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Abstract

We investigate how a vision-based robot can
learn an analogical model of the environment dy-

namically through its behavior. We propose a
cognitive architecture consisting of multiple neu-
ral network modules. The recurrent neural net-

work (RNN) learns the sequence of events en-
countered incrementally as episodic memories so

that the RNN can make prediction based on
such sequences in the future. The visual mod-

ule has two task processes to execute, namely ob-
ject recognition and wall-following. Attention be-
tween these two tasks is switched by means of the

topdown prediction made by the RNN. The e�ect
of the topdown prediction to the vision processes

is modulated dynamically using the measurement
of learning status of the RNN. We have conducted
experiments involving learning both static and

dynamic environments using a real vision-based
mobile robot. It was shown that the robot adapts

to the environment in the course of dynamical in-
teractions between its learning, attention and be-
havioral functions. We show an interpretation of

the results from the view of Matsuno's the inter-
nal observer.

1 Introduction

We speculate that cognitive robots may need to have in-
ternal descriptions or analogical models of the world so

that they can simulate mentally their own behavioral se-
quences. In addressing the issues of the description, it is,
however, crucial to consider how such a description can

be grounded in the physical world and how the mental
processes manipulating the description can be situated

in the behavioral context[8].

Recently, the dynamical systems approach has been
actively studied in the domain of adaptive behavior

[3, 19]. We have hypothesized that its language may
best represent cognitive aspects of robots and may pro-

vide insight into the above problems of the description.
Our previous work[22, 21, 23] concerning robot naviga-
tion learning showed that an analogical model of the en-

vironment can be successfully embedded in the internal
dynamical structure of a neural network model through

the learning process, and that mental processes, such as
look-ahead prediction or planning, can be situated nat-

urally in the behavioral context as coherence is achieved
between the internal and the environmental dynamics.
The dynamical systems approach enables robots to at-

tain descriptions which are intrinsic to their behavior.

Our experiments, however, were still limited in their
scope. Firstly, due to the simplicity of the robot itself

and of its environment, the complexity of their interac-
tions was quite limited and therefore the robot's behav-
ioral became highly deterministic and predictable. (The

mobile robot had only a simple sensing device consisting
of a laser range �nder and two motors on the left and

right wheels.) Secondly, our experiments were success-
ful only in the case of learning of static environments.
The actual learning was conducted in an o�-line man-

ner. These limitations may obscure the essential prob-
lems of robot cognition. We speculate that the very

problems of cognitions commence in the moment when
a robot attempts to interact with an unknown environ-

ment and tries to extract a certain structure of the be-
havioral causalities hidden in the non-deterministic se-
quences from its interaction experiences.

This paper introduces our new project in which we in-

vestigate the above problems. We built a new robot for
which the primary sensory input was visual images by

a video camera. The robot has to control camera ori-
entation, both horizontally and vertically, in addition to
maneuvering of its wheels. During navigation, the robot

moves avoiding collisions with obstacle walls and simul-
taneously tries to recognize passing objects using the vi-
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Figure 1: The vision-based mobile robot used in the ex-
periments.

sion. This task is not so simple considering the range

of its visual �eld is physically limited and its recogni-
tion process is limited by its real time requirements. The
robot has to switch its visual attention dynamically from

the wall it is following to the objects it is trying to recog-
nize. The dynamics of its visual attention are observed

to a�ect enormously the ways the robot interacts with
its environment.

Our robot attempts to learn incrementally what it ex-
periences and the visual attention dynamics are adapted

in real time. A neural network (NN) model consisting of
multiple modules learns to categorize the visual images of

objects and also learns to predict the sequence of events,
such as encountering the objects or the corners of the
walls, while the robot moves around the environment.

Regarding visual attention, the timing of the attention
switching between wall following and object recognition

are modulated based on the performance of the NN pre-
dictions. Complexity arises when dynamics of the neu-
ral learning and the adaptation of the visual attention

as well as robot's behavior interact each other. Modu-
lation of the attention dynamics a�ects the behavior of

the robot, which results in further neural learning based
on the newly obtained experiences. This learning causes

an alteration in the performance of the neural network,
which results in further modulations of the attention dy-
namics.

In the following, we will describe our models and show

preliminary results from our experiments.

2 The Robot and Its learning Task

Fig 1. shows our vision-based robot. The robot maneu-
vers by modulating the rotational speed of its two wheels.

The video camera, which is mounted on top of the body,
captures color images; the range of its visual �eld is 60
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Figure 2: The proposed architecture consisting of multi-

ple modules.

degrees horizontally and 40 degrees vertically. The cam-

era head can rotate 150 degrees horizontally and 70 de-
grees vertically. 16 touch sensors are mounted around

the body. In conjunction with the torque measured by
the wheel motors, these touch sensors can detect colli-
sions with obstacles.

The task of the robot is to learn an analogical model
of its environment through its travel. When the robot
navigates by following a wall in its environment, it will

eventually detect an object or a corner in the wall. The
robot learns the sequences of what it sees and how far

it travels between one corner and the next corner. Once
the robot learns the sequence of such events, it becomes
able to predict coming events.

The landmark-based navigation approach has been
studied by many other researchers [15, 14]. In those in-
vestigations, it was proposed that the topological map of

the environment can be represented in the form of a �-
nite state machine (FSM). However, only a few investiga-

tions studied qualitatively how the robots behave if the
detection of landmarks is nondeterministic or how the
learning processes evolve if the environment dynamically

changes. (Yamauchi and Beer discussed these problems
in their formulation using the so-called Adaptive Place

Network [26].) We would like to discuss these problems
qualitatively by using the dynamical systems approach.

3 Models

3.1 Overview of the model

Fig 2. shows a schematic diagram of our model. The vi-

sual image 
ows into the attention switch module where
its 
ow is switched either to the wall following module

or to the object recognition module based on the visual
attention dynamics. The wall following module detects
the edge of the nearby wall on the left-hand side of the

robot and generates the motor commands for the wheels
in order for the robot to follow the wall. This module



has a local prediction loop so that it can predict how
the perceived edge of the nearby wall changes as the

robot moves even when the 
ow of the visual image is
interrupted for some seconds due to the attention switch.

The motor commands are also sent to the travel distance
module for integration with respect to time in order to
determine the travel vector from one corner to the next

corner. When the object recognition module identi�es
an object, it sends a categorical signal to the event pre-

diction module. The event prediction module functions
when the robot passes a corner. The module receives
a travel vector from the previous encountered corner or

a categorical identi�cation of an object which the robot
found during its travel from the previous corner. The

event prediction module then predicts the next event.
The prediction of the next object to be encountered is

fed back to the object recognition module in the form
of the top-down signal. The recognition of an object
involves cooperative dynamics between the bottom-up

and top-down processes. A measurement of the predic-
tion performance is sent to the attention switch module

in order to modulate its dynamics.

3.2 The visual processes

As we have described brie
y in the previous section,
the robot has to switch its attention between two visual

tasks: wall edge following and object recognition. These
two tasks are alternated between during the travel.

First, the camera head turns maximally to the left and

focuses on the edge between the wall and the 
oor. The
camera head then turns gradually to the forward direc-

tion, following the perceived edge line as foveated in the
center of the visual �eld. The measured trajectories of

the head's rotation in the horizontal and vertical direc-
tions (�h(i); �v(i)) represent the shape of the wall edge.
This single movement of the camera head from the ex-

treme left to the forward direction takes about 2 seconds.
The current motor commands for the wheels wht are de-

termined by a pre-determined mapping with respect to
(�h(i); �v(i))

t. This mapping function is tailored to en-
sure that the trajectory the robot travels is smooth and

avoids collisions with the walls. Since the relative loca-
tion of the wall gradually changes as the robot moves, it

is necessary to predict how the shape of the edge changes
as a function of maneuvering. This is necessary because

the visual attention can be switched to the other task
for a relatively long period. The prediction is done using
a simple forward model [12] implemented on a three-

layered perceptron-type NN. A trajectory sampled at
time t: (�h(i); �v(i))

t is fed into the input of the forward

model in addition to the motor commands for the wheels
wht. The output: (�h(i); �v(i))

t+1 is the predicted shape
at time t+1. Although it is mathematically true that the

robot can predict a long time ahead through the recur-
sive usage of the forward model, in practice the accuracy

of the prediction decays substantially a few seconds into
the future. It is important to note that there is a high

risk of collision if the robot travels for more than sev-
eral seconds relying on this prediction. During the wall

following task, corners are detected by means of identify-
ing the shape of the wall edge in addition to the rotation
di�erential between the left and right wheels.

