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The present study examines the possible roles of cortical chaos in generating novel ac-
tions for achieving specified goals. The proposed neural network model consists of a
sensory-forward model responsible for parietal lobe functions, a chaotic network model
for premotor functions and prefrontal cortex model responsible for manipulating the
initial state of the chaotic network. Experiments using humanoid robot were performed
with the model and showed that the action plans for satisfying specific novel goals can be
generated by diversely modulating and combining prior-learned behavioral patterns at
critical dynamical states. Although this criticality resulted in fragile goal achievements in
the physical environment of the robot, the reinforcement of the successful trials was able
to provide a substantial gain with respect to the robustness. The discussion leads to the
hypothesis that the consolidation of numerous sensory-motor experiences into the mem-
ory, meditating diverse imagery in the memory by cortical chaos, and repeated enaction
and reinforcement of newly generated effective trials are indispensable for realizing an
open-ended development of cognitive behaviors.
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1. Introduction

Why some cognitive acts entail explicit consciousness but many others undergo un-
consciously? For example, we can grasp a coffee mug without paying much attention
to the action, while consciously talking with others. Some neuroscience researchers
have considered that consciousness is deeply involved with prefrontal lobe activity.
It is well known that prefrontal lesion patients often have problems in generating
new plans to achieve novel given goals even though although they seemingly have
no problems in generating everyday’s skilled actions such as reaching for a mug and

23 The former case involves the conscious and deliberate manipula-

grasping it!
tion of mental images in planning the novel goal-directed actions which presumably
require prefrontal activity. On the other hand, the latter case seems to proceed au-
tomatically with having less activities in the prefrontal lobe. How can we model the
underlying mechanisms accounting for these phenomena? The conventional cogni-
tive science scheme might not be appropriate here since its explicit computational
scheme is too formal to describe implicit tacit knowledge for the generation of un-
conscious skilled behaviors as well as pragmatic aspects in creating novelty in ideas
and actions in human and animals.

The current paper attempts to look at this problem by using an alternative
scheme involving a dynamical system approach®%%7 combined with robotics syn-
thetic experiments. In particular, we focus on the possible roles of cortical chaos in
generating “creative” behaviors as has been inspired by the pioneering studies of
Walter Freeman who discovered chaos in memory dynamics in the olfactory bulb
in animals®. Our group has conducted neuro-robotics researches®® since most cog-
nitive phenomena might be better understood by considering the coupling between
the internal neuronal dynamics and that one of the body and environment.'?. We
have shown that certain compositional structures can be self-organized in the inter-
nal neuro-dynamic memories as regularities hidden in the sensory-motor interactive
experience are consolidated®!!. The current paper will attempt to extend this line
of thought to the problem of how novel action imagery!'? can be “created” from the
memory dynamics of consolidated.

Firstly, we provide a review of our ideas'! regarding how multiple goal-directed
actions can be learned as skilled ones through repeated practice and then generated
by reviewing our neuro-robotics studies on the tasks of object manipulation using
vision. We have considered that the trajectories of different goal-directed behaviors
can be generated depending on the initial states given to a particular neural dy-
namical system by means of the initial sensitivity characteristics of the nonlinear
systems!3.

The neuro-scientific interpretation of this hypothesis is that the ventral premotor
(PMv), which is regarded as a dynamical system, is set with its initial state corre-
sponding to the currently specified goal state. Then, the PