
Self-Organization of Behavioral Primitives as Multiple Attractor

Dynamics: A Robot Experiment

(in press IEEE Trans. on System Man and Cybernetics B)

Jun Tani

Brain Science Institute, RIKEN

2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan

Tel +81-48-467-6467, FAX +81-48-467-7248

E-mail tani@brain.riken.go.jp

http://www.bdc.brain.riken.go.jp/ tani

Masato Ito

Digital Creatures Lab.

Sony Corp.

Gotanda, Shinagawa-ku, Tokyo

Abstract

This paper investigates how behavior primitives are self-organized in a neural network

model utilizing a distributed representation scheme. The model is characterized by

so-called parametric biases which adaptively modulate the encoding of different

behavior patterns in a single recurrent neural net (RNN). Our experiments, using a

real robot arm, showed that a set of end-point and oscillatory behavior patterns are

learned by self-organizing fixed points and limit cycle dynamics that form behavior

primitives. It was also found that diverse novel behavior patterns can be generated

by modulating the parametric biases arbitrarily. Our analysis showed that such

diversity in behavior generation emerges because a nonlinear map is self-organized

between the space of parametric biases and that of the behavior patterns. The origin

of the observed nonlinearity from the distributed representation is discussed.

1 Introduction

Many researchers have studied how to identify motor primitives for real biological

systems utilizing the language of dynamical systems. Some biological models [1, 2]

explain that the end-point motor behavior, such as reaching with legs or arms to a

certain position, can be generated by having fixed point dynamics as motor primitives

in spinal reflexes. By vector summing among multiple fixed point dynamics, end-point

1

Jun Tani
タイプライターテキスト
 (IEEE Trans. on Syst. Man Cybern. Part A-Systems and Humans, Vol.33, No.4,
pp.481-488, 2003)

Jun Tani
タイプライターテキスト

Jun Tani
タイプライターテキスト

movement to an arbitrary position can be generated. Others [3, 4, 5] have shown that

rhythmic movement primitives for locomotor activity can be embedded in oscillatory

dynamics embodied by neural circuits at the spinal level. Taga [6] showed that bi-pedal

walking can be controlled by modulating values of interference signals to oscillatory

dynamical systems. It was shown that parametric interference to limit cycling attractor

dynamics generates diverse transient motor trajectories which can be utilized during

various behaviors, such as collision avoidance during walking. Kotosaka and Schaal [7]

suggested that both fixed point dynamics and limit cycling dynamics should be utilized

as motor primitives simultaneously in order to generate diverse behaviors. However,

their work did not clarify well how such motor primitives could be learned or acquired.

Previously, we proposed the so-called “Forwarding Forward model”, or FF-model

[8], in which we explained how behavior primitives can be self-organized hierarchically

and how sensory-motor flow can be recognized and articulated, i.e., segmented into

reusable chunks. This model is characterized by its distributed representation scheme,

in contrast to prior localist models [9, 10] that use the mixture of experts scheme [11].

While each behavior primitive is individually stored in its corresponding local module

in the mixture of experts scheme, in the FF-model multiple behavior primitives can

be stored in an overlapping fashion in a single network utilizing a specific mechanism

of behavior modulation. However, our study of the FF-model [8] did not examine well

how the characteristics of the distributed representation actually affect the organization

of the primitives.

The current paper will show that, in the distributed representation scheme, the

behavior primitives can be generated and utilized more flexibly if they are organized in

the forms of various attractor dynamics. This work seeks to answer the following ques-

tions. (1) How can different attractors with fixed point and limit cycling dynamics be

self-organized simultaneously in the network through supervised learning of end-point

and oscillatory behaviors? (2) Can the network generate diverse behavior patterns

other than learned ones? If so, how do the novel behaviors correspond to the learned

behavioral primitives stored in the model?

These issues are examined by conducting robot imitation learning experiments using

a 4 degree of freedom robot arm.

2 Model

2.1 Overview

We explain the basic ideas behind our model first with an overview of the FF-model

described in [8]. Although the original model is characterized by two levels of forward

2

models [12, 13] which interact with each other both in a top-down and bottom-up

manner, the current study focuses only on the lower level forward model.

First, the diagram of the behavior generation is shown in Figure 1 (a). The lower

level forward model receives the actual current sensory-motor state xt as input and

generates predictions of the next sensory-motor state ˆxt+1 as output by utilizing the

internal state ct and the parametric bias pt. Here, xt, ct and pt are vectors. The sensory-

motor sequences generated by the forward model as xt are utilized for predicting the

sensory inputs as well as generating the desired motor outputs. The internal state ct

is necessary in order to avoid sensory aliasing problems. (For example when drawing

a figure “8”, the internal state disambiguates which way to go at the crossing point.)

