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Abstract—We propose a sub-symbolic connectionist model
in which a compositional system self-organizes by learning a
provided set of goal-directed actions. This approach is compatible
with an idea taken from usage-based accounts of the developmen-
tal learning of language. The model explains a possible continuous
process underlying the transitions from rote knowledge to system-
atized knowledge by drawing an analogy to the formation process
of a regular geometric arrangement of points. An experiment was
performed using a simulated mobile robot reaching or turning
toward a colored target. By using an identical learning model,
three different types of combinatorial generalization are observed
depending on the provided examples. Based on the experimental
results, a dynamical systems interpretation of conventional usage-
based models is discussed.

I. Introduction

This study examines the mechanisms in the human mind
that are involved in the shift from unrelated rote knowledge
acquired by learning examples of objects or events into a flex-
ible conceptual system by which we can conceive something
not experienced as a recombination of the examples. In related
work, Skinner argued in [1] that a reusable unit emerges as a
by-product of the acquisition of multiple examples containing
the reusable unit. He pointed out that a minimal unit seldom
appears by itself as a whole example of stimuli and responses.
Tomasello reported in [2] that infants can appropriately use
holophrases, which are indivisible sentences such as “lemme-
see,” in a communicative context before understanding the
reusable units such as “let,” “me” and “see.”

It is, however, difficult to reveal the mechanism underlying
the observation that the utilization of the whole concept
precedes the acquisition of “parts”, that appear to constitute
the whole. In Tomasello’s usage-based account of language
development, the transition of the performance is explained
in terms of the acquisition of a new type of smaller and
more abstract symbolic repertoire, which explains a new type
of combinatorial generalization. This explanation, however,
simply rephrases the discontinuity of a performance as another
discontinuity of internal representation, and so the questions
arises as to how the new repertoire is acquired. This suggests
the requirement of a continuous underlying mechanism in
order to provide a longitudinal explanation throughout the
transition.

This study investigates a new sub-symbolic implementation
of a usage-based learning model in the domain of goal-
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Fig. 1. Systematic relationships among concepts are represented based on
the regularity of a geometric structure.

directed actions of a simulated agent. Our model focuses on
the systematic relationships among whole concepts instead
of dealing with reusable conceptual parts explicitly. Each
concept is embedded as points in a conceptual space that
is implemented as an n-dimensional vector space. The geo-
metric arrangement of these points represents the underlying
combinatoriality among them. For example, a system of six
actions specified by every possible combination of one of three
objects and one of two operations is represented as a triangular
prism, as shown in Fig. 1. Even if the positions of some
actions are unknown, they can be inferred by the geometric
regularity. Furthermore, this framework explains the transitions
from rote knowledge to systematic knowledge in terms of a
continuous internal process. The emergence of the regularity
involved in the transitions can be realized by the continuous
motion of each point. Moreover, a link between an action and
its internal representation, namely a point corresponding to
the action, does not change through the transition, whereas
the conventional implementation undergoes the replacement of
a holistic symbol with a combination of elemental symbols.
Thus, the proposed approach provides a possible dynamic
process underlying the conventional usage-based models.

II. Experimental Setting

In our experiment, a simulated mobile agent learns an
incomplete subset of 36 different goal-directed actions; the
actions are characterized by combinations of a target object,
an operation on the target, and an optional verb modifier. The
learning is conducted in a supervised manner. The agent is
designed based on a mobile robot, and has a color camera
with a range of view of 120 degrees and two rotating motors
driving each of its two wheels. In each experimental trial, the
agent was required to perform either of two operations reach
or turnto on one of six colored objects (blue, cyan, green,
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Fig. 2. (a) An experimental environment: a simulated agent performs 36
types of goal-directed actions in the environment where a target colored object
and an optional dummy colored object are placed randomly within a dashed
square. (b) The connectionist architecture of the model: A rectangle represents
a layer. The number of nodes contained in the layer is denoted by the number
in the rectangle. The gray layers have a slower time constant than do the
white layers. PB (parametric bias) storage is a working area.

yellow, orange, and magenta) in the environment shown
in Fig. 2(a), where one or two objects, one of which is the
target, are randomly placed. In actions involving reach, the
agent is required to move toward the target and then stop just
before touching the target. In the turnto actions, the agent
must pivot toward the target. The operation turnto takes a
verb modifier, which designates the offset angle (-30, -18, 0,
+18, and +30) from the agent’s center to the final position of
the target in the agent’s visual field. A negative angle indicates
the offset to the left.In the following, the action is denoted as
a concatenation of labels of one of the operations, one of the
targets, and optionally one of the offset angles, for example,
turnto-blue+18. In some situations, turnto with one of
the angles, such as turnto+18, is regarded as an operation. It
should be noted that the labels are used only for convenience.
Any explicit information about the relationships among the
actions is not presented to the agent throughout the experiment.

