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On the Dynamics of Robot Exploration Learning

Abstract

In this paper, the processes of exploration and of incremental learning in

the robot navigation task are studied using the dynamical systems approach. A

neural network model which performs the forward modeling, planning, consol-

idation learning and novelty rewarding is used for the robot experiments. Our

experiments showed that the robot repeated a few variation of travel patterns in

the beginning of the exploration, and later the robot explored more diversely in

the workspace by combining and mutating the previously experienced patterns.

Our analysis indicates that internal confusion due to immature learning plays the

role of a catalyst in generating diverse action sequences. It is found that these

diverse exploratory travels enable the robot to acquire the adequate modeling of

the environment in the end.

1 Introduction

One of the debates in behavior-based robotics is whether or not agents should possess

mental processes such as internal modeling, planning and reasoning. Most researchers

in behavior-based robotics have rejected the "representation and manipulation" frame-

work since it is widely considered that the representation cannot be grounded and that

the mental manipulation of the representation cannot be situated adequately in the

behavioral context of the robot in the real world environment. This argument seems

to be valid if the agent's mental architecture employs the symbolist framework. One

of the major diÆculties in the symbolist framework is that the logical inference mech-

anism utilized in planning or reasoning assumes completely consistent models of the

world. This presumption cannot be satis�ed if the learning is conducted dynamically

in the real world situations. It is, however, also true that the embodiment of mental

processes is crucial if we attempt to reconstruct an intelligence at the human level in

robots, since even two year-old human infants are said to possess primitive capabilities

of modeling and emulating within their adopted environment.
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We consider that an alternative to the symbolist framework can be found in the

dynamical systems approach (Schoner & Kelso, 1988; Pollack, 1991; Thelen & Smith,

1994; Beer, 1995; Gelder, 1995) in which the attractor self-organized in the phase space

plays an essential role in cognitive behavior of the system. Two distinct processes, an

internal one and another acting in the environment, organize a unseparable dynamical

system when those two are structurally coupled in the phase space. Our previous

study (Tani, 1995; Tani, 1996) in navigation learning demonstrated that a robot using

a recurrent neural net (RNN) is able to learn the topological structure hidden in the

environment, as embedded in its attractor with a fractal structure, from the experiences

of sensory-motor interactions. The forward dynamics (Kawato, Furukawa & Suzuki,

1987; Jordan & Rumelhart, 1992) of the RNN generates a mental image of future

behavior sequences based on the acquired attractor dynamics. The crucial argument

in that study is that the situatedness of the higher cognitive processes are explained

on the basis of the entrainment of the internal neural dynamics by the environmental

dynamics when those two are coupled by the sensory-motor loop.

A drawback of our study was that the learning was conducted in an o�-line manner

i.e. the navigation were conducted only after complete learning of the environment. In

the current paper, we investigate the developmental processes of acting and learning

in the course of the robot's exploration of unknown environment. Our special interest

is to investigate how the cognitive processes of the robot could proceed even while

its experience and learning are partial and incomplete in the environment. Although

there have been number of studies which focus on the problems of exploration learning

in robot navigation (Mataric, 1992; Kuipers & Byun, 1993; Yamauchi & Beer, 1996),

most of these researches focus on the computational aspects rather than the dynam-

ical system's ones. In the current paper, our model based on the dynamical system

approach (Tani, 1995; Tani, 1996) will be further developed by adding the schemes of

the consolidation learning and the novelty rewarding. In our experiments using a real

mobile robot, although it is still limited in its scaling, interactive processes among re-

hearsing, consolidation, on-line planning, acting and rewarding will be closely observed.

Our analysis on the experimental results will show some essential characteristics of the

exploratory learning as articulated using the dynamical systems language.