After the camera head turns to the forward direction,
it then turns gradually to the right, searching for ob-

jects. In our experimental setup, objects are painted
with colored patterns; 
oors and walls are painted grey
and white. The search for objects is conducted using

the color information. Many researchers [1, 5, 10] in the
AI or robotics �elds have worked on biologically inspired

systems of visual routines and visual searches using color
information. We have utilized ideas from their research.

In the visual search process, a region consisting of a cer-
tain number of color pixels in the visual �eld \pops-up"
[2]. Then, the center of the \pop-up" region is foveated{

i.e. the camera head moves so that the region is relocated
in the center of the visual �eld. Van Essen [6] proposed

a model of dynamic routing between an attended region
in retina and the visual cortical �eld which is modeled
roughly using an associative memory. We used this idea.

The attended region of the color image is routed up to
the Hop�eld [9] type associative memory network where

memories of objects are stored as they were learned in
the object-centered framework. The Hop�eld network

consists of 10x10x3 neurons corresponding to the color
image of 10x10 pixels. In the routing process, the image
of the attended region is scaled so as to match with this

pixel size. Three neurons are allocated for each pixel in
order to represent its color information. The color of each

pixel is categorized into one of three categories in the
Hue-Saturation space and only its corresponding neuron
is activated. There is an array of winner-take-all neu-

rons which is connected bi-directionariry with the Hop-
�eld network (see Fig 3.). The neurons also receive top-

down prediction input from the event prediction module.
The strength of this top-down prediction is modulated

based on the performance of the prediction module. The
recognition proceeds dynamically involving cooperation
between these two networks as they receive both the

bottom-up visual signals and the top-down prediction
signals. The �nal winner of winner-take-all neurons rep-

resents the identi�ed category of the visual image. (The
combination of winner-take-all neurons and associative
memories has also been studied in the so-called PATON

architecture by Omori [18] using a simple numerical anal-
ysis.) The dynamics of a neuron in the Hop�eld network

is given by:

ui(t+ 1) = 
 � ui(t) + k1
X

n

wi;j
Haj(t) (1)

+k2
X

n

wi;k
wak(t) + k3 � ini
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Figure 3: The object recognition module consisting of

the visual �eld, the Hop�eld associative memory and the
winner-take-all neurons.

ai(t + 1) = sigmoid(ui(t+ 1)=T )

Here, ui and ai are the internal state and the activa-

tion state of the i-th neuron, respectively, 
 is a decay
parameter, the wi;j

H are the intra-connective weights of

the Hop�eld network, the wi;j
w are the inter-connective

weights of the winner-take-all neurons and ini is the in-
put from the visual �eld. The dynamics of the winner-

take-all neurons are given by:

ui(t+ 1) = 
 � ui(t) + h1
X

n

wi;j
Waj(t) (2)

+h2
X

n

wi;k
hak(t) + � � predi

ai(t+ 1) = sigmoid(ui(t+ 1)=T )

Here, the wi;j
W are the intra-connective weights of

the winner-take-all neurons, the wi;k
h are the inter-

connective weights from the Hop�eld network, predi is

the input from the top-down prediction and � is a param-
eter to regulate the strength of this top-down prediction.