As mentioned above, the actions are embedded in the
concept vector space through the learning process. Unlike
conventional associative learning between an action and a
vector, the vector is not provided a priori. Instead, the geo-
metric arrangement of the vectors self-organizes the structure
reflecting the relationships among the actions. The learning
model that acquires this structure-preserving map between
the actions and the vectors is a connectionist network, as
shown in Fig. 2(b). The network consists of two parts, each
of which is tailored to its own functions. One part is a base-
level network (base-net), which takes the visual information
from the camera as input and outputs the angular velocities
of the wheels (the left side of Fig. 2(b)). The base-net is
essentially a conventional layered neural network except that it
has second-order connections [3] between the vrepr and motor
layers. This special mechanism enables the base-net to switch
its function. Depending on the action to be performed, the
base-net generates different motor values for the same vision
input. The second-order connection is controlled by the meta-
level network (meta-net) depicted on the right side of Fig.
2(b). The meta-net is also a conventional layered network. As

input, meta-net takes a vector encoding an action once at the
beginning of the action; then, it outputs the weights of the
second-order connections constantly until the action finishes.
The input layer works just like the conventional parametric
bias (PB) layer [4], which has an infinitely long time constant;
therefore, we name this the PB layer. PB storage is the working
area during the learning, as will be explained later in detail.

An experimental session consisted of three phases: creation
of training data, learning of the data, and evaluation of the
performance. The training data were created by sampling
sensor-motor time series involving actions generated in an
algorithmic manner. Then, the network learned a part of
the data in an offline manner. Four sessions were conducted
with supervised data of different sparseness, each of which
contains 4, 8, 14, and 21 out of 36 actions, respectively.
After the training error of the network decreased sufficiently,
the performance was evaluated. A PB vector of an unseen
action was computed by recognizing unused training data,
as explained below. The agent, which was controlled by the
network, was tested to determine whether it could perform
an unfamiliar action in a novel environment by using the PB
vector. In the remaining sections, each phase is explained in
detail.

A. Phase 1: Generating Examples by Teaching Programs

For each of the 36 actions, 120 patterns of the action were
recorded as teaching examples in different environments. In
20 out of the 120 cases, only a target object was placed in
the stage, and in the remaining 100 cases, a dummy object
was placed in addition to the target object. The dummy object
was chosen from among five objects other than the target,
and 20 patterns were sampled for each object. Both the target
and optional dummy object were arranged at random positions
within the area range shown by the dashed square in Fig. 2(a).
Any arrangement in which the target was occluded by the
dummy at the home position of the agent was omitted.

Each training example is a sensor-motor time series in-
volving the pattern of an action generated by a manually
coded teaching program. The program calculates the desired
rotation speed of the two wheels of the agent from the position
of a target taken from a camera image at a constant time
interval in order to accomplish the specified action. Therefore,
the network basically learns to mimic the program. This
approach might seem inappropriate if the agent were to learn
the examples by rote. However, the actual objective of the
learning is to recognize the relationships among the provided
exemplars in an unsupervised manner. Again, note that the
abovementioned PB vectors are not under supervision.

The visual and motor information is recorded in the form
of 27-dimensional and 10-dimensional vectors, respectively
(see Fig. 2(b)). The visual field is composed of nine vertically
divided regions. Each region is represented by the fraction of
the region covered by colored patches and the dominant hue
of the patches in the region. The hue is encoded by the po-
sition (cos θ, sin θ) in the color circle, where pure red, yellow,
green, and blue are represented as θ = 0◦, 90◦, 180◦, and 270◦,



respectively. Therefore, the visual input vector does not ex-
plicitly have the position of the target. The desired speed
of the wheel takes a real value ranging from -0.2 to 1.0. A
negative value indicates reverse rotation. The motor vector is
composed of two five-dimensional real-valued vectors, each
of which represents the speed of the wheel in the form of
[ f (0), f (0.25), f (0.5), f (0.75), f (1.0)], where f is a Gaussian
distribution with the mean of the desired speed and sigma of
0.25. This redundant encoding increases the robustness against
the noise output by the network.

B. Phase 2: Batch Learning

The network learns incomplete parts of the 36 actions
in a batch manner by employing the data prepared in the
previous phase as the supervising signal. The learning process
is formulated as a conventional iterative, steepest descent
optimization with respect to the error function E, defined in
(1). The model has two types of parameters to be optimized:
one is the vector W consisting of all the connection weight
values of the network; and the other is the set PB consisting
of PB vectors pbi for all supervised actions i ∈ A.

E(W, PB) =
∑
i∈A

Ei(W, pbi) (1)

Ei(W, pbi) =

119∑
j=0

li j∑
t=0

Ei j(t; W, pbi) (2)

Ei j(t; W, pbi) = ‖m̂i j(t) − m(vi j(t); W, pbi)‖2 , (3)

where li j is the length of the j-th training data of action i, m̂i j(t)
is the desired motor vector corresponding to the visual vector
vi j(t) at the time step t in the training data, and m(vi j(t); W, pbi)
is its actual value generated by the network under the condition
that the connection weight is W, and the PB vector for the
action is pbi with the identical vision input. The parameters
W and PB are updated simultaneously by learning all the
provided data in a batch manner. The learning procedure
is implemented by using the conventional back-propagation
algorithm. At the beginning, all the connection weight values
are randomized with a small value, and pbi,∀i ∈ A are set
to the zero vector. All of the PB vectors reside in the storage
because the values of the PB nodes are switched so that the
network can learn all the given actions at the same time. The
following procedure is then conducted 30,000 times.

(1) Do the following for each action i in A:
(1.1) Load the stored pbi to the PB nodes.
(1.2) For each of the 120 sensor-motor time series,

calculate the delta errors of connection weight
∂Ei j/∂W (t; W(T ), pbi(T )) and of PB vector
∂Ei j/∂pbi (t; W(T ), pbi(T )) by using the back-
propagation algorithm.

(1.3) Update pbi by using the summation of all the delta errors
of pbi for all time steps t of all time-series j of the action
i, and store the updated vector in the storage.

(2) Update W by using the summation of all the delta errors of
W for all time steps t of all time-series j of all the provided
actions i ∈ A.

Thus, the connection weights capture the common charac-
teristics among all of the actions and play a background part,
whereas each PB vector is specialized to its corresponding
action. In the analysis of the experimental results, we observe
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Fig. 3. The result of experiments 1, 2, 3, and 4 are shown in (a), (b), (c),
and (d), respectively. A black box represents a trained action, and a gray box
represents an action acquired as a recombination of the provided data.

the acquired geometric structure constructed by the PB vectors
in the conceptual space.

C. Phase 3: Examining the Generalization Capability

Two aspects of the generalization capability of the agent
were tested: 1) transfer of the skill to a novel environment and
2) recombination of the supervised actions into an unfamiliar
action. In order to examine the transfer of skill to a novel
environment, the agent was tested to determine if it could
accomplish each known action in 280 novel environments,
where a target and dummy object were placed in a systematic
manner. The PB vectors acquired through the second phase
were employed. This test reveals the kind of information kept
in the vectors. If the vector codes only specific trajectories
of taught examples without generalization, it is impossible to
generate a goal-directed action in a different environment. In
order to investigate the recombination of supervised actions
into an unfamiliar action, the PB vector encoding a novel ac-
tion i′ < A must be examined. The vector can be computed by
the recognition procedure. The algorithm is basically identical
to the learning procedure, except that W is not updated. By
employing 30 out of 120 examples of the action i′ produced
in the first phase, pbi′ is optimized with regard to the error
function for the action i′ defined in (2) of Section II-B by
using W acquired in the second phase. Once pbi′ is obtained
for each unseen action, the generation test can be conducted
in the same way as in the trained action cases.

III. Results

We next observe the changes of the generalization capability
depending on the sparseness of the provided examples. In
Fig. 3, the degrees of generalization are compared among
four experimental sessions. A trained action is indicated by
a black box in the figure. In all the sessions, all the trained
actions were regenerated successfully; this means the agent
could accomplish the goal in more than 80 percent of the
test environments explained above. A gray box shows an
action achieved by the combinatorial generalization without
extra teaching. The criteria of success for the novel action are
identical to that for the trained action. In the remainder of this
section, the results are discussed only from the viewpoint of
the performance. We’ll re-examine issues about the underlying
mechanism in the next section.