The parametric bias plays the role of a behavior modulator in a manner analogous to

parameter changes that cause bifurcations of nonlinear dynamical systems. A specific

behavior pattern is generated while the parametric bias is clamped to a constant value.

The value of the parametric bias is determined for each behavior primitive through prior

learning processes (as will be described later) and its value is assumed to be stored at

a higher level. The idea is that the parametric biases are keys for behavior primitives,

sent one by one from the higher level to the lower level, by which corresponding behavior

patterns are generated as sequences in the lower level. Although the previous work [8]

utilized an RNN in the higher level to memorize such sequences of the parametric bias,

the current work simplifies this part by storing the values of the parametric bias in a

database.

Next, the recognition process, shown in Figure 1 (b), is discussed. In this process,

the system recognizes manually guided behaviors that have already been learned. A

sensory-motor sequence is generated while the robot arm is manually guided through

a behavioral movement pattern. The problem is to find the value of the parametric

bias needed to regenerate the given sensory-motor sequence. The parametric bias pt

can be determined by solving the inverse problem of the lower level forward model

with regression of the sensory-motor sequences obtained through the guided behaviors.

More specifically, the optimal parametric bias pt is iteratively searched such that the

forward model can regenerate the sensory-motor sequence with minimum error relative

to the observed target sequence. In this computation, pt is obtained under the condition

that its temporal profile be generated as flat, or constant over time, as possible while

a specific behavior pattern is being produced. On the other hand, pt should change

in a stepwise manner when the behavior pattern is changed. The higher level can

categorize the pattern by comparing the obtained parametric bias to the ones stored in

the database from prior learning. This is the process whereby given behavior patterns

are recognized. However, the categorization process after obtaining the parametric bias

3

is not implemented in the current study.

The learning process goes through a set of manually guided behavioral patterns.

The objective of learning is to find optimal connective weights which are responsible for

all trained patterns and an optimal parametric bias for each trained pattern. Through

the repeated learning of various guided behavior patterns, the lower level forward

model adapts through synaptic changes such that each guided behavior pattern can

be regenerated with the self-associating, corresponding parametric bias value. We will

now describe each process in detail.

2.2 Neural network architecture

In order to implement the conceptual model described above, a neural network archi-

tecture based on the Jordan-type RNN [14] is developed. Figure 2 shows the network

architecture. In this figure, the RNN receives the current sensory-motor state (st,mt)

and outputs their prediction as (ˆst+1, ˆmt+1). This is the open-loop operation. In the

closed-loop operation, copies of the current sensory-motor prediction outputs are fed

back to the next sensory-motor inputs by the sensory-motor recurrent loop as shown

by the dashed line in Figure 2. This feedback enables look-ahead prediction for an

arbitrary number of future steps without perceiving actual sensory-motor inputs. The

context units in the input layer represent the internal state ct. The current internal

state ct is mapped to that in the next time step ct+1 that is represented by context

units in the output layer. The internal state is recursively computed for future steps

utilizing the recurrent feedback loop for context units. There are parametric bias units

in the input layer. The parametric bias values are additional network variables that

can be manipulated for learning and generating diverse behavior patterns. When a

specific behavior is generated, the parametric bias units are clamped to corresponding

values as determined by the higher level. The modulation of the parametric bias values

shifts the mode of the operation in the lower level network. On the other hand, in the

processes of learning and recognition, the parametric bias values are iteratively com-

puted utilizing the error between the target sensory-motor sequence and the predicted

sequence.

(1) The learning process

In learning a target sensory-motor sequence, the temporal profile of the parametric bias

pt is computed dynamically in the RNN, corresponding to the sensory-motor profile

in the sequence, while the synaptic weights in the RNN are modified. This learning

process is conducted in an off-line manner.

The temporal profile of pt in the sequence is computed via the back-propagation

through time (BPTT) algorithm [15], utilizing a working memory that stores the se-

4

quences of the parametric biases, the teaching targets, and the sensory-motor outputs.

For the purpose of updating the parametric bias values the output error signal is back-

propagated going through the hidden layer to the input layer where the parametric bias

units are allocated. In this computation ρt, the internal value of the parametric bias,

is obtained first. The internal value ρt changes its value due to the force computed

by means of the error back-propagated to this parametric bias unit integrated for a

specific step length in the sequence. Then the parametric bias, pt, is obtained by the

sigmoid output of the internal value. The utilization of the sigmoid function is just a

computational scheme in order to limit the value of the parametric bias to be between

0.0 and 1.0. In this way, the parametric bias is updated in the direction of minimizing

the error between the target and the output sequence. The step length of a sequence

is denoted by L. For each learning iteration, L steps of look-ahead prediction, starting

from the initial sensory-motor state, are computed by the forward dynamics of the

RNN through a closed-loop operation. Once the L steps of the prediction sequence are

generated, the errors between the teaching targets and the prediction outputs are com-

puted and then back-propagated through time. The error backpropagation updates

both the values of the parametric bias at each step and the synaptic weights. The

update equations for the ith unit of the parametric bias at time t in the sequence are:

δρt
i = kbp ·

t+l/2∑
step=t−l/2

δbpt
i
+ knb(ρ

i
t+1 − 2ρit + ρit−1) (1)

△ρit = ϵ · δρti + η · △ρt−1 (2)

pit = sigmoid(ρt) (3)

In Eq. (1), δρt, the delta component of the internal value of the parametric bias unit, is

obtained from the summation of two terms. The first term represents the summation

of the delta error, δbpt
i
, in the parametric bias units for a fixed time window l. δbpt

i
,

which is the error back-propagated from the output units to the ith parametric bias

unit, is summed over the period from t− l/2 to t+ l/2 time step. By summing the delta

error, the local fluctuations of the output errors will not affect the temporal profile of

the parametric bias significantly. The parametric bias should vary only with structural

changes in the sensory-motor sequence. Otherwise it should become flat, or constant,

over time. The window step length, l, is taken as 10 steps in the experiment which

is close to the time constant of the end-point behavior and the cyclic behavior in the

training set. Our preliminary experiments revealed that the parametric bias tends to

fluctuate if l is set to fewer than 10 steps. The step length of each training sequence,

L, varies from 20 to 60 steps.

The second term plays the role of a low pass filter through which frequent rapid

changes of the parametric bias are inhibited. knb is the coefficient for this filtering effect.

5

ρt is updated based on δρt obtained in Eq. (1). The actual update △ρt is computed

by utilizing a momentum term to accelerate convergence as shown in Eq. (2). Then,

the current parametric bias pt is obtained by means of the sigmoidal outputs of the

internal values ρt in Eq. (3).

(2) The sensory-motor pattern generation

Once the synaptic weights in the RNN are determined through the learning process,

the sensory-motor patterns can be generated either in an open-loop or a closed-loop

mode upon receiving the parametric bias from the higher level. In the open-loop mode,

the RNN forward dynamics generate the sensory-motor value for the next time step

when the network receives the current actual values. In the closed-loop mode, the

sensory-motor prediction outputs for the next time step are fed-back into the current

step inputs, allowing look-ahead prediction of sensory-motor values for arbitrary future

steps without inputs of the actual sensory-motor values. Thus, the closed-loop mode

generates “imaginary” motor patterns.

(3) Recognition of the sensory-motor pattern

As noted previously, the recognition of a given sensory-motor sequence is an inverse

problem of finding the optimal pt which regenerates the sequence in the closed loop

mode under a smoothness constraint. This recognition process utilizes fixed synaptic

weight values which were obtained in the learning process. Eq. (1), utilized during

learning, is also used to update pt in its iterative search computation during recognition.

(Note that the synaptic weights are not updated in this recognition process.)

3 Robot Experiments

The proposed model was examined in the context of imitation learning using a robot

arm. The robot used in the experiments has 4 degrees of freedom in its arm rotational

joints. A hand attached to the arm can sweep over the task table horizontally as

shown in Figure 3. A colored mark is attached to the top of the hand for video image

processing. The robot is equipped with a color video camera by which positions of the

hand can be viewed using color filtering. A handle is attached to the hand so that a

trainer can teach behavior to the arm manually. A unix-based computer is connected

to the robot controller by a serial line by which the neural network computation is

conducted on-line or off-line depending on the operation modes described below.

The robot system is operated in four different modes: a manual guidance mode, an

off-line learning mode, a behavior generation mode, and a behavior recognition mode.