2 The Model

In this section we introduce a neural net model which enables the system to per-

form exploratory behavior, goal-directed planning and behavior-based learning. The
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neural net architecture employed has been built by combining pre-existing neural net

schemes. In the learning process, both reinforcement learning and prediction learning

are conducted (Werbos, 1990). Using reinforcement learning, the action-policies for

better rewarding are reinforced, through which the most preferred action in the cur-

rent state is selected. In prediction learning, the forward model (Kawato, Furukawa

& Suzuki, 1987; Jordan & Rumelhart, 1992) is adapted to extract the causality be-

tween the action and the sensation. In goal-directed planning, the inverse dynamics

scheme (Werbos, 1990; Jordan & Rumelhart, 1992) is applied to the forward model

in order to generate possible action sequences. In this planning process, the action

preferences adapted using reinforcement learning provides heuristics for searching for

the better rewarded action sequences. In the current formulation, rewards are given

to the system based on the novelty which the system experiences for each exploration

action (Schmidhuber, 1991; Thrun & Moller, 1992). In other words, when the system

cannot predict the next sensation in terms of the current action, the current action

is rewarded. In addition, the prediction learning attempts to learn to predict how

much prediction error it will make (Schmidhuber, 1991; Thrun & Moller, 1992). By

combining this novelty-rewarding scheme with the reinforcement learning and with the

prediction learning schemes, the system tends to explore the workspace regions with

which it is unfamiliar. Through the consolidation learning and rehearsing (Tani, 1998),

certain inconsistency could remain in generating the internal model of the environment

since the novelty rewarding scheme continues to bring new experiences to the system

which might occasionally con
ict with the previous experiences of the system. As the

results, the action selections might not be optimized as always because of the incom-

pleteness in the acquired internal modeling. The main purpose of this modeling is to

investigate the possible interplay between exploration and learning when the system

develops based on this sort of the unstationary dynamics.

Fig 1 shows schematically how multiple cognitive processes interact in our proposed

model. Action sequence is generated by means of the on-line planning with the novelty

rewarding scheme during the exploratory travel. The episode in terms of the sequence

of sensory-action pair is once stored in the short-term memory. After the termination

of one exploratory travel, the episodic sequence stored in the short-term memory is

consolidated into the long-term memory while the memory rehearsal takes place. The

modi�cation of the long-term memory a�ects the way of planning and action generation

in the later exploratory travels.
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Figure 1: Interactions among multiple cognitive processes.

2.1 The neural net architecture

A RNN architecture is employed in our model as shown in Fig 2. The RNN is operated

in a discrete time manner with synchronizing with each event (the events in our navi-

gation task correspond to occasions of encountering a corner, as will be described in a

later section.) At the tth event step, the RNN receives the current sensory input st, the

current reward signal rt, and the current action xt. The RNN then outputs the predic-

tion of the next-event sensory input ŝt+1, the reward signal r̂t+1, and its preference for

the next action x̂t+1 which is expected to obtain the maximum reward in the future.

In the novelty rewarding scheme, the normalized square of the current prediction error

for the sensory inputs is used to evaluate the current novelty reward. It is noted that

the reward is generated internally from the prediction error of the RNN and the RNN

itself is forced to learn to predict it. The RNN has context units ct in the input and

output layers in order to account for the internal memory state (See Ref. (Tani, 1996)

for more details of the role of context activation in navigation learning.)

(A) Learning: The RNN learns to predict the next sensory inputs and the

rewards corresponding to the current sensory inputs and the action selection. By this

means the internal model of the environment is acquired in terms of the forward model.

The preference for the next action is learned by a variant of the pro�t sharing method

(Holland & Reitman, 1978) by which sequences of actions which lead to unpredictable

experiences are reinforced. Both learning processes are executed in the RNN using

the back-propagation through time (BPTT) algorithm after each exploratory travel

is terminated. During each travel, the actual sequence of the sensory inputs, the

novelty reward, and the action outputs are stored in the short-term memory, which are

used for the later consolidation learning processes. For the reinforcement learning, the
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Figure 2: The RNN architecture.

contribution factor of action selection at each step for the future cumulative reward is

computed using the sequence of reward experienced during the travel. The contribution

factor at lth step: cfl is computed as:

cfl =
�X

i=l

�i�l � ri (1)

where � represents the terminal step of the travel and � is the decay coeÆcient of the

reward in time. The sequence of actions are reinforced as proportional to the obtained

contribution factor. In the BPTT learning scheme, the action sequence which has been

taken in the previous travel is used as target outputs of actions. The learning error

of the action outputs at lth step is multiplied by the contribution factor cfl which is

back-propagated through time. This means that actions which have contributed higher

for receiving the novelty reward later are learned with the higher pressure.