The learning takes place after each recognition pro-

cess (i.e. after the network dynamics are terminated).
The intra-connections of the Hop�eld network are up-
dated based on Hebb's rule implemented with a constant

decay mechanism. The decay is necessary to prevent
the weights from diverging in the process of incremental

learning. The learning rule is:

�wi;j = �� � wi;j + �(ai � 0:5)(aj � 0:5) � 4:0 (3)

Here, � is a decay parameter. For updating the inter-

connective weights between the Hop�eld network and the
winner-take-all neurons, only the winning neuron is set
as being activated to 1.0; the others are set as being de-

activated to 0.0. Following this process, the same Hebb's
learning rule is applied.

3.3 Attention and self-referential processes

The problem with the visual attention arises because
the visual process is resource-bounded in both time and

space [1]. If our robot spends a longer time in recogniz-
ing objects, there is a high risk of collision. On the other
hand, if the robot spends a shorter time on the recogni-

tion process, the identi�cation results may be in error as
the answer is required before the NN dynamics converge.

Clearly, a good strategy for determining the timing of
the attention switch is required. The time required for

convergence depends on the learning status of the NN
modules. In the early stages of learning, the attractor of
the Hop�eld network is shallow and the top-down pre-

diction is inaccurate. Therefore, the Hop�eld network
dynamics take a long time to converge. In such cases,

they likely oscillate because contradictions between the
top-down prediction and the bottom-up signals. On the
other hand, when the learning converges, the top-down

prediction and the bottom-up signals agree quite well,
which cause the Hop�eld network dynamics to converges

rapidly. For this reason, the performance of the predic-
tion module is monitored so that the current learning

status can be used to determine when to terminate the
iteration of the network dynamics and also to evaluate
the validity of the topdown prediction. Here, stepsmax,

the maximum steps allowed for iterations of the Hop�eld
network, is de�ned by

stepsmax = l0 + l1 � error
pred (4)

where errorpred is the current prediction error measure
(PEM) of the prediction module (an average of the pre-
diction error among the previous 5 predictions); l0 and

l1 are constants. In addition to this adaptation strategy,
� is de�ned by

� = �0 � (1:0� errorpred) (5)

where �0 is a constant. This equation implies that the
validity of the top-down prediction increased as the pre-

dictability by means of learning is improved.

What we have proposed here is a modeling of self-

referential processes in which the robot can be aware of
the validity of its own mental processes which is fed back
to the attention processes in an unconscious way. These

models of the adaptation process of visual attention are
also based on the ideas of Koch and Crick [4] in the

physiologicical side. They have hypothesized that the
neurons in the visual cortical areas whose responses are
changed by attentions are the ones that receive inputs

from the prefrontal cortex.

3.4 Prediction by recurrent neural net

The event prediction module is implemented with a stan-
dard recurrent neural network (RNN) [19, 11] as shown
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Figure 4: The RNN implemented for the event prediction
module.

in Fig 4. The RNN may correspond to the prefrontal cor-
tex, as a number of studies have suggested that the pre-

frontal cortex performs the function of a working memory
or of planning events (see Ref. [7].) The RNN receives

input from two di�erent sensory sources. One is a visual
image of colored objects; the other is the travel vector
from one corner to the next corner. This part of the

modeling is based on the well-known fact about \where
and what pathways" [24] of visual processing in the hu-

man brain. The RNN does not receive direct sensory
images of those, but receives categorical signals for them

instead. The visual image is categorized by the combi-
nation of the Hop�eld network and the winner-take-all
neurons, as we have described above. The travel vector

is categorized using the standard Kohonen network [13]
in the travel distance module. The travel vector is en-

tered into the Kohonen network, after which the winner
neuron represents the category of the travel vector. The
Kohonen net is self-organized in an on-line manner. The

output of the RNN is the prediction of the categorical
signals for the two sensory sources. In the �gure, Tn
represents the travel vector category and On represents
the object category. The RNN process in this �gure is

one in which the travel vector from the previous corner
to the current corner is identi�ed as being in the second
category, resulting in a prediction that an object of the

third category will be encountered at the next. We em-
ploy Jordan's idea of context re-entry which enables the

network to represent the internal memory [12]. The cur-
rent context input cn (a vector) is a copy of the previous
context output: by this means the context units remem-

ber the previous internal state. The navigation problem
is an example of a so-called \hidden state problem" in

that a given sensory input does not always correspond
to a unique situation or position of the robot. There-

fore, the current situation or position is identi�able, not
by the current sensory input, but by the memory of the

sensory sequences stored during travel. Such a memory
structure is self-organized through the learning process.
The context self-organized in these units is likely to have

a rather distributed fuzzy representation. The RNN used
in our experiment has 9 input nodes, 9 output nodes, 25

context nodes and 25 hidden units.

3.5 Incremental learning and consolidation

process

It is di�cult for RNNs to learn the received information

incrementally. It is generally observed that the contents
of the current memory are severely damaged if the RNN

attempts to learn a new teaching sequence. One way to
avoid this problem is to save all the past teaching data

in a database. When new data is received, it is added to
the former date in the database, and all the data is then
used to re-train the network. Although this procedure

may work well, it is not biologically plausible.

Observations in biology show that some animals and
humans may use the hippocampus for a temporary stor-

age of episodic memories [20]. Some theories of mem-
ory consolidation postulate that the episodic memories

stored in the hippocampus are transferred into some re-
gions of the neocortical systems during sleep. Recent

experiments [25] on the hippocampal place cells of rats
show evidence that those cells reinstate the information
acquired during daytime active behavior. McClelland

[17] further assumes that the hippocampus is involved
in the reinstatement of the neocortical patterns in long

term memory and that the hippocampus plays a teaching
role in training the neocortical systems.

We apply these hypotheses to our model of RNN learn-

ing. In our system, an experienced sequence of events,
which may correspond to a temporary episodic memory,

are stored in the hippocampal database. In the con-
solidation process, the RNN which corresponds to the
prefrontal cortex rehearses the stored memory patterns.

The rehearsal can be done by recursively activating the
RNN using the closed feedback loop from the outputs of

the sensory prediction to the sensory inputs. The gen-
erated sequential patterns are sent to the hippocampal

database. The RNN can be trained using both the re-
hearsed sequential patterns and the newly experienced
ones. In our experiment, the robot stores up to 14

steps of previously encountered events in the hippocam-
pal database. In the consolidation process, the RNN

rehearses for 14 iterations to generate a sequence, then
28 steps of the sequential patterns in total are used to
re-train the RNN. The re-training of the RNN is con-

ducted by updating the connective weights obtained in
the previous training.
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Figure 6: The two objects placed in the workspace which
are painted with di�erent color patterns.

4 Experiments

The learning experiments were conducted in the

workspace shown in Fig 5., in which two di�erent shapes
of objects were located (see Fig 6).

The experiments were conducted in two successive
phases; these were learning in the original environment

followed by learning in a modi�ed environment.

4.1 Adaptation to the original environment

We will now describe the results for the case of learning
in the original environment. Fig 7. shows the observed

history of the prediction error measurement (PEM) at
each event step in the learning phase. The learning of
the RNN is initiated after the RNN experienced 14 steps

of the event sequence. During the �rst period of learn-
ing, the PEM gradually decreases. The PEM almost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40

Pr
ed

ic
tio

n 
er

ro
r

Event steps

Prediction error

Figure 7: The history of the prediction error as measured

for learning in the original environment.

converges in the second period of learning which starts

at the 28th step.

Fig 8 shows the prediction sequence, its actual out-

come and the associated activation pattern of context
units for each step. The steps proceed upwardly in this
�gure. The number shown to left denotes the event step;

the two adjacent rows show the prediction of the sensory
category, where the upper row represents the �ve cat-

egories of the visual image and the lower row the four
categories of the travel vector. Black squares represent
activated categories and their strength is indicated by

their size. The next two rows to the right indicate the
actual sensory categorical inputs. The upper and the

lower rows represent the visual image and the travel vec-
tor, respectively. The large square to the right shows

the activation pattern of the 25 context units. Fig 8 (a)
shows the sequence obtained during the �rst period of
the learning and Fig 8. (b) corresponds to the second

period of learning. Fig 8. shows that the prediction fails
frequently in the earliest stage, from the 15th to the 21st

step. Prediction is, however, improved during the second
period of learning, as is also seen also in the history of
PEM in Fig 7. We observe a stable periodicity of six

steps in the sequence of Fig 8 (b), but, we do not ob-
serve such a periodicity in the earlier stage of Fig 8 (a).

We examined the dynamical structure of the RNN ob-
tained at the end of the learning process. The RNN was

activated recursively by closing the open loop from the
sensory prediction to the sensory inputs. We are con-
�dent that we have identi�ed an attractor of the limit

cycling with the periodicity six in the phase space of the
RNN.

We will now illustrate how the visual attention dynam-

ics interact with the behavior of the robot. In Fig 9, we
compare two trajectories of robot's travel, one from the
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Figure 8: The sequence of prediction, sensory inputs,
and context activation pattern of the RNN in the �rst
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Figure 9: Comparison of the robot trajectories corre-
sponding to two di�erent learning statuses. (a) from the

�rst period of learning shows a more winding trajectory
than (b) in the second period.

15th to the 20th step in the �rst period of learning and
the other from 35th to 39th step in the second period
of learning; these are shown in Fig 9 (a) and (b) respec-

tively. It is seen that the trajectory winds more in (a)
than in (b) especially in the way objects are approached.

We infer that the maneuvering of the robot became more
unstable because the robot spent a greater time on the
visual recognition of objects in the �rst period of learning

due to the higher value of the PEM. Therefore, the robot
took a higher risk of the mis-detection of events as its

trajectory oscillate. In Fig 9 (a) we note that the robot
mis-detected a corner immediately after its recognition of

object 2 causing it to take for a while until its prediction
to recover. Such a nondeterministic phenomenon in the
detection of events a�ects the RNN's learning. In Fig 8.,

it is frequently seen that the RNN attempts to predict
two categories at the same time. The previous experi-

ence of a nondeterministic phenomenon in the sequence
of experiences caused the generation of such expressions
by the RNN.

When the robot happened to predict the correct se-

quence for some steps, the PEM as well as the time re-
quired for the visual recognition were observed to de-
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Figure 11: The history of the PEM obtained during

learning in the modi�ed environment.

crease. Thereafter a stable regime emerged in which a

quasi-coherence was achieved between the dynamics of
learning, attention, and behavior. However we speculate
that this regime is only marginally stable, as we have

observed that the regime could be disrupted by certain
catastrophic changes even after a long period of stability.

We need to conduct further experiments to investigate
more carefully the stability criteria.

4.2 Re-adaptation to a modi�ed environment

After performing the previous experiment, we modi�ed
the workspace partially and restarted the robot. The

conditions such as the NN weights and the attention pa-
rameters were retained from the previous experiment.

The geometry of the modi�ed workspace is shown in
Fig 10. Fig 11. shows the associated history of the
PEM. We observed that the PEM increased when the

robot traveled towards the modi�ed region, but the PEM
decreased when the robot traveled otherwise in the un-

modi�ed region. This PEM increase decayed as the in-
cremental learning was proceeded. We infer that the

former memories were preserved to some extent, but
their part in contradiction with the modi�ed environ-

ment was gradually altered as a result of the new experi-
ences. However, we need to wait for further experiments
to be performed before we can con�rm that the observed

characteristics are more general.

5 Discussion

We observed dynamical interactions taking place be-
tween learning, attention, and behavior, which might
be one of crucial points needing to be considered when

building cognitive robots. It is important to note that
when a robot observes the world, such observations in-

evitably lead to actions of the robot which change the
original relation between the robot and the world. This
e�ect was well illustrated in our experiments, which

showed that visual attention a�ects the maneuvering tra-
jectory. According to Matsuno, the observer is included

in the internal loop of actions: the observer is an inter-
nal observer [16]. The internal observer never maintains

descriptions as completely static properties, but instead
iteratively generates new descriptions, as the interactions
proceed between the observer and the environment.

Someone may ask if there exist any phisical entities

which correspond to the internal observer in animals or
animats. Fact is that all there exist are only dynamical

structure in which no separable entities of descriptions
and observers are seen.
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