In the manual guidance mode, the arm is guided manually with the handle. All motors

are set to free-run and the video camera to on. The sensory-motor sequences, in the

6

form of visually processed inputs and motor positions (angular positions of four mo-

tors) sampled by encoders, are recorded. In the off-line learning mode, training of the

network is conducted for a set of sensory-motor sequences that have been recorded dur-

ing the manual guidance mode. After the learning is completed, the synaptic weights

as well as the parametric bias for each training sequence are saved. In the behavior

generation mode, the parametric bias is set with a value that was obtained during

learning of a specific pattern. Then the open-loop forward computation of the network

is conducted on-line for regenerating the pattern. The parametric bias can also be set

arbitrarily if novel pattern generation is attempted.

In the recognition mode, the arm is manually guided through a sequence of move-

ments while all motors are set to free-run. The sensory-motor sequence generated dur-

ing this manual guidance is recorded once. The network then computes, off-line, the

optimal value of the parametric bias needed to generate that sensory-motor sequence

based on the previously learned biases.

In the following experiments, we will address the following issues. (1) How can dif-

ferent dynamic structures, corresponding to end-point and cycling behaviors, be learned

in the network? (2) How much can the trained network be adapted to novel behavior

patterns based on learned ones? (3) What type of mapping between parametric bias

values and behaviors can self-organize?

3.1 Training of end-point and cycling behaviors

The RNN was trained with three end-point behaviors and two cycling behaviors which

were arbitrarily chosen. The end-point behavior patterns are manually generated by

starting to move the arm at one position and stopping at another. The cycling patterns

are generated by moving the arm back and forth between two specific positions while

all four motor positions cycle with a constant period. The trajectory in the four-

dimensional motor coordinate systems would be seen as circular. (Figures 4(a) and (b)

show typical end-point and cycling behaviors of the arm robot associated with their

trajectories shown in the 2-dimensional projection of the motor coordinate systems.)

Each end-point in the three end-point behaviors is distant to each other and the two

cycling behaviors are not correlated or similar. The training was conducted in a parallel

manner for five sequences. The RNN had 20 hidden units and 8 context units. It also

had 4 parametric bias units in the input layer. The BPTT learning for all the training

sequences was iterated for 20,000 times starting from randomly set initial synaptic

weights.

The learning results are summarized in Figure 5. The figure shows the recall process

of the network after it has been trained for each target pattern. The plots in the top,

7

middle, and bottom rows in this figure show the change over time of four target motor

outputs, the motor outputs learned by imitation, and four parametric bias values after

learning, respectively.

Observe that the target motor patterns are imitated well for all sequences. Observe

also that the parametric biases become mostly flat, or constant over time, in the latter

half of each target sequence. One may conclude that each different end-point and cyclic

behavior is learned by association with different parametric bias values.

We tested the robot’s ability to successfully regenerate each trained behavior pat-

tern by setting the corresponding parametric bias value. In this behavior regeneration

test, the parametric bias values were sequentially switched from those obtained for one

cyclic behavior to those for another cyclic behavior, and then to those for an end-point

behavior. This sequential switching of the parametric bias was done manually in the

current experiment, although it could be done by using a higher level RNN, as shown

in the previous study [8]. Figure 6 shows motor pattern generation in the open-loop

mode over time and the corresponding parametric bias values in the top and bottom

rows, respectively. Observe that the trained behavior patterns appear one by one,

corresponding to the switching of the parametric bias values. From these results, one

may conclude that different dynamic structures, corresponding to end-point and cyclic

behaviors, can be learned simultaneously in a single RNN by changing the parametric

bias values.

3.2 Recognition and adaptation to learned or modulated pat-

terns

The trained network’s abilities to recognize learned patterns as well as to adapt to pat-

terns modulated from the learned ones were examined next. As previously described,

recognition is a process of finding an optimal parametric bias to regenerate a given, pre-

viously learned target pattern. An interesting question is how much the same network

can “recognize” or adapt to modulated patterns by changing the parametric bias, but

without changing the synaptic weights. To investigate this question, we prepared sets

of test patterns by modulating one of the trained patterns. One of the cyclic patterns

used in the previous training was modulated in two ways – first its period and then

its amplitude was varied. (It is noted that the period and the amplitude are defined

for the cyclic trajectory in the four-dimensional motor coordinate.) In the first target

set, three modulated patterns were generated by increasing the period of the original

training sequence by 10, 20 and 30 percent for all motor outputs. Another three mod-

ulated patterns were generated in the second set by decreasing the amplitude of the

original one by 10, 20 and 30 percent for all motor outputs. The ability of the network

8

to imitate the modulated patterns by adapting its parametric biases was then tested.

The experimental results are summarized in Figure 7. Figure 7 (a) shows the

result of imitating the original training sequence. The plots in the top and bottom

rows show the target and the imitated motor outputs, respectively. Observe that the

motor outputs were successfully regenerated to follow the target. Figure 7 (b) shows

the results of period modulation. Three plots are shown for the cases of 10, 20 and

30 percent increments of the target pattern’s period relative to the original training

sequence. Observe that the motor outputs generally follow each target pattern. The

period of the regenerated motor outputs increases by 27 percent in the case of 30

percent target modulation. However, Figure 7 (c) shows worse results in the case of

amplitude modulation. Three plots are shown for the cases of 10, 20 and 30 percent

amplitude decrements in the target pattern relative to the original training sequence.

Note that the motor outputs cannot follow each modulated pattern. The amplitude

in the regenerated motor outputs decreases by only 5 percent in the case of a 30

percent decrease in the target amplitude. Figure 8 (a) and (b) show the change of the

parametric bias as period and amplitude are modulated. Four values of the parametric

bias change monotonically relative to the modulation rate of the target in both cases.

The experimental results obtained so far indicate that the network recognizes pat-

terns of previously trained movements and can also adapt to some modulated patterns

but not to all. This result is a natural consequence of the employed scheme since the

network maintains 4 degrees of freedom for adaptation, as is determined by the num-

ber of the parametric bias units. However, this adaptation cannot cover all possible

modulations in the target patterns. At this point an essential question is what type of

mapping is generated between the parametric bias and the behavioral patterns. The

following experiment will address this question.

3.3 Examination of mappings between parametric biases and

behaviors

In this experiment, we examined how behavior patterns were modulated as the values of

the parametric biases were gradually changed. The parametric bias values were initially

set as (0.32 0.77 0.41 0.88), which are the exact values obtained for learning the second

cyclic behavior in the training set. Then the behavior patterns were generated while

the third value of the parametric bias was incremented from 0.0 to 1.0 with a 0.2

step size at each behavioral trial. Figure 9 shows the generated behavioral patterns

corresponding to each parametric bias value. Observe that the behavior patterns can

be modulated significantly even with small changes of the parametric bias, although

they are less sensitive to change in different ranges of parametric bias.

9

In order to clarify the detailed structures of the mappings between the paramet-

ric bias and corresponding behavior characteristics, phase analyses of the parametric

bias space were conducted for the RNN learned. Since our preliminary examinations

revealed that the network generally converges to either a fixed point or to limit cycling

after 100 time steps of the forward computation (although non-periodic oscillations are

sometimes generated), we decided to characterize the dynamic system in the parametric

bias space by period and amplitude if it converges to limit cycling. Motor sequences of

200 time steps were generated by the forward dynamics in the closed-loop mode while

the third and fourth values of the parametric bias were gradually changed with a 0.1

interval. Upon looking at the sequence of the motor output activation of the RNN from

the 100th time step to 200th time step, the period and amplitude were measured if the

dynamics converged into a limit cycle. In this analysis, if all 4 motor output values

that correspond to 4 angular joint positions happen to cycle during the sequence, limit

cycle dynamics are generated. On the other hand, fixed point dynamics occur if all

the motor output values stop changing during the sequence. In the case of limit cycle,

the observed step length of one cycle is taken as its period and the difference between

the maximum and the minimum values of the first motor output during the cycle is

taken as its amplitude. If the dynamics fluctuated without showing any periodicity

within this sample sequence, its period was assumed to be more than 100 steps for

convenience, although this could be a case of fixed point dynamics having very slow

convergence. In this situation the amplitude was computed by taking the difference

between the maximum and the minimum values of the first motor output in the sample

period.

Figure 10 shows the generated phase plots for two values of the parametric bias

(P2, P3) where the regions of fixed point dynamics and limit cycling are indicated by

hatching and graded colors, respectively. In Figure 10(a) amplitude is indicated by

grading from black to white as mapped from 0.0 to 1.0 for each combination of two

parametric bias values. (It is noted that the region of fixed point dynamics is indicated

by hatched tiles rather than the black ones.) In Figure 10(b) the period is indicated

by its log scale measure. The color mapping of each tile is black for 1 and white for

100 steps. (The period could be more than 100 steps for white regions.) The hatching

region, which is the same shape as the one in Figure 10(b), again represents the region

of fixed point dynamics.

An important observation by looking at these two plots is that the landscape of dy-

namic characteristics represented by the periodicity and the amplitude is quite rugged

in some regions while it is smooth in other regions. This observation suggests that the

mapping between the parametric bias and the characteristics of generated behaviors is

10

quite nonlinear. This result contrasts with the one obtained by Haruno et al. [16] utiliz-

ing a localist scheme, the MOSAIC model [10]. They [16] showed that novel behavior

patterns can be generated by means of linear interpolations among outputs of local

forward model networks by adjusting their gate values. In their localist model, linear

mapping occurs between the gate values and the generated behavior patterns. On the

other hand, in our model diverse behaviors can be generated quite easily utilizing a

self-organized, nonlinear mapping.

4 Discussions and Summary

Our experiments with a robot arm have shown that behavior primitives, based on

different dynamic structures of fixed points and limit cycling, can be learned simulta-

neously in the proposed FF-model. It was further shown that nonlinear mappings are

generated between the parametric bias and corresponding behaviors, by which diverse

behavior patterns can be generated.

Although it is true that varying a parametric bias with limited degrees of freedom

cannot generate every possible movement pattern modulation, this study suggests that

a network which has been trained with only a finite set of patterns could potentially

generate a large number of novel patterns. When the system is required to generate

novel trials in certain situations, it can explore the diversity of behavior patterns just

by modulating the parametric bias internally. If certain desired behavior patterns are

found during such “internal” explorations, those patterns can be memorized for future

use just by storing the corresponding values of the parametric bias in a higher level

memory. The essential idea is to look first at the possibility of finding desired patterns

that have already been organized implicitly in the memory structure of the network.

If the “internal” explorations do not yield a satisfactory match, then supervised re-

training of the network with different training sequence patterns might be required.

Although some may argue that diverse novel patterns can be generated simply by using

a random generator, such a scheme would not always be beneficial. Additional learning

of randomly generated patterns (if they are found to be worth memorizing) could be

sometime hard and take longer learning iteration steps since the patterns would not

be correlated with the current memory contents. Therefore, such learning might cause

memory interference problems with previously learned contents. In contrast, the novel

patterns to be utilized in our internal exploration scheme exist already, hidden in

the current memory structure, and therefore have no additional learning costs. One

possible application for this movement learning system would be “user-development”

of pet robots in the field of entertainment robotics [17]. Users would teach a robot a

11

number of behavior patterns. After learning them the robot would start to generate

various behavior patterns, of which some might be quite novel and amusing for the

users. If the user did not like the current types of movement patterns generated, they

could re-train the robot with additional teaching patterns in the hope that the resulting

modulation of the synaptic weights altered the pattern generation characteristics. The

interleaving mechanism between internal exploration and supervised training is an area

for future research.

Discussions continue about whether motor primitives should be represented locally

or in distributed networks. Tani and Nolfi [9] as well as Wolpert and Kawato [10]

described a localist model in which complex behaviors could be decomposed into sets

of reusable behavioral patterns, each of which was stored in a specific, local neural

network module. Our FF-model contrasts with this localist view in that various be-

havior primitives are represented in a distributed manner in a single RNN, where all

neurons and synaptic weights participate in representing all trained patterns. These

two types of models differ in how the memories of behavior patterns interfere with

each other. In the localist network architecture, a novel pattern can be learned by

allocating an additional network module. In this way, interference can be minimized

between novel patterns and previously memorized patterns. However, in a distributed

representation, memory interference would occur since the memories share the same

network resources. Nevertheless, as a result of embedding multiple attractors in a

distributed network, a global structure that accounts for learned patterns as well as

unlearned patterns emerges.

The characteristics of the internal structure that emerges through learning in the

proposed network seems to depend on interrelations among the training sequence pat-

terns. Our studies [18] have recently shown that the mapping between the parametric

bias and generated patterns becomes smooth and mostly linear when patterns in train-

ing sets are linearly correlated with each other. In this study, the network was trained

with a set of similarly shaped patterns that differed in amplitude and period. Upon

looking at the pattern generation capability after learning, it was shown that simi-

larly shaped patterns were generated whose amplitudes and periods could be smoothly

modulated with changes of two values of the parametric bias. This prior result, as well

as the result in the current paper, indicate that the way the mapping self-organizes

depends on the organization of the training sequence patterns. If all training sequence

patterns are interrelated such that variations among the patterns can be accounted for

by variables with a few degrees of freedom, then such relations can be reconstructed

in the network by organizing a smooth and simple mapping between the parametric

bias and patterns. On the other hand, if the patterns are all independent or cannot be