Experiment 1 – Learning by Rote: In this case, no com-
binatorial generalization was observed because of very sparse
training data (Fig. 3(a)). This suggests that the agent regarded
the provided actions as being holistic; namely, it could not
find any reusable parts such as an operation and a target.

Experiment 2 – A Local Compositional System: As training
data increases, two novel actions turnto-yellow-18 and
turnto-orange-30 were acquired without learning exem-
plars (Fig. 3(b)). This implies that the local compositional
system is self-organized because one of the reusable operations
– turnto-18 and turnto-30 – and one of the reusable targets
– yellow, orange, and magenta – could be composed in any
possible way, including unfamiliar combinations. However,
the agent could not acquire reach-green and turnto-blue.
This means that the agent failed to find the commonalities
between the two operations reach and turnto.

Experiment 3 – Two Independent Compositional Systems:
Two separate local compositional systems emerged when
further training data were added. One is system { turnto,
turnto+18, turnto+30 } × { blue, cyan, green }, and
the other is system { reach, turnto-18, turnto-30 } × {
yellow, orange, magenta }. They are independent of each
other since the targets of one system cannot be applied to the
operations of the other system. The result can be interpreted
as the categorization of targets based on operations applicable
to these targets.

Experiment 4 – Operation (Target, Offset): Finally, all the
possible actions were acquired when the robot was trained
with examples consisting of 21 out of the 36 actions. In
addition, the agent could re-generate some actions that have
intermediate offsets such as turnto-blue-24 by recogniz-
ing newly created examples of the actions. This suggests
that the similarity based on the offset values is understood.
Therefore, the operations concerning turnto could have the
structure turnto × OFFSET (= { -30, -18, 0, +18, +30 }),
and the reach operation exists separately. Furthermore, all
six targets form a class TARGET (= { blue, cyan, green,
yellow, orange, magenta }), because they can be applied
to all operations equally. Thus, it turns out that the argument
structure TARGET × (( turnto × OFFSET ) + reach) emerges.

IV. Analysis

For the analysis of the acquired structure in the PB space,
we discuss the underlying mechanism of the combinatorial
generalization proposed in Section I: the geometric regularity
self-organized in the conceptual space. A primary objective of
the analysis is to bridge the gap between the symbolic behavior
of the system and its sub-symbolic implementation. In other
words, the possible realization of functional compositionality
is investigated [5].

Figure 4 shows the concept structure underlying the local
compositional system observed in the second experiment.
PB vectors for six actions included in the system are dis-
played (see also Fig. 3(b)). The displayed vectors are ob-
tained through the learning process for trained actions and
through the recognition process for untrained actions. The

original 12-dimensional vectors are projected onto a two-
dimensional plane computed by applying the conventional
principal component analysis (PCA) method to the six vectors.
The accumulated contribution rate up to the second principal
component (PC) is 0.79. A regular structure similar to the
prism shown in Fig. 1 is observed in the figure, although
the third and subsequent PCs show irregularity. Thus, an
unfamiliar action has the “correct” position in the concept
space. Meanwhile, no regularity is found in the plot of actions
{ reach, turnto } × { blue, cyan, green }. This is consistent
with the performance that no combinatorial generalization was
realized with regard to the abovementioned actions. A similar
result is found in the first experiment, where no generalization
was realized.

In the third experiment, we can find two separate regular
structures in accordance with the observed performance. Being
consistent with the observed incompatibility between the two
systems, the two structures exist on different sub-spaces.
In other words, each of the systems utilizes its dedicated
representation of an element and a composition mechanism.

A new facet is discovered in the concept space in the last
experiment. Not only a structure representing the relationships
among elements of different roles but also one representing
the similarity among elements within a role are observed
clearly. The former is the congruency of sub-structures, which
is similar to the structure found in the second and third
experiments, and the latter, with regard to each role of a target
and an operation, are shown in Figs. 5(a) and (b), respectively.