(B) Incremental learning by consolidation: It is diÆcult for RNNs to learn

incrementally the sequences given. It is generally observed that the contents of the

current memory are severely damaged if the RNN attempts to learn a new teaching se-

quence. Therefore, the previously described schemes of the forward model learning and

reinforcement learning are combined with the framework of the consolidation learning.

Observations in biology show that some animals and humans may use the hippocam-
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Figure 3: Plan of action sequence is dynamically generated by cascading the RNN for

future event steps. Action at each step is determined utilizing both contributions from

the action preference and the delta error for maximizing the predicted reward.

pus for temporary storage of episodic memories (Squire, Cohen & Nadel, 1984). Some

theories of memory consolidation postulate that the episodic memories stored in the

hippocampus are transferred into some regions of the neocortical systems during sleep.

McClelland, McNaughton and O'Reilly (1994) further assume that the hippocampus

is involved in the reinstatement of the neocortical patterns in long term memory and

that the hippocampus plays a teaching role in training the neocortical systems.

We have applied these hypotheses to our model of RNN learning with consider-

ing that the RNN stores the long term memory (Tani, 1998). In our system, a new

episodic sequence experienced in the current travel is once stored in the \hippocampal"

database. (This is implemented not by a particular neural network modeling but by a

simple programming.) In the consolidation process after each travel, the RNN gener-

ates the imaginary sensory action sequence by rehearsing based on its previous learning.

This rehearsal can be performed by repeating "planning" without actual executions of

the generated action sequences. The forward dynamics of the RNN with the sensory

closed-loop (i.e. the sensory prediction outputs fed-back to the sensory inputs) can

generate the imaginary sequence (as will be described in the next section). Then, the

RNN is re-trained using both the new episodic sequence stored in the \hippocampal"

database and the rehearsed sequences generated from the RNN simultaneously using

the learning scheme previously described. This combination of rehearsal and learning

allows the memory system to be re-organized without su�ering from some catastrophic

interference between the novel experiences and the pre-learned memory.

(C) Planning: The objective of planning is to �nd the action plan x� =

(x0; x1; :::x�) which generates the path to maximize the future cumulative discounted

rewards. Fig 3 shows the scheme of the planning. The RNN is transformed into a
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cascaded feed-forward network consisting of �max steps. The action sequence is dy-

namically computed by using contributions both from the forward model part and

from the action preferences part. Inverse dynamics (Jordan & Rumelhart, 1992) are

applied to the cascaded RNN in order to obtain the update of the action plan 4x�

for maximizing the cumulative discounted reward expected in the future sequence. We

consider the following energy function by taking the negative of the expected cumula-

tive discounted reward from the current time step to the terminal step � :

Em(x�) = �

�X

i=0

�ir̂i+1 (2)

where � is the decay coeÆcient of the future expected reward. � represents the terminal

step where the RNN predicts the situation that the robot goes out of the workspace

boundary. This means that in (2) the expected reward at each step is summed up

as long as the robot is expected to be within the boundary of the workspace. The

exact implementation of this out-of-boundary situation in our robot experiment will

be explained in the later section.

The back-propagation through time (BPTT) algorithm (Rumelhart, Hinton &Williams,

1986) is used to compute the update to the action sequence which minimizes the energy

assumed in the model part. Firstly the forward computation is conducted on the cas-

caded network, in which the lookahead prediction of �max steps for the temporal action

program (x0x1x2 � � � x�max) is obtained. In this lookahead prediction, if the out of the

boundary situation is predicted at step � , the cascade in the forward computation is

terminated at this step. Next, an update of the action at each step is obtained. The

gradient of Em in (2) with respect to each action xn (0 � n � � � 1) is calculated;

this indicates the direction of update for the action. The update is obtained by means

of back-propagating the error between the desired reward and the predicted reward

to action nodes in the cascaded network. Here, the error between the desired reward

and the predicted reward is obtained as 1:0 � r̂ for each step. This back-propagation

proceeds through the cascaded network from step � to step 0.

In addition to the contribution from the model part, the action preference in
uences

the planning dynamics in that the di�erence between the preferred action and the

planned action at each step is minimized. The update to the action at each future step

is obtained by taking the sum of both parts of the contributions and adding a Gaussian

noise �. The update to the action plan is therefore

4xi = � � [
�ÆEm(x�)

Æxi
+ kr � (x̂i � xi) + kn � �] (3)
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Here, the �rst term represents the contribution from the forward model prediction of

the reward. The second term represents the contribution from the action preferences.

The Gaussian noise term is employed in the third term to prevent the plan dynamics

being captured in a local minimum. The value of kn is changed in linear proportion

to the value of Em. Therefore the plan search dynamics become stabilized when

the energy is minimized; otherwise, it continues to be activated. Here, the reader is

reminded that the contributions to the update from the forward model and from the

action preferences do not always agree with each other in the course of the exploration

processes since the overall system dynamics are characterized by highly nonlinear and

non equilibrium dynamics.

Our emphasis in the presented scheme is that the planning process proceeds totally

in an autonomous and dynamic manner while the system interacts with the environ-

ment. The plan updated by (3) is continuously computed in a real time manner while

the robot explores the workspace. A once generated action plan, which is settled in an

energy minimum, could be dynamically re-organized when the prediction in the plan

does not agree with the real sensation. In this manner, the planning processes can be

re-situated autonomously in the behavioral interaction with the environment.

3 Experiment

3.1 Task setting

A mobile robot as shown in Fig 4 is used for the experiment. The robot is equipped

with an infrared type range sensor belt on its body. As a default behavior, the robot

continues to travel the workspace by wall-following. When the robot encounters a

corner, it determines whether it will continue to follow the current wall on its left

side or instead to leave the current wall after turning the corner and to move forward

diagonally at 45 degrees to the right until it encounters another wall. In this setting,

the action can be represented by one bit of information which represents whether or not

to branch at the branching points (corners). The RNN architecture receives the travel

vector as its sensory inputs at each branch point. The travel vector represents what

distance and from which direction the robot has traveled since the previous branch.

These values are measured by taking the sum and the di�erence between the left and

right wheel's rotation angles.

Fig 5 shows the adopted workspace for the experiment. The robot starts its explo-

ration travel from a �xed home position and the exploration is terminated when the
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Figure 4: The robot employed in the experiment.

Figure 5: The adopted workspace. Dotted lines show the prede�ned boundary of the

workspace.

10



travel takes it outside a prede�ned boundary. (The home position and the boundary

prede�ned in our experiment is shown in Fig 5.) At the moment of termination, the

RNN receives the termination signal in its sensory input and the robot is brought back

to the home position manually. (In the planning process, if the RNN predicts the

sensation of the terminal signal at a certain lookahead step � , the plan is inhibited to

go forward beyond the step.) Following this, the consolidation process takes place in

which the RNN repeated rehearsing of 10 imaginary travels. After the consolidation,

exploration by the robot is resumed.

3.2 Results

The robot repeated the exploration travels 20 times in the experiment. This experiment

was conducted three times under the same conditions. Fig 6 represents how the average

prediction error changes as the exploration travel is repeated in the three experimental

cases. Although, there are certain oscillations in the time course of the prediction error,

the error after the 16th travel seems to be minimized in all three cases. It can be said

that the prediction error converges after enough repetitions of the travel. (There could

be certain sudden rises of the error even after the convergence, as is observed in the

15th travel in the experiment-2. It is considered that such rises of the error after the

convergence are due to noise accompanied with the real world experiments in most

cases.)

In the following, we examine how the diverse travel sequences are generated in the

course of exploration. Fig 7 shows all 20 trajectories of the robot's travel observed in

one experimental case (experiment-1). In the initial period of the exploration, the robot

tends to repeat the same branching sequences. As is evident in Fig 7, the same trajec-

tory is repeated for the �rst two travel sequences. For the third sequence, branching

changes and a di�erent trajectory is generated. This trajectory is repeated in the next

two travel sequences. The trajectory in the sixth travel sequence seems to be generated

by combining the two travel sequences previously experienced. We summarize that the

novelty rewarding scheme causes the observed repetitions and variations in the travel.