12

simply related, then attempts at reconstructing all the patterns in a small parametric

bias space could generate arbitrary complex nonlinear mappings between the paramet-

ric bias and the patterns. In the latter case, generalization through learning cannot

be expected since there are no general structures to be extracted from the training se-

quence patterns. Instead, the network will likely generate diverse patterns by utilizing

internally organized nonlinearities. In the current experiment, the training sequence

patterns consist of two sets of uncorrelated dynamics: fixed point dynamics and limit

cycling dynamics. It is highly probable that the observed nonlinearities originated from

the simultaneous training of these two distinct types of dynamic patterns.

Which is better, the distributed or the local representation of motor control? This

is a trade-off problem. In the localist scheme, as shown in [16], stability of old behavior

patterns during new learning can be gained. On the other hand in the distributed

representation, the diversity in the behavior generation can be gained utilizing its

potential nonlinearity of the system, but at the cost of losing memory stability. It is

assumed that biological systems found optimal points between these two extremes. Our

future research will focus on possible adaptation mechanisms by which the networks

themselves can determine the degree of localization or distribution in their internal

representation.

13

References

[1] E. Bizzi, N. Acornero, W. Chapple, and N. Hogan, “Posture control and trajectory

formation during arm movements”, J. Neurosci., vol. 4, pp. 2738–2744, 1984.

[2] A. Feldman, “Superposition of motor programs, I. Rhythmic forearm movements

in man”, Neuroscience, vol. 5, pp. 81–90, 1980.

[3] H. Haken, J. Kelso, and H. Bunz, “A theoretical model of phase transition in

human hand movements”, Biol Cybern, vol. 51, pp. 347–356, 1985.

[4] M. Cohen, “The construction of arbitrary stable dynamics in nonlinear neural

networks”, Neural Networks, vol. 5, pp. 83–103, 1992.

[5] J. Kelso, “Elementary coordination dynamics”, in Interlimb Coordination: neural,

dynamical, and cognitive constraints, S. Swinnen, Ed. New York, Akademic Press.,

1994.

[6] G. Taga, “A model of the neuro-musculo-skeletal system for anticipatory adjust-

ment of human locomotion during obstacle avoidance”, Biological Cybernetics,

vol. 12, pp. 1131–1141, 1996.

[7] S. Kotosaka and S. Schaal, “Synchronized robot drumming by neural oscillator”,

in The International Symposium on Adaptive Motion of Animals and Machines,

Montreal, Canada, 2000.

[8] J. Tani, “Learning to generate articulated behavior through the bottom-up and

the top-down interaction processes”, Tech. Rep. RIKEN-BSI-BDC-TR2001-001,

RIKEN, BSI, 2001, to appear in Neural Networks.

[9] J. Tani and S. Nolfi, “Learning to perceive the world as articulated: an approach

for hierarchical learning in sensory-motor systems”, in From animals to animats

5, R. Pfeifer, B. Blumberg, J. Meyer, and S. Wilson, Eds. Cambridge, MA: MIT

Press., 1998, later published in Neural Networks, vol12, pp1131–1141, 1999.

[10] D. Wolpert and M. Kawato, “Multiple paired forward and inverse models for

motor control”, Neural Networks, vol. 11, pp. 1317–1329, 1998.

[11] R.A. Jacobs and M.I. Jordan, “Adaptive mixtures of local experts”, Neural

Computation, vol. 3, no. 1, pp. 79–87, 1991.

14

[12] M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural network model

for the control and learning of voluntary movement”, Biological Cybernetics, vol.

57, pp. 169–185, 1987.

[13] M.I. Jordan and D.E. Rumelhart, “Forward models: supervised learning with a

distal teacher”, Cognitive Science, vol. 16, pp. 307–354, 1992.

[14] M.I. Jordan, “Attractor dynamics and parallelism in a connectionist sequential

machine”, in Proc. of Eighth Annual Conference of Cognitive Science Society.

1986, pp. 531–546, Hillsdale, NJ: Erlbaum.

[15] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representa-

tions by error propagation”, in Parallel Distributed Processing, D.E. Rumelhart

and J.L. Mclelland, Eds. Cambridge, MA: MIT Press, 1986.

[16] M. Haruno, D. Wolpert, and M. Kawato, “MOSAIC model for sensorimotor

learning and control”, Neural Computation, vol. 13, pp. 2201–2220, 2001.

