
Learning both end-point and cyclic movements by RNNPB

1 Learning both end-point and cyclic movements

In the following experiment using an arm robot, we demonstrate that the robot can

learn two different types of movement patterns, fixed end-point movements and cyclic

movements, simultaneously in the RNNPB. End-point movement means that the robot

reaches a target position and stops there. In cyclic movements, the robot repeats a

periodic pattern. The focus of this experiment is to examine how the mapping from

the PB vectors to movement patterns is generated for embedding different types of

attractor dynamics.

1.1 Task setting

The robot used in the experiments has 4 degrees of freedom in its arm rotational joints.

A hand attached to the arm can sweep over the task table horizontally as shown in

Figure 1. The hand has a color mark and its position in X-Y coordinates on the table

can be recognized by the vision camera mounted on the robot by using a color filtering

scheme. A handle is attached to the hand so that a trainer can teach behavior to the

arm manually.

The RNNPB deals with 4 DOF motor outputs and 2 DOF sensory inputs in terms

of the visually perceived hand position. It has 20 hidden units and 8 context units.

It also has 4 parametric bias units in the input layer. The robot was simultaneously

trained for 3 different end-point movement patterns and 2 different cyclic movement

patterns through manual guidance of the arm trajectories. Those 5 trajectories are

shown in Figure 2. The BPTT learning for all the training sequences was iterated

20,000 times starting from randomly set initial synaptic weights.
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Figure 1: The arm robot with a vision system.

2



Figure 2: 4 DOF trajectories of 3 different end-point movements in (a), (b) and (c)

and those of 2 different cyclic movements used in training.
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Figure 3: The results of generating two oscillatory movements followed by one end-point

movement. The change over time of the motor outputs and the parametric biases are

shown in the top and bottom rows, respectively. Time steps are shown in the abscissa.

1.2 Experiments and analysis

We tested the robot’s ability to successfully regenerate each trained movement pattern

by setting the corresponding PB vector. In this behavior regeneration test, the PB

vectors are sequentially switched from those obtained for one cyclic movement pattern

to those for another cyclic movement pattern, and then to those for an end-point move-

ment. This sequential switching of the PB is done manually in the current experiment.

Figure 3 shows motor pattern generation in the open-loop mode over time and the

corresponding PB vectors in the top and bottom rows, respectively. Observe that the

trained behavior patterns appear one by one, corresponding to the switching of the PB

vectors. The results, indicate that different types of dynamic patterns, corresponding

to end-point and cyclic movements, can be learned simultaneously in a single RNN by

changing the PB vectors.

In addition to the regeneration experiments for learned movement patterns, we

examined how the movement patterns are modulated when the PB vectors are changed

from the ones determined in the learning phase. Figure 4 shows successive modulations

of movement patterns as one value of the PB vector is varied from 0.0 to 1.0. Observe

that the movement patterns can be modulated significantly even with small changes

of the parametric bias, although they are less sensitive to change in different ranges of

parametric bias.

In order to clarify the mapping structure between the PB vectors and the resultant

movement patterns, phase analyses of the PB vectors were conducted. Figure 5 shows
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Figure 4: 6 motor activity patterns are plotted with a PB value incrementally increased

from top to bottom. Ordinate: Motor Output; Abscissa: Time Step.
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Figure 5: The phase plots for (a) the amplitude and (b) the period for one of the motor

outputs using 2 values of the parametric biases.

how amplitude and period of one motor output in the generated movement patterns

were modulated upon changing two values of the PB vector (the other two values were

fixed). In Figure 5 (a), the degree of tile whiteness is directly proportional to the am-

plitudes of the movement patterns. The black tiles denote the regions of the end-point

movement. The degree of tile whiteness is directly proportional to the period in Fig-

ure 5 (b). Again, the black tiles denote the regions of the end-point movement. When

aperiodic movement patterns are generated, their amplitudes are measured by the dif-

ference between the maximum and minimum values in the sampling period. Their

periods are regarded as infinite. These two plots show that the PB space is partitioned

into regions of fixed-point dynamics, corresponding to end-point movements, and re-

gions of limit cycling dynamics with various periods and amplitudes, corresponding to

cycling movement patterns. An important observation is that the characteristic land-

scape is quite rugged in the region of the cyclic movement patterns. However, further

analysis showed that the characteristics in the region of the end-point movement pat-

terns are different. Figure 6 shows the variations of the end-point positions reached in

the region of the fixed point dynamics in the 2 dimensional PB space. The end-point

positions, in terms of the 1st and the 2nd joint angles of the arm, are represented by

graded tile colors. It is observed that the end-point position angles fluctuate rather

smoothly in the PB space. This observation suggests that the mapping between the

parametric bias and the generated behaviors is quite nonlinear, in that the mappings

in some regions fluctuate greatly while others are relatively smooth.
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Figure 6: The phase plots for the end-point position in 2 dimensional PB space repre-

sented in terms of the first joint angle (a) and the second joint angle (b).
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