When the robot undergoes a previously unexperienced travel sequence, the branching

sequence experienced is reinforced strongly because of its unpredictability. When the

same trajectory is repeatedly generated through reinforcement, the sequence becomes

predictable and is rewarded less. As a result, the probability of modifying the current

travel is increased.

It is interesting to observe the rehearsing during the consolidation learning since
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Figure 6: The time history of the average prediction error through the sequence of

repeated exploratory travels. It is shown for the three experiment cases with the same

condition.
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Figure 7: The trajectories of the robot exploration travel for one experimental case.
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the contents of the rehearsing activities represent what the robot has learned so far.

Fig 8 shows how the diversity of the rehearsed plans at each consolidation learning

process change as the exploration proceeds. The upper graph in the �gure represents

the corresponding predicted rewards of the plans generated; the lower graph shows

ID of all rehearsed plans generated during each consolidation learning period. (The

ID is assigned for each plan generated by encoding the bit pattern of the branching

sequence, a maximum of 10 time steps in length, into numbers from 0 to 512.) It

is observed that the diversity of plans is increased and that the predicted reward

is decreased as the exploration trial is continued. We observed that the rehearsed

plans are generated not just by repeating the sequences previously experienced but by

combining previously experienced sequences into new ones. This way of increasing the

diversity in the memory rehearsing quite agrees with that of the travel trajectories as

shown previously.

An interesting question is how novel action sequences are generated in the planning

process. What we found is that novel branching sequences are originated not merely

by the noise term in the planning dynamics but also by the internal confusion caused

by the incremental learning. This point is illustrated by considering an example seen

in the 10th travel sequence in the experiment-1. In this travel sequence, the robot,

starting from the home position, continued to follow the wall after passing corner1,

then it branched to another wall after passing corner2 (See Fig 9.) This branching

at corner2 is a novel experience for the robot. We investigated how this branching

decision was generated by examining the recorded planning process. Fig 10 shows

the actual planning processes which took place immediately before the branching was

made at corner2. In Fig 10 (a) each column consisting of white and black squares

represents a branching sequence plan at each time step of the planning process, where

the black and white squares denote branching and non-branching, respectively. Fig 10

(b) indicates the predicted reward for the plan generated. At the beginning of the

planning process, a plan of not branching twice is generated with a low predicted

reward. This plan will repeat the 5th travel sequence if actually realized. At the end

of the planning process, plans are generated such that branching actions are planned

to occur repeatedly after passing corner2 with an expectation of a higher reward, even

though such action sequences have never been experienced. It is noted that this type of

plan was not observed when the robot approached the same corner in its earlier travels.

Further examination showed that the lookahead prediction of the sensory sequences

after branching at corner2 and at corner1 are mostly the same. This can be interpreted

as meaning that the robot hypothesized that branching at any corner would lead to
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better chances for encountering novel experiences because it applied the situation after

branching at corner1 to consider the situation at corner2. (Indeed, the travel will

continue as long as branching is selected at approaching corners without terminating

the travel by going out of the workspace boundary.) We conclude that the novel action

of branching at corner2 results from the expectation of a higher reward which is falsely

anticipated by means of fake memory generated in the course of consolidating immature

experience. This phenomenon of the novel action trial being generated by fake memory

and the internal confusion was seen frequently in the middle of the learning process.

Finally, we investigated how the internal modeling develops by examining the evo-

lution of the RNN attractor. The phase plots were drawn by iteratively activating the

RNN in the closed-loop mode with inputs comprising 4000 steps of arbitrary branching

action sequences generated under the constraints that the robot does not go beyond the

boundary of the workspace. In order to project the context units activation into the

two dimensional space, c1 and c2 values are taken for average activation over one half of

the context neurons and that over the other half of the context neurons, respectively.