The projection plane of Fig. 5(a) is chosen by applying PCA
to representative vectors of the targets obtained by averaging
the PB vectors for all operations for each of the targets. If
a component of a target and an operation in the PB vectors
are independent of each other, this method averages away the
operation information. This assumption is shown to be true
later in this paper. The accumulated contribution rate up to the
second PC is more than 0.98, and so almost all the information
is displayed in the plot. Six clusters corresponding to each of
the targets are observed in the figure. This implies that each
target has its own representation in the subspace regardless
of its surrounding context, namely, an operation taking the
target as its argument. This can also be stated as follows: a
subspace holding information of a specific role, a target in
this case, emerges. Furthermore, the clusters are arranged in
a circle comparable to the continuum of color by hue. This
arrangement suggests that the agent understands the similarity
of color of the target. This is indirectly proven by the tendency
to choose a target of a closely related but incorrect color.
The more similar a dummy object is to a target with respect
to color, the more easily the agent mistakes the dummy for
the target. Therefore, the generalization of color is realized.
When there is no specified target in the environment, the agent
chooses an object of a similar color as a substitute.

In Fig. 5(b), the projection plane to see the differences
among the operations is chosen by averaging the target infor-
mation instead of the operation information. The accumulated
contribution rate up to the second PC is more than 0.86. Here,
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Fig. 5. The concept space self-organized in experiment 4. The space is projected to the planes in
which the differences of 36 actions with respect to targets (a) and operations (b) are maximized.

both continuous and discrete sub-structures exist at the same
time. In the first PC (x-axis of the figure), the continuum of
turnto operations by offset emerges. Apart from that, the
cluster of the reach operation is positioned. This implies that
the second PC (y-axis of the figure) carries the distinction
between reach and turnto. In addition, another continuum
of the turnto operations by the absolute value of the offset
is found in the third PC, the contribution rate of which is
approximately 0.12. Thus, the subspace of operations consists
of three orthogonal components. In addition, the subspaces
of both targets and operations are orthogonal to each other,
since the cosine between any pair of vectors taken from both
subspaces is less than 0.12 (cos−10.12 ' 83◦).

We discover at last an underlying analog mechanism of the
phenomenologic system of symbols inferred in Section III by
considering the following correspondences:

(1) The analog correspondence of an elemental symbol is
the center of gravity of a cluster of actions containing
the element as a part (see Figs. 5(a) and (b)).

(2) The composition of symbols is realized by summing up
their corresponding vectors.

V. Discussion
We begin this section by discussing the incompatibility be-

tween the symbolic representation system and the usage-based
model. The symbolic system failed to capture some important
aspects of the usage-based scenario, as pointed out in Section I,
although the symbolic system is scalable and advantageous in
describing each developmental stage. Thus, we can never say
symbolic representation is completely inadequate to describe
the underlying mechanism of the learning and developmental
process in a usage-based manner. Instead, a possible underly-
ing mechanism that complements the conventional mechanism
is investigated based on our experimental results. In other
words, we present a mechanism of a sub-symbolic level. Both
mechanisms can co-exist, much like the laws of chemistry are
partly deduced from the laws of physics.

The essential difficulty of the conventional symbolic rep-
resentation is a lack of mechanisms to properly represent a

construction, which is a congruous pair of form and meaning.
The symbolic model requires a predefined set of roles, but the
introduction of a predefined set of roles causes a significant
problem, namely, the discrepancy between form and meaning
[6]. To state this problem clearly, we replicated the above
experimental results with a model that employs a fixed set
of roles. If the roles of a target, an operation, and an offset
angle were given in advance of the learning, only one global
compositional system could emerge in experiments 2, 3, and
4. Therefore, a mechanism other than the composition rules is
required in order to emulate multiple different generalizations,
including the partial compositionality observed in experiments
2 and 3. In fact, conventional symbolic models such as those
described in [7], [8] employ grammatical rules that describe
possible combinations of elemental concepts separately from
the predefined semantic composition rules, although their
models do not focus on usage-based theories. Here, two
different rules for composition exist within a system. The first
rule brings parts together into a whole, and the second rule
is meaningless and provides only formal constraints. Thus,
the discrepancy is generated when a symbolic model with
fixed roles is used to explain the developmental process. Even
worse, the discrepancy is easily ignored since the grammat-
ical rules are often regarded as “composition rules.” In the
following, we illustrate a dynamical systems interpretation
of a usage-based model and show that the geometric nature
of the representation restores the characteristic nature of a
construction, which the conventional symbolic representation
fails to capture.

