of the levels of prediction error signals while gener-
ating abnormal behaviors, suggesting there might be
differences in the internal experiences of individuals.
Therefore, measurements and classifications of both
the internal experiences of patients and neural activ-
ities coding prediction error signals in the biological
brain could be useful to facilitate understandings of
heterogeneous behavioral rigidity in psychiatric dis-
orders14. Future studies may be able to track pa-
rameters associated with those properties underlying
disrupted adaptive behavior in animal models and
humans, and should compare the robot model with
clinical case studies.

5 Author summary

To behave flexibly in the uncertain world, the brain
should predict whether incoming sensory information
is signal or noise. Unusual estimation of the reli-
ability (or precision) of sensory information is ex-
pected to cause unusual reactions to sensory stim-
uli and disabilities, especially in the complex social
context. This is the basic idea of one theoretical ac-
counting for autistic symptoms based on predictive
coding, a brain principle explaining how people in-
teract with the world as a process of minimizing the
error between predictions about future states and ac-
tual sensory inputs. To bridge the gap between the-
oretical study and clinical observation, we performed
a neuro-robotics simulation of behavioral alterations
induced by over- or under- estimated sensory preci-
sion, using a recurrent neural network model based
on a precision-weighted prediction error minimization
mechanism. Through experiments of human–robot

adaptive interaction, we found that both increased
and decreased sensory precision led to autistic-like
behaviors of the robot, characterized by resistance
to change, such as freezing and inappropriate repet-
itive behavior. In addition, the behaviors induced in
the robot by increased and decreased sensory preci-
sion were different in the network-level processes and
the levels of prediction error signals the robot experi-
enced. This might indicate that the same overt symp-
toms could arise from distinct computational mecha-
nisms. The results might contribute to a more trans-
diagnostic understanding of behavioral inflexibility.
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[13] Happé, F. & Frith, U. The weak coherence ac-
count: Detail-focused cognitive style in autism
spectrum disorders. J. Autism Dev. Disord. 36,
5–25 (2006).

[14] Redish, A. D. & Gordon, J. A. (eds) Computa-
tional Psychiatry: New Perspectives on Mental
Illness (MIT Press, 2016).

[15] Bar, M. The proactive brain: using analogies
and associations to generate predictions. Trends
Cogn. Sci. 11, 280–289 (2007).

[16] Den Ouden, H. E. M., Kok, P. & de Lange, F.
P. How prediction errors shape perception, at-
tention, and motivation. Front. Psychol. 3, 1–12
(2012).

[17] Friston, K. J., Daunizeau, J., Kilner, J. &
Kiebel, S. J. Action and behavior: A free-energy
formulation. Biol. Cybern. 102, 227–260 (2010).

[18] Pellicano, E. & Burr, D. When the world be-
comes ’too real’: A Bayesian explanation of
autistic perception. Trends Cogn. Sci. 16, 504–
510 (2012).

[19] Friston, K. J., Lawson, R. & Frith, C. D. On
hyperpriors and hypopriors: Comment on Pelli-
cano and Burr. Trends Cogn. Sci. 17, 1 (2013).

[20] van Boxtel, J. J. A. & Lu, H. A predictive coding
perspective on autism spectrum disorders. Front.
Psychol. 4, 1–3 (2013).

[21] Van de Cruys, S. et al. Precise minds in uncer-
tain worlds: predictive coding in autism. Psy-
chol. Rev. 121, 649–75 (2014).

[22] Lawson, R. P., Rees, G. & Friston, K. J. An
aberrant precision account of autism. Front.
Hum. Neurosci. 8, 302 (2014).

[23] Van de Cruys, S., Van der Hallen, R. & Wage-
mans, J. Disentangling signal and noise in
autism spectrum disorder. Brain Cogn. 112, 78–
83 (2017).

[24] van Schalkwyk, G. I., Volkmar, F. R. & Cor-
lett, P. R. A Predictive Coding Account of Psy-
chotic Symptoms in Autism Spectrum Disorder.
J. Autism Dev. Disord. 47, 1323–1340 (2017).

[25] Palmer, C. J., Lawson, R. P. & Hohwy, J.
Bayesian approaches to autism: Towards volatil-
ity, action, and behavior. Psychol. Bull. 143,
521–542 (2017).

[26] Montague, P.R., Dolan, R.J., Friston, K.J. &
Dayan, P. Computational psychiatry. Trends
Cogn. Sci. 16, 72–80 (2012).

[27] Friston, K. J., Stephan, K. E., Montague, R.
& Dolan, R. J. Computational psychiatry: The
brain as a phantastic organ. The Lancet Psychi-
atry 1, 148–158 (2014).

[28] Adams, R. A., Huys, Q. J. M. & Roiser, J. P.
Computational Psychiatry: towards a mathe-
matically informed understanding of mental ill-
ness. J. Neurol. Neurosurg. Psychiatry jnnp-
2015-310737- (2015).

[29] Huys, Q. J. M., Maia, T. V & Frank, M. J. Com-
putational psychiatry as a bridge from neuro-
science to clinical applications. Nat Neurosci 19,
404–413 (2016).

[30] Teufel, C. & Fletcher, P. C. The promises
and pitfalls of applying computational models



This manuscript has been accepted in Computational Psychiatry 17

to neurological and psychiatric disorders. Brain
139, 2600–2608 (2016).

[31] O’Loughlin, C. & Thagard, P. Autism and co-
herence: A computational model. Mind Lang.
15, 375–392 (2000).

[32] Diwadkar, V. A. et al. Impaired associative
learning in schizophrenia: Behavioral and com-
putational studies. Cogn. Neurodyn. 2, 207–219
(2008).

[33] Barakova, E. I. & Chonnaparamutt, W. Timing
sensory integration: Robot simulation of autistic
behavior. IEEE Robot. Autom. Mag. 16, 51–58
(2009).

[34] Yamashita, Y. & Tani, J. Spontaneous predic-
tion error generation in schizophrenia. PLoS One
7, (2012).

[35] Brown, H., Adams, R. A., Parees, I., Edwards,
M. & Friston, K. Active inference, sensory atten-
uation and illusions. Cogn. Process. 14, 411–427
(2013).

[36] Krichmar, J. L. A neurorobotic platform to
test the influence of neuromodulatory signaling
on anxious and curious behavior. Front. Neuro-
robot. 7, 1–17 (2013).

[37] Rosenberg, A., Patterson, J. S. & Angelaki, D.
E. A computational perspective on autism. Proc.
Natl. Acad. Sci. U. S. A. 112, 9158–9165 (2015).

[38] Powers, A. R., Mathys, C. & Corlett, P. R.
Pavlovian conditioning—induced hallucinations
result from overweighting of perceptual priors.
Science (80-. ). 357, 596–600 (2017).

[39] Smith, L. & Gasser, M. The development of em-
bodied cognition: six lessons from babies. Artif.
Life 11, 13–29 (2005).

[40] Asada, M. et al. Cognitive Developmental
Robotics: A Survey. IEEE Trans. Auton. Ment.
Dev. 1, 12–34 (2009).

[41] Elman, J. L. Finding structure in time. Cogn.
Sci. 14, 179–211 (1990).

[42] Marocco, D., Cangelosi, A., Fischer, K. & Bel-
paeme, T. Grounding action words in the senso-
rimotor interaction with the world: Experiments
with a simulated icub humanoid robot. Front.
Neurorobot. 4, 1–15 (2010).

[43] Alnajjar, F., Yamashita, Y. & Tani, J.
The hierarchical and functional connectivity
of higher-order cognitive mechanisms: Neuro-
robotic model to investigate the stability and
flexibility of working memory. Front. Neuro-
robot. 7, 1–13 (2013).

[44] Murata, S., Namikawa, J., Arie, H., Sugano,
S. & Tani, J. Learning to reproduce fluctuat-
ing time series by inferring their time-dependent
stochastic properties: Application in Robot
learning via tutoring. IEEE Trans. Auton. Ment.
Dev. 5, 298–310 (2013).

[45] Tani, J., Ito, M. & Sugita, Y. Self-organization
of distributedly represented multiple behavior
schemata in a mirror system: Reviews of robot
experiments using RNNPB. Neural Networks 17,
1273–1289 (2004).

[46] Ito, M., Noda, K., Hoshino, Y. & Tani, J. Dy-
namic and interactive generation of object han-
dling behaviors by a small humanoid robot using
a dynamic neural network model. Neural Net-
works 19, 323–337 (2006).

[47] Rumelhart, D. E., Hinton, G. E. & Williams, R.
J. Learning representations by back-propagating
errors. Nature 323, 533–536 (1986).

[48] Chen, Y. et al. Emergence of Interactive Be-
haviors between Two Robots by Prediction
Error Minimization Mechanism. 2016 Joint
IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-
EpiRob), Cergy-Pontoise, 302–307 (2016).

[49] Eagleman, D. M. & Sejnowski, T. J. Motion
integration and postdiction in visual aware-
ness. Science 287, 2036–2038, 10.1126/sci-
ence.287.5460.2036 (2000).



This manuscript has been accepted in Computational Psychiatry 18

[50] Shimojo, S. Postdiction: Its implications on vi-
sual awareness, hindsight, and sense of agency.
Front. Psychol. 5, 1–19 (2014).

[51] Holm, S. A simple sequentially rejective multiple
test procedure. Scandinavian Journal of Statis-
tics 6, 65–70 (1979).

[52] Lawson, R. P., Mathys, C. & Rees, G. Adults
with autism overestimate the volatility of the
sensory environment. Nat. Neurosci. 20, 1293–
1299 (2017).

[53] May, R. M. Thresholds and breakpoints in
ecosystems with a multiplicity of stable states.
Nature 269, 471–477 (1977).

[54] Lenton, T. M. et al. Using GENIE to study a tip-
ping point in the climate system. Philos. Trans.
R. Soc. A Math. Phys. Eng. Sci. 367, 871–884
(2009).

[55] Scheffer, M. et al. Early-warning signals for crit-
ical transitions. Nature 461, 53–59 (2009).

[56] Scheffer, M. et al. Anticipating Critical Transi-
tions. Science (80-. ). 338, 344–348 (2012).

[57] Bolton, P. F. et al. Epilepsy in autism: features
and correlates. Br. J. Psychiatry 198, 289–294
(2011).

[58] Jiruska, P. et al. High-Frequency Network Ac-
tivity, Global Increase in Neuronal Activity, and
Synchrony Expansion Precede Epileptic Seizures
In Vitro. J. Neurosci. 30, 5690–5701 (2010).

[59] Kramer, M. a. et al. Human seizures self-
terminate across spatial scales via a critical tran-
sition. Proc. Natl. Acad. Sci. 109, 21116–21121
(2012).

6 Data availability

The data that support the findings of this study are
available from the corresponding author on reason-
able request.

7 Author Contributions

HI, SM, YC, YY, JT and TO conceived the research
topic, designed the experiment, and wrote the paper.
HI performed the experiment and analyzed the data.

8 Acknowledgments

This work was supported in part by a MEXT Grant-
in-Aid for Scientific Research on Innovative Areas,
“Constructive Developmental Science” (24119003),
JSPS Grant KAKENHI (25330301, 17K12754) and
JST CREST (Grant Number: JPMJCR16E2, JP-
MJCR15E3), Japan.