Fig 11 shows the attractor which appeared in the phase plots generated at di�erent

stages in experiment-1. In Fig 11, cluster structures consisting of multiple segments

are clearly seen in the later periods of the exploration travel. Our examination clari-

�ed that this set of cluster segments represents the global attractor. Further analysis

indicated that in the phase plots in Fig 11 (c) and Fig 11 (d) there are correspondences

between the segments and the branching position in the workspace and also that the

graph structures are topologically equivalent between that of the state transition in

the phase space and that of branching of the robot trajectories in the environment.

The trajectory of the state transitions in the RNN forward dynamics is closed in the

phase space while the toplogical trajectory of the robot navigation is closed in the real

environment, as we have shown previousely (Tani, 1996). In this condition, it is said

that the \dynamical closure" is generated in the RNN dynamics (Tani, 1996). Here,

the dynamical closure emerges as the global attractor by which the forward dynamics

of the RNN can generate stable and sound sensory predictions for the possible action

sequences even in non-Markovian environment.

However, such structures were barely seen in the phase plots in Fig 11 (a) and

Fig 11 (b). While the learning process is "immature", the shape of the attractor varies

substantially after each learning and neural dynamics exhibits diverse trajectories in

the phase space and the robot behaves as if it were confused. In the meanwhile,

the attractor develops step by step as the diverse exploration repeated and �nally the

dynamical closure is organized in the internal neural dynamics. This phenomena can be
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Figure 11: The RNN attractor appeared at a certain stage of the learning process in

experiment-1. The learning stage is given at the base of each plot.
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partially explained by the prior works by Pollack (1991) and Taiji & Ikegami (1999) in

RNN learning of �nite state machines (FSM). They have shown that the target (FSM)

is adequately embedded in RNNs when its attractor appears to be in a segments-like

low dimensional shape while the complexity in the sequence generation of the RNN

tends to be much higher than that of the target FSM when the attractor to be in a

cloud-like shape as shown in Fig 11 (b).

4 Conclusion

In the experiments, it was shown that the robot learned incrementally about its

workspace through exploration and that the robot was eventually successful in ob-

taining a sound model of the workspace. However, the emphasis in our study is on the

observation of dynamic processes before the sound model is achieved. In the beginning,

a few travel sequences are repeated and later some combinations of them are made,

which were observed both in the memory rehearsing processes and in the actual robot

travels. In the middle period, novel actions are frequently tried with a false expecta-

tion of the future consequences. The confusion due to the immaturity turns out to

be bene�cial since it acts as a catalyst for generating the diverse behavior required to

explore the environment. The repeated learning of such diverse behaviors enables the

robot to acquire the sound model later.

Our study has shown a novel view of re-interpreting the "representation and manip-

ulation" framework. The conventional idea was that a complete internal model exists

and then a consistent mental operation using the model is guaranteed. In our idea,

the internal model never exists in terms of static entity, but it appears as a dynamical

entity in the mental processes of memory rehearsing and planning. It is also fair to

say that most of the dynamical systems approaches for cognition tends to focus on the

system's direction moving towards states of coherence and convergence. The current

study as well as the previous study (Tani, 1998) have indicated that the direction to-

wards states of incoherence and diversity is equally essential. Our crucial argument is

that the ultimate autonomy of cognitive systems would take place in such 
uctuated

processes as the results of highly nonlinear and non-equilibrium interactions between

the mental processes and the physical processes of acting.

Finally, the scalability of the current scheme is discussed. It is fair to say that our

experiments were conducted under a simple setting of the environment. Our prelimi-

nary experiments with changing the complexity of the workspace showed that the ex-

ploratory incremental learning hardly converged when the number of branching points
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exceeds 7. The attractor shape continued to change and the averaged prediction error

cannot be minimized even after substantial number of exploratory travels were re-

peated. However, in such situations, the robot can travel with good prediction as long

as the robot keeps track of familiar trajectories. It is assumed that the predictability

could be maintained while combinations of familiar trajectories are repeated, for exam-

ple, by cutting o� the novelty seeking behavior even the complexity of the environment

is increased. Further detailed studies are expected for seeking (1) the possible relations

between the degradation in the rationality of behavior and the complexity of the en-

vironment, (2) the cognitive mechanism which enables the limited rational behavior

utilizing incomplete modeling of the environment.
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