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Abstract

This paper describes how agents can learn an internal model of the world structurally by focusing on the problem of behavior-based
articulation. We develop an on-line learning scheme—the so-called mixture of recurrent neural net (RNN) experts—in which a set of RNN
modules become self-organized as experts on multiple levels, in order to account for the different categories of sensory-motor flow which the
robot experiences. Autonomous switching of activated modules in the lower level actually represents the articulation of the sensory-motor
flow. In the meantime, a set of RNNs in the higher level competes to learn the sequences of module switching in the lower level, by which
articulation at a further, more abstract level can be achieved. The proposed scheme was examined through simulation experiments involving
the navigation learning problem. Our dynamical system analysis clarified the mechanism of the articulation. The possible correspondence
between the articulation mechanism and the attention switching mechanism in thalamo-cortical loops is also discussed.q 1999 Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

How can sensory-motor systems attain an internal repre-
sentation of the world in structurally organized ways? The
consensus in cognitive science and artificial intelligence is
that a complex world can be represented efficiently utilizing
modular and hierarchical structures of symbol systems
(Newell, 1980). However, it is still not understood how
such modular and hierarchical representations, if employed,
become self-organized in analog neural systems by means
of their iterative sensory-motor interactions.

The difficulty lies in the question of “how the continuous
sensory-motor flow can be perceived as being articulated
into sequences of meaningful representative modules?”
Kuniyoshi, Inaba and Inoue (1994) addressed this articula-
tion problem in the robot learning context. In his experiment
with an assembling robot, the robot recognizes the various
task performances by decomposing them into sequences of
modular representations. Subsequently, the robot is able
to learn various tasks in terms of combinations of the
reusable modular representations obtained. For attaining
such a modular representation, the task performance was

temporally segmented by means of detecting “meaningful
changes” in the observed sensory flow. The problem,
however, is that the definitions of these “meaningful
changes” were predetermined by designers. Our investiga-
tion focuses on how a robot can define “meaningful
changes” by itself and perceive a continuous task perfor-
mance as segmented into reusable modules.

Robot navigation learning, which has a quite long
research history, faces the same type of problem. There
are basically two types of approach. One is the neural
network learning approach. Krose and Eecen (1994),
Zimmer (1996) and Nehmzov (1996) showed that for rela-
tively simple workspaces, localization problems for robots
can be solved using the topology preserving map scheme
(Kohonen, 1982). It is, however, difficult to scale-up this
scheme as the very plain representation by a single neural
network hardly organizes the modular and hierarchical
structure of the learned contents. The other approach is
the machine learning approach, used in landmark-based
navigation (Kuipers, 1987; Mataric, 1992). In this approach,
the travel of the robot is temporally segmented by means of
landmarks such as turning at corners, encountering junc-
tions, or going straight along corridors. This temporal
segmentation enables the abstraction of robot experiences
into a simple chain representation of these landmark types.
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The scheme can be scaled-up much more readily than the
neural network learning approach as the landmarks play the
roles of the representative modules. However, the problem
is that the landmark types, which are defined by designers,
are not necessarily intrinsic to the perceptions of a robot.
The representative modules such as corners, junctions, or
corridors, if necessary to the problem’s solution, ought to be
generated from the robot’s experiences.

In this paper, we attempt to explain the problems of
articulation and structural formation of modules, and hier-
archy from the dynamical systems perspective (Beer, 1995;
Pollack, 1991; Schoner, Dose & Engels, 1995; Smith &
Thelen, 1994; van Gelder, 1999) by focusing on the struc-
tural coupling between the internal neural and environmen-
tal dynamics. We propose a novel neural architecture,
inspired by a modular and hierarchical learning method
using neural nets, namely the mixture of experts proposed
by Jacobs, Jordan, Nowlan and Hinton (1991). The
proposed scheme is examined by conducting simulation
experiments of robot navigation learning, where the
mechanism of articulation is clarified qualitatively using
dynamical systems concepts such as self-organization,
coherence and phase transitions. We will discuss briefly
the possible correspondence between the mechanism of
articulation and the mechanism of attention switching
which was proposed to take place in thalamo-cortical loops.

2. Prediction learning using sensory-motor flow

The paper introduces robot navigation learning as a proto-
type problem: our simulation experiments will illustrate
how a set of representational primitives or “concepts”
emerge and how they enable the construction of “concepts”
in the higher level in a dynamic fashion. Our hierarchical
learning approach is developed in combination with the
prediction learning scheme, which is described below.

Learning to predict the next sensation implies that the
system must acquire some analogical model of the observed
target. Elman (1990) was the first to show that a recurrent
neural network (RNN) can learn to predict word sequences
by extracting the regularity hidden in example sentences.
Tani (1996) applied RNN prediction learning to the naviga-
tion learning problem. In this scheme, a robot learns to
predict how its future sensory sequences will depend on
the action sequences taken in a given workspace. It was
shown that a real mobile robot, with a range sensor, learned
the structure of the workspace hidden in the sensory-motor
flow. The structure of the environment was represented as
the attractor dynamics of the RNN in the course of predic-
tion learning. It was further shown that the internal model
obtained as the RNN attractor dynamics was utilized to
generate mental plans for goal-directed behavior. However,
a crucial criticism of this scheme is that the prediction of
sensory input is made in a temporary, discrete manner by
means of the predefined branching mechanism. Branching

plays the role of landmarks and invokes the temporal
segmentation of the sensory-motor flow. Our new experi-
ment is an attempt to eliminate these types of predefined
mechanisms of temporal segmentation in the hope that the
robot itself will find them.

One possible way to implement temporal segmentation of
the sensory-motor flow is to focus on the magnitude of its
change in time (Billard, 1996; Nolfi & Tani, 1999). For
example, while a robot travels by following a straight wall
using the range image, the image will be almost invariant.
However, the sensory-motor state will change dramatically
when the robot encounters a corner, and starts turning left or
right. This rapid change can be used as a signal for segmen-
tation between the two behaviors of following straight wall
and turning at a corner. However, the difficulty in this
scheme is that the cornering behavior can be segmented
several times as the sensory-motor state probably changes
rapidly all through the cornering process. It is clear that the
change of the sensory-motor state at a single moment
provides only partial information about the on-going beha-
vioral process. A specific mechanism is required whereby a
meaningful time interval of the behavioral process, such as
the cornering behavior, can be recognized as a unique event
through extracting its specific spatio-temporal structure
from the sensory-motor flow.

3. New scheme

Our new proposal in this paper is to use multiple-module
RNNs, each of which competes to become an expert at
predicting the sensory-motor flow for a specific behavior.
The experts achieve their status through learning processes.
For example, one module RNN would win in predicting the
sensory-motor flow; while the other would win by traveling
around a corner and following a straight wall. The switching
between the winning RNN modules actually corresponds to
the temporal segmentation of the sensory-motor flow. The
essential point in this scenario is that the segmentations take
place by means of pronounced changes in the observed
dynamical structure in the sensory-motor flow, rather than
just temporal differences in the sensory-motor state. These
highly pronounced changes correspond to switching
between the dynamical functions, each of which is
embedded in an RNN on having learned the specific
sensory-motor flow. One might ask how each RNN choose
to learn its corresponding sensory-motor flow? The speci-
ality of each module is determined during the processes of
on-line learning. The competition between the modules
during the simultaneous processes of recognition and learn-
ing, results in generating their specialties. The next section
will introduce a new architecture called the mixture of
RNN experts, which was extended from the original idea
of the mixture of experts first expounded by Jacobs et al.
(1991).
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3.1. Architecture

Fig. 1 shows the proposed architecture for the mixture of
RNN experts (MRE), which is used for the prediction learn-
ing of the sensory-motor flow.

Fig. 1(a) shows a hierarchical architecture consisting of
two levels; more levels are possible in general.

Each RNN module in the lower level receives the
sensory-motor inputs,Xt: (st;mt), and outputs the prediction
of the sensory-motor inputs at a timeDt later in the form
Xt11: (st11;mt11), as shown in Fig. 1(b). The total output of

the network is obtained from the weighted-average of each
output with its associated value of gate opening at timegi

t

for all modules. The gate opening is computed dynamically
with time using the prediction errors of each module, which
are obtained from the difference between the prediction
(st11;mt11) and the outcome�sp

t11;m
p
t11�: The gate opens

more if its module produces a relatively lower prediction
error than the other modules. The module with the lowest
error over a suitable time interval becomes the winner. The
original work on the mixture of experts (Jacobs et al., 1991)
used a gating network which selected the module with the
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Fig. 1. The complete architecture of the mixture of RNN experts for prediction learning: (a) Hierarchical learning architecture, (b) details of eachRNN module
for learning the sensory-motor flow in the lower level, and (c) RNN module for learning the gate opening dynamics in the higher level.



closest correspondence to the target outputs. In our archi-
tecture, without using a gating network the module is acti-
vated autonomously as the result of dynamical competition
between all modules over some time interval, utilizing on-
line monitoring of the prediction errors. The winning
module changes from one module to another as the profile
of the sensory-motor flow changes with time.

The higher level network learns the gate opening
dynamics of the lower level network. More specifically,
each RNN module in the higher level samples the gate open-
ing state of the lower level in the current time step,GT:
(g1

T;g
2
T…gn

T� and makes a prediction for the next time
step,GT11, as shown in Fig. 1(c).T denotes the time step
in the higher level; the higher level sampling intervalDT is
much larger than that in the lower level. The modules in the
higher level compete for gate openingg0Ti; in the same way
as shown for the lower level, and the resultant gate opening
can be sent to yet higher levels in a recursive manner. The
higher level network observes the lower level activities by
means of perceiving its gate opening dynamics while the
lower level network perceives the sensory-motor flow. In
this manner, the signal is “bottom-up” as abstracted from
one level to the next.

3.2. Algorithm

This subsection describes the mathematical formulae for
the proposed scheme of the MRE. Suppose a single level
network consists ofn RNN modules, wherexi

t; y
i
t11; y

p
t11 and

gi
t are the inputs, the outputs, the target outputs for teaching

and the gate opening of theith module RNN, respectively.xt

andyt11 correspond to the sensory-motor state or the gate
opening state depending on the levels of the network.

The “soft-max” activation function is used to represent
the ith gate openinggi

t given by

gi
t � esi

tXn
j�1

esj
t

; �1�

wheresi
t is the current internal value of theith gate opening.

The total output of the network isyt11, given by

yt11 �
Xn
i�1

gi
t·y

i
t11: �2�

We define the following likelihood functionL, which is
maximized for prediction learning: it was obtained by modi-
fying the original definition of Jacobs et al. (1991).

ln L � ln
Xn
i�1

gi
t·e
�21=2s2�iyp

t112yi
t11i2

; �3�

wheres denotes a scaling parameter.
Both the weight of each RNN and the gate opening are

updated simultaneously such that the likelihood function is
maximized. This point is essential for the online learning
scheme. In order to obtain the latest rules for these two

processes, we consider the partial derivative of the loga-
rithm of the likelihood function with respect to the internal
value,si , and with respect to the output of theith RNN, yi

given by

2ln L
2si

t
� g�iuxt; y

p
t11�2 gi

t; �4�

2ln L
2yi

t
� g�iuxt; y

p
t11� �y

p
t11 2 yi

t11�
s2 ; �5�

whereg�iuxt; y
p
t11� is the a posteriori probability that theith

module RNN generated the target vectoryp
t11; in terms ofxt.

Explicitly, this is given by

g�iuxt; y
p
t11� � gi

t·e
�21=2s2�iyp

t112yi
t11i2

Xn
j�1

gj
t·e
�21=2s2�iyp

t112yj
t11i2

; �6�

whereiyp
t11 2 yj

t11i2 represents the square of the error of the
current prediction. Eq. (4) denotes the direction of update
for the internal gate opening valuesi

t: The differentiation of
ln L with respect toyi

t11 involves the error term,yp
t11 2 yi

t11,
weighted by the a posteriori probability associated with the
ith module RNN as shown in Eq. (5). Thus, the connective
weights of the RNN are adjusted to correct the error between
the output of theith RNN and the global target vector, but
only in proportion to the a posteriori probabilities. Hence,
the individual RNN, which acts as the expert for the ongoing
input sequence, tends to learn exclusively. The error distrib-
uted to each module RNN is

errorit11 � g�iuxt; y
p
t11�·�yp

t11 2 yi
t11�: �7�

The details of the derivation of Eqs. (4)–(7) are given in
Jacobs et al. (1991).

On obtaining the mathematical formulae, the actual
update of the gate opening and the connective weights for
each RNN are computed through the use of the back-propa-
gation through time (BPTT) algorithm (Rumelhart, Hinton
& Williams, 1986). In this computation, the sequence of the
sensory-motor inputs as well as the gate internal states for
the previousl steps are stored temporally in the window
memory. When new sensory-motor inputs are received,
the window memory is shifted one step forward. The
forward and backward computation by means of the
BPTT are iterated forNl times, and finally the sequence
of l steps of the gate internal states as well as the connective
weights for each RNN module are updated. The update for
si
k; which is theith gate internal state in thekth step in the

window memory, is obtained as

Dsi
k � eg·

2ln L
2si

k

2 hg·�si
k 2 si

k21�: �8�

The first term on the right-hand side of the equation
represents the direction of the update obtained in Eq. (4);
the second term represents the damping term, which
suppresses abrupt changes in the gate opening;eg andhg
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are parameters. This update is computed in the forward
direction in the window memory fromk � 1 to k � l. The
error obtained from Eq. (7) is back-propagated (Rumelhart
et al., 1986) through the window memory for each RNN; the
update of the connective weights is obtained by means of
the steepest descent method utilizing parameters for the
learning rate,e and, for the momentum,a .

4. Simulation experiments

4.1. The environment

The scheme proposed above was investigated in the
context of the navigation learning problem by simulation.
We assumed a mobile robot with a sensor belt on its forward
side holding 20 laser range sensors. The robot, upon
perceiving the range image of its surrounding environment,
maneuvers in a collision-free manner using a variant of the
potential method (Khatib, 1986). (For further details of this
maneuvering scheme, see Tani, 1996.)

For our simulations, we adopted two different rooms,
namely Room A and Room B connected by a door, as
shown in Fig. 2(a).

Fig. 2(b) shows an example of the sensory-motor flow,
which corresponds to the robot travel indicated by the dotted
line in Fig. 2(a). In this workspace, the robot travels around
one room three times, then enters the other room going
through the newly opened door and travels around the
other room three times. The on-line learning experiment
was conducted while the robot moved between rooms for

a total of five room encounters. The entire travel of the robot
in this simulation took about 2100Dt steps. The lower level
network, which consists of five RNN modules each of which
has six inputs, six outputs, four hidden units and two context
units, learns to predict the sensory-motor state in the next
step. (It is noted that only six out of 20 range sensor values
are used for the RNN learning for the purpose of reduction
of the computation time.) The higher level network, which
consists of five RNN modules each of which has five inputs,
five outputs, four hidden units and two context units, learn to
predict the gate opening state in the lower level network in
the next step. Other parameter settings for the networks are
e � 0:002,a � 0:9, eg � 0:007,hg � 0:02. These settings
are the same for both levels. The sampling interval in the
higher level is 10 times longer than that in the lower level
�DT � 10Dt�: We observed how modules become self-orga-
nized in a hierarchical manner by looking at the gate open-
ing dynamics taking place during the prediction learning of
the two levels.

4.2. Results

We recorded the gate opening dynamics, both in the
lower and higher levels during the entire learning process.
First, let us consider the gate opening processes in the lower
level network. Fig. 3 shows the time development of each
gate opening state and of the motor input in the lower level
for three different periods.

Fig. 4 illustrates when and which module wins in the
lower level network along the course travelled for each of
the three different periods. Fig. 3(a) shows the profiles for
the period from step 130 to step 300, while the robot
travelled in Room A for the first time. It can be seen that
gate 4 and gate 3 open in turn as the profile of the motor
command changes. In Fig. 4(a), it is seen that the opening of
gate 4 corresponds to following a straight wall, while the
opening of gate 3 corresponds to both a left turn at a corner
and to passing a T-junction. Fig. 3(b) shows the profiles for
the period from step 380 to step 550, when the robot experi-
enced Room B for the first time. One can see that gate 4,
gate 2 and gate 3 open in turn. Fig. 4(b) shows that these
opening events correspond to following a straight wall,
making a right turn at a corner and making a left turn at a
corner, respectively. Fig. 3(c) shows the profiles for the
period from step 820 to step 990, when the robot travelled
around Room A for the second time. A remarkable finding is
that the gate opening dynamics for this period differs from
those observed during the first encounter with Room A.
From Fig. 4(c), one can see that the opening of gate 3,
which corresponds to both making a left turn at a corner
and passing a T-junction in the previous encounter, now
corresponds only to making a left turn at a corner, and
that the opening of gate 1 now corresponds to passing a T-
junction. After this period, the learning processes in the
network appeared to have stabilized and no further dramatic
changes in the correspondence of the gate openings were
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door. (b) The time development of the simulated range image while the
robot traveled.



found. By the end of the simulation, four types of mean-
ingful concepts were generated using four RNN modules
out of the five modules available to the lower level network.
An important observation is that the process of generating
concepts is totally dynamic in the sense that the correspon-
dence between the RNN modules and their associated beha-
vior is not static during the on-line learning process.

Next, we describe the gate opening dynamics in the
higher level network. Fig. 5 shows the opening of the five
gates for the whole period of on-line learning. (The step
number in this graph denotes the sensory-motor step number
in the lower level, for clarity.)

One can see that the stable switching of the gate opening
between gate 4 and gate 1 takes place after 800 steps. This
switching actually corresponds to the movement between
rooms during the travel, where the open state of gate 4
and gate 1 correspond to travel in Room A and Room B,
respectively. We observe that gate 0 opened only in the
beginning, while the robot traveled in Room A for the
first time. The dynamic replacement of module 0 by
module 4 for the representation of Room A evidently took
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Fig. 3. Time development of the opening of five gates and of a motor input
in the lower level network for three different periods. The number near the
data denotes the current winning gate.

Fig. 4. The trajectory along which the robot travelled is indicated by dotted
lines, the number in parentheses indicates which module wins and the
number without parentheses denotes the step number when the module
switching took place.

Fig. 5. Gate opening dynamics in the higher level network during the whole
process of learning.



place because the module representation in the lower level
network also changed, as noted above. It is readily under-
stood that the dynamics in higher level network can be
stabilized only after stabilization occurs in the lower level
network.

From the results obtained in the simulation experiments,
it can be concluded that the proposed MRE architecture was
successful in learning about the environment in an hierarch-
ical manner through the sensory-motor interaction of robot.
The lower level network learned to predict the row profile of
the sensory-motor flow by organizing the modular represen-
tation of specific behavior. The higher level network did the
same for the sequence of segmented behavior by creating
the higher concept of a room. Therefore, it can be said that
the robot not only perceives the current sensory-motor flow,
but it also recognizes the background context of its behavior
and situation.

We repeated this learning experiment five times with
different initial conditions including the starting position
of the robot in either Room A or Room B, with different
random initial connective weights of the networks. By look-
ing at the structures self-organized in the higher level
network in these five experiments, equivalent module

structures similar to those in the previous results, represent-
ing Room A and Room B, were found in four cases out of
five. Following this, we observed the lower level structures
for these four cases and found that equivalent module struc-
tures to the previous result appeared in three cases, while the
structures were different in one case. In the case where we
did not observe clear module structure corresponding to two
separate rooms in the higher level, it was observed that the
lower level structures continued to change gradually which
prevented the higher level structures from stabilizing. The
stability in the higher level depends substantially on that in
the lower level. These results reveal that the self-organiza-
tion processes do not always arrive at one optimal solution.
They can generate unstable and non-optimal structures by
chance. Further studies are required for detailed understand-
ing of “stability and diversity” problems in the hierarchical
learning scheme.

5. Analysis and discussion

5.1. On the dynamic mechanism for articulation

We have seen that building blocks for representing speci-
fic sensory-motor structures are self-organized in the lower
level; the building blocks in the higher level are constructed
by combining those in the lower level. The results may be
interpreted as being the emergence of internal “symbols”.
However, the definition of our “symbols” is quite different
to that used in traditional cognitive science studies (Newell,
1980; Newell & Simon, 1976). The “symbols” in our
scheme are articulated not by the external designer’s
views but by the view intrinsic to the robot through its
own experiences. In fact, the articulation emerges through
the interactions between the system and its environment.
For the purpose of putting forward this argument, we will
now attempt to explain the qualitative mechanism of articu-
lation from the dynamical systems perspective.

In order to understand how the switching of modules
takes place dynamically corresponding to room entering,
we examined the time series of prediction outputs by each
RNN module in the higher level network. Fig. 6 shows the
time series of prediction outputs and the corresponding error
for each RNN module in the higher level network recorded
from step 1400 to step 2000 during which period the robot
moved from Room B to Room A.

In Fig. 6(a), the upper five rows represent the sequence of
prediction outputs by the five RNN modules. The five
squares aligned vertically in each of the five-column row
represents the values predicted for the five inputs (the
sampling of the five gate openings in the lower level
network) by their size. The largest square area corresponds
to the value of 1.0 and zero area corresponds to a value of
0.0. The bottom row represents the sequence of five inputs.
The robot moved from Room B to Room A at around step
1770 (denoted by a hatched line in the figure). Fig. 6(b)
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Fig. 6. (a) Shows the sequence of inputs (shown in the bottom row) and the
corresponding prediction outputs by each RNN module (shown in the upper
five rows) in the higher level network. (b) Indicates the time dependence of
the prediction error by each RNN module.



shows the time series of the prediction error for each
module. By looking at Fig. 6(b), we find that the prediction
error by RNN 1 is continuously minimized relative to the
other RNNs until step 1770. During this period, it is seen,
from Fig. 6(a) that the output sequence by RNN 1 is coher-
ent with the input sequence to a certain extent. RNN 0,
RNN 2 and RNN 3 are not activated at all, while RNN 4
is activated but is incoherent with the input sequence. On the
contrary, the output sequence by RNN 4 becomes coherent
with the input sequence after step 1770 by minimizing its
error, while the output sequence of RNN 1 loses coherence
with the input. This switching of the winning RNN modules
takes place rather quickly within several iteration steps of
the RNNs. We speculate that the robot recognizes its
surrounding in a particular room by means of achieving
temporal coherence between the dynamics of a particular
RNN module and the environment dynamics.

In order to investigate the essential dynamical structure of
the organization of coherence and incoherence, appearing in
the coupling between the internal and the environmental
dynamical systems, we compare the phase trajectory of
each RNN module for its intrinsic dynamics and its coupled
dynamics with Room A and Room B. Such a comparison is
shown in Fig. 7.

The five plots in the upper row of this figure show the
phase trajectory for the intrinsic dynamics of each RNN.
Each RNN can be iterated autonomously without the input
sequences by installing feedback loops from the prediction
outputs to the inputs. (This autonomous iteration of each
RNN corresponds to mental rehearsing of the learned
temporal patterns.) We plotted the activation trajectory for
two context units in X and Y during the autonomous itera-
tion using fixed connection weights for each RNN which
had been obtained in step 2000 in the previous experiment.
It is observed that the trajectories of RNN 0, RNN 2 and

RNN 3 converge to a fixed point and those of RNN 1 and
RNN 4 do not converge to a point but generate invariant
closures in the phase space. Further analysis showed that the
dynamical structure of RNN 0, RNN 2 and RNN 3 is char-
acterized by a fixed point attractor, while the dynamical
structure of RNN 1 and RNN 4 is characterized by a
quasi-periodic attractor. The five plots in the middle row
and the bottom row show the phase trajectories of the
coupled RNN dynamics with Room A and Room B envir-
onments, respectively. The phase trajectories are plotted for
the context units’ activation states, in response to receiving
the input sequences while the robot travelled around the two
rooms. In these plots, it is seen that RNN 0, RNN 2 and
RNN 3 each generated the same fixed point attractor from
their intrinsic dynamics regardless of whether the RNN was
coupled with Room A or with Room B. The plots for RNN 1
and RNN 4 are different. RNN 1 exhibits a phase trajectory
similar to its intrinsic one, when coupled with Room B.
RNN 4 does likewise when coupled with Room A. This
observation coincides with the previous observation that
the prediction sequence by RNN 1 and RNN 4 became
coherent with the input sequence while traveling around
Room B and Room A, respectively.

In our previous work (Tani, 1996), we studied how a
mobile robot learns to predict the sensory sequence during
the navigation learning. It was shown that the RNN is able to
learn the structure hidden in the environment as embedded
in attractor dynamics by means of sensory-motor interac-
tions. Our analysis (Tani, 1996) showed that the prediction
process is successful when coherence is achieved between
the internal RNN dynamics and the environmental
dynamics. Even when the coherence is perturbed by noise,
the coherence can be re-established by means of the entrain-
ment (Beer, 1995; Endo & Mori, 1978) of the internal RNN
dynamics by the environmental dynamics (Tani, 1996). The

J. Tani, S. Nolfi / Neural Networks 12 (1999) 1131–11411138

Fig. 7. The phase trajectory for each RNN module in the higher level is shown for its intrinsic dynamics and for its coupled dynamics with Room A and Room
B, in the upper row, middle row and bottom row, respectively.



same mechanism can explain the autonomous switching of
modules in the current study: one module is activated in a
manner inhibitory to the others by achieving coherence
between its intrinsic dynamics and with a specific dynamical
structure hidden in the input flow. When the essential dyna-
mical structure in the input flow changes, the currently acti-
vated module loses coherence with the flow, while another
module is activated through gaining coherence with the
flow. This winning module switching takes place rather
quickly as a phase transition of the dynamical state from
one stable attractor to another. By means of switching of
coherence among the repertoire of the intrinsic dynamics,
this phase transition actually results in the articulation,
which the system perceives internally for the structural
changes in the sensory-motor flow (Fig. 8).

5.2. Recursive chains from state to function

Another important aspect, which should be discussed, is
the relationship between state and function in the hierarch-
ical learning. The direct observation of the sensory-motor
state provides only non-robust information about its present
process as the state can evolve in many ways. What should
be focused on is rather the spatio-temporal structure hidden
in the time development of the state, as such structures could
be similar in many cases even when the state changes quan-
titatively. The RNN, which is basically an adaptive type of
dynamical function, is used for capturing such similar struc-
ture from the observed time development of the state. This
time development of the state is, eventually, represented by
one of the RNN functions. The higher level observes that the
RNN function is currently activated in the lower level in
terms of its gate opening state. This gate opening state can
vary as a result of structural change in the lower level. The
resultant time development of the gate opening state is again
captured by the RNN functions in the higher level. Here, we
see that the aim of the hierarchical learning is to organize
such recursive chains from the state to the function,

and from the function to the state, through the level of
abstraction.

5.3. Articulation and attentional switch

The observed module switching mechanism might be
related to the proposed attentional switch mechanism in
the thalamo-cortical loop which was explained in terms of
the search-light metaphor (Crick, 1984). In Crick’s model,
windows of an attentionare created by means of a gating
mechanism in the nucleus reticularis (NR). The cortical feed
back to the NR gates thalamic transmission of subcortical
data; hence, the process allows the cortex to attend to part of
these data selectively. Taylor and Alavi (1993), Baars
(1997) and Newman (1997) proposed that gating by the
NR induces a global winner-take-all competition among
thalamo-cortical loops as a result of which only one of the
many competing sensory streams reaches consciousness. In
a macroscopic sense, our explanation of the dynamical
mechanism of articulation agrees with the above scenario
whereby the gates in MRE correspond to the NR and the
RNN experts correspond to the cortical parts. Therefore, it is
hypothesized that the attentional switch among the set of
thalamo-cortical loops with their accompanying NR gates
play the essential role in articulating the bottom-up streams
in the multiple levels and therefore in creating symbols and
concepts. We suggest that “a consciousness” arises at the
very moment of the articulation which is accompanied by
dynamical switching among thalamo-cortical loops.

5.4. Related works

The current study was inspired by other adaptive agent
research based on the dynamical systems approach by, e.g.
Beer (1995), Yamauchi and Beer (1994) and Smithers
(1996). However, it is noted that the dynamical systems
approach, which emphasizes coherence and structural
coupling (Varela, Thompson & Rosch, 1991) of the internal
system with its environmental dynamical systems,
explained only the low level behavior mechanisms—for
instance, walking by a legged agent (Beer, 1995), or simple
visually guided behavior (Beer, 1996). In the current
research, we attempted to apply the dynamical systems
approach to the question of higher-order cognition by intro-
ducing mental processes of anticipation in the agents.
Indeed, it was found that anticipation plays an essential
role for the cognitive mechanism of articulation. As illu-
strated in the preceding sections, the articulation of the
input flow is triggered when the prediction of the next future
event fails, causing temporal incoherence in the structural
coupling. It is plausible that the higher-order cognition is
achieved by utilizing not only the coherence, but also the
incoherence appearing in the interaction between the inter-
nal and environmental dynamics (Tani, 1998).