A. From Similarity to “Symbol”

One of the essential benefits of the geometric representation
is the compatibility of two different types of relationships
among whole concepts: the sub-symbolic relationships based
on surface resemblance and the symbolic relationships based
on shared elemental concepts. As illustrated by Gentner in [9],
a continuum between similarity comparisons and analogical
comparisons based on shared structural properties can make
it much easier to realize the analogical transfer of knowledge



because the experience of similarity comparisons can facil-
itate the comprehension of structural properties through the
continuum. A similar bootstrapping process is important in
our model in order to accomplish recombination, which is a
type of knowledge transfer.

Our bottom-up approach proceeds in the opposite direction
of the conventional explanation in terms of the relationship
between a symbol and the reusability of a part. In the usual
sense of cognitive science, a predefined symbol is indis-
pensable to explain a mechanism underlying recombination
because the symbol represents a reusable unit. In the proposed
approach, however, the reusability of acquired knowledge from
the teaching data brings about the emergence of a symbol. The
acquisition of a symbol is explained as the change of the reuse
capability through learning. The improvement of the similarity
measures of situations is important, because reusability refers
to the capability whereby previously acquired knowledge is
transferred to a novel but similar situation. As the similarity
becomes focusing on structural properties more through the
learning process, the reuse capability becomes more symbolic.
Finally, then, a functionally compositional system emerges.

B. Essential Interdependency among Symbols

The agent achieves the recombination of goal-directed ac-
tions through the abovementioned bootstrapping process. The
learning model of the action works as if it has a symbol cor-
responding to a conceptual element. It is, however, impossible
to extract a single element from the conceptual space of the
model. This means that the elements are acquired in a mutually
dependent form. The interdependence among the elements
is substantial in the domain of meaning since the roles of
elements in a whole concept cannot be defined independently.
For example, in an action consisting of two elements taking the
roles of a target and an operation, both are defined in a circular
manner. A target is something to be operated, and an operation
affects a target in a certain manner. It is unnatural that the
agent knows a general concept of a target without knowing
any concrete operations. This is a typical example of the
discrepancy between form and meaning. From the viewpoint
of the usage-based cognition, it is plausible that a concept of
a target changes as the agent acquires new operations on the
target. On the other hand, we usually consider each elemental
concept as atomic, namely, each elemental concept carries its
own independent meaning. As employed in the conventional
symbolic representation, a slot structure appears to be adequate
for explaining the combinatorial generalization. Each slot is
defined by its corresponding role, and its content can be
switched independently from the other slots.

This contradiction is sublated in the geometric represen-
tation. The atomic element is implemented in terms of the
independent subspace representing a conceptual role. The
superficial independence of elements, however, strongly relies
on the structure-preserving map between a PB vector and
an action, which self-organizes in the connectivities of the
network. The map provides all of the fundamental mechanisms
to maintain the functional compositionality of the system, such

as the composition rule and the semantic roles of elements.
Without them, the conceptual elements cannot constitute a
whole concept, just as chess pieces without a chessboard
cannot constitute a game. Furthermore, the geometric repre-
sentation inherently incorporates the interdependence among
roles. Consider, for example, the simplest case depicted in
Fig. 1. The role of an element is represented as the congru-
ency of sub-structures: two congruent triangles for operations
and three congruent sides for targets. Both congruent sub-
structures always accompany each other through the geometry.
Thus, we can state that a symbolic system focuses only on the
superficial aspect. The abovementioned discrepancy between
the meaning and form is generated because of the lack of
attention to background mechanisms.

VI. Conclusion
We conclude that the functionally compositional system

based on the proposed geometric representation is compat-
ible with usage-based models. In addition, the geometric
representation supports conventional symbolic models at a
sub-symbolic level. The continuity between two relationships
based on surface similarity and on shared reusable units
plays an essential part in the emergence of a symbol. The
interdependency among the semantic roles of concepts is
also well illustrated in terms of the geometric nature of the
relational structure. Moreover, the geometric representation
may provide a longitudinal perspective, in which the transition
between two contiguous stages is explained in terms of the
continuous transformation of the internal structure. An exper-
iment to support this idea will be conducted in the future.
In addition, in the experiments presented herein, only the
recombination of the internal representation is discussed but
the combinatorial generalization of the associations between
referents and sentences through the geometric representation
will be investigated by employing the technique proposed in
[10].
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