[17] M. Fujita and K. Kageyama, “An Open Architecture for Robot Entertainment”,

in Proc. of the First Int. Conf. on Autonomous Agents, 1997, pp. 435–442.

[18] M. Ito and J. Tani, “Analysis of generalization in dynamic pattern learning”,

submitted to IEEE Trans. on Neural Networks, 2002.

15

List of Figures

1 (a) and (b) illustrate the behavior generation and the recognition pro-

cesses, respectively in the FF-model. The dashed boxes represent the

higher level forward model which is not utilized in the current study. . 17

2 The RNN associated with the parametric bias inputs pt. st and mt are

sensor and motor sequences and ct is context unit activation. 18

3 The arm robot used in the imitation learning experiments. 19

4 Typical (a) end-point and (b) cycling behavior of the arm robot asso-

ciated with their trajectories shown in the 2-dimensional projection of

the motor coordinate systems . 20

5 The results of training of three end-point behaviors in (a) (b) and (c)

and two cyclic behaviors in (d) and (e). The change over time of the

four target motor outputs, the imitated outputs, and four parametric

bias values are shown in the top, middle, and bottom rows, respectively,

for each pattern. Time steps are shown in the abscissa. 21

6 The results of generating two oscillatory movements followed by one end-

point movement. The change over time of the motor outputs and the

parametric biases are shown in the top and bottom rows, respectively.

Time steps are shown in the abscissa. 22

7 The results of adaptation to patterns modulated from learned ones.

Comparison between the target motor output and the regenerated one is

shown in (a). (b) shows the same comparison when period is increased

from 10 percent to 30 percent in the target pattern. (c) shows the case

of a 10 percent to 30 percent decrease in the target amplitude. 23

8 Modulation of target sequence period (a) and amplitude (b) versus cor-

responding parametric bias values. 24

9 6 motor activity patterns are plotted with the parametric bias values

incrementally increased from top to bottom. Ordinate: Motor Output;

Abscissa: Time Step. 25

10 The phase plots for (a) the amplitude and (b) the period using two values

of the parametric biases. In (a), amplitude is graded from black=0 to

white=1. In (b), period is graded from black=1 to white=100 time steps.

The hatched regions correspond to the region of a fixed point dynamics

in both figures. 26

16

Figure 1: (a) and (b) illustrate the behavior generation and the recognition processes,

respectively in the FF-model. The dashed boxes represent the higher level forward

model which is not utilized in the current study.

17

Figure 2: The RNN associated with the parametric bias inputs pt. st and mt are sensor

and motor sequences and ct is context unit activation.

18

Figure 3: The arm robot used in the imitation learning experiments.

19

motor1

motor1

Figure 4: Typical (a) end-point and (b) cycling behavior of the arm robot associated

with their trajectories shown in the 2-dimensional projection of the motor coordinate

systems

20

Figure 5: The results of training of three end-point behaviors in (a) (b) and (c) and

two cyclic behaviors in (d) and (e). The change over time of the four target motor

outputs, the imitated outputs, and four parametric bias values are shown in the top,

middle, and bottom rows, respectively, for each pattern. Time steps are shown in the

abscissa.

21

Figure 6: The results of generating two oscillatory movements followed by one end-point

movement. The change over time of the motor outputs and the parametric biases are

shown in the top and bottom rows, respectively. Time steps are shown in the abscissa.

22

Figure 7: The results of adaptation to patterns modulated from learned ones. Com-

parison between the target motor output and the regenerated one is shown in (a). (b)

shows the same comparison when period is increased from 10 percent to 30 percent in

the target pattern. (c) shows the case of a 10 percent to 30 percent decrease in the

target amplitude.
23

period +% amp -%

(a) (b)

Figure 8: Modulation of target sequence period (a) and amplitude (b) versus corre-

sponding parametric bias values.

24

Figure 9: 6 motor activity patterns are plotted with the parametric bias values in-

crementally increased from top to bottom. Ordinate: Motor Output; Abscissa: Time

Step.

25

p2

p3

0.0 1.0
0.0

1.0

amp

p2
0.0 1.0

p3

0.0

1.0

period

Figure 10: The phase plots for (a) the amplitude and (b) the period using two values

of the parametric biases. In (a), amplitude is graded from black=0 to white=1. In

(b), period is graded from black=1 to white=100 time steps. The hatched regions

correspond to the region of a fixed point dynamics in both figures.

26