During the initial reviewing process of this paper, the
authors were informed of other related studies. These
studies are discussed below. Pawelzik, Kohlmorgen and
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Fig. 8. Dynamic mechanisms of articulation. The input flow is articulated
when coherence with the flow is switched among the repertoire of the
intrinsic dynamics contained in multiple modules.



Muller (1996) applied their scheme of annealed competition
of experts to segmentation of time series from complex
system. The basic idea in this scheme was quite similar to
ours; segmentation of the time series is achieved by means
of the dynamical competition among experts without
employing the central gating network. A single layered
network, which consists of a set of Radial Basis function
for each module was trained in an off-line manner using an
annealing technique. The learning process seems to be much
more stabilized compared to our cases because of the rela-
tive easiness in training of Radial Basis function in the off-
line manner. Their study, however, did not address the
issues of the hierarchical organization of modules. Several
other authors extended the mixture of expert systems for the
purpose of modeling temporal processes (Bengio & Fran-
sconi, 1995; Cacciatore & Nowlan, 1994; Meila & Jordan,
1998). Wolpert and Kawato (1998) also proposed such
extensions where multiple pairs of inverse and forward
models in a single layer organization are utilized for the
purpose of controlling motor outputs and predicting sensory
inputs. They suggested from the anatomical observation that
the motor control functions in the cerebellum could be
modeled by the proposed multiple pairs of inverse and
forward models.

Schmidhuber (1992) proposed a self-organizing multi-
level hierarchy of RNNs which learns to decompose
sequences recursively. In Schmidhuber’s architecture,
sequences are segmented by detecting the prediction error
of an RNN at each level. If the error is larger than a thresh-
old value at a certain time step, the sequence is segmented at
that step and a key symbol is sent to the higher level which
composes another sequence in the succeeding segmentation
in the lower level. The main difference between our scheme
and Schmidhuber’s is that in ours, sequences are segmented
by means of the dynamical competition between experts
without using any predefined threshold values. We specu-
late that this dynamical competition mechanism is much
more natural and even robust compared to Schmidhuber’s
scheme. Recently, Hochreiter and Schmidhuber (1997)
proposed a method called “Long Short-Term Memory”
(LSTM). LSTM learns to bridge minimal time lags in
long time steps by enforcing constant error flow through
“constant error carrousels” within special units. Multiple
gate units learn to open and close access to the constant
error flow: this mechanism seems to be analogous to the
gate opening mechanism of the mixture of experts given
in this paper. LSTM does not address directly the issue of
multiple levels of articulation, the focus of the current
paper. Ring (1994) proposed a hierarchical learning
scheme in which sequential tasks are learned by
combining already known tasks into new ones by means
of reinforcement learning. As the hierarchy in Ring’s
system is built on the discrete representation of sensation
and action as system primitives, his scheme cannot be
applied directly to the problem of articulating continuous
sensory-motor flow.

6. Conclusion

In this paper, we proposed a novel scheme of hierarchical
learning for sensory-motor systems using the mixture of
RNN experts. The scheme was examined through simula-
tion experiments concerning on-line navigation learning.
The results indicate that the robot learns to articulate a
continuous sensory-motor flow dynamically, while the
modular and hierarchical structures are self-organized
internally in a recursive manner across multiple levels.
We explained the observed mechanism of articulation quali-
tatively by using the dynamical systems language, and
discussed its correspondence with the attentional switch
mechanism.

The proposed approach can be developed in many ways
in the future. The example considered in this paper was
limited to the prediction learning of the sensory-motor
flow. One future development could be the inclusion of
motor or action-learning mechanisms. The scheme should
be extended to cover both prediction- and behavior-learning
to ensure that “concepts” can also be self-organized for the
purpose of action generation. Then, goal-directed planning
can be carried out by utilizing the acquired internal repre-
sentation embedded in the intrinsic dynamics of the RNNs,
as described by Tani (1996). One limitation of the present
study is that all the interactive processes were undertaken
using only the bottom-up pathway in the architecture. A
more general model is one in which top-down processes
interact with bottom-up processes such that a module can
be activated by means of bi-directional interactive dynamics
between the top-down prediction from the higher level
network and the bottom-up signals from the lower level
network. In future research, we will study how goal-directed
behavior can be generated as an extension of the proposed
scheme by considering the shortcoming mentioned above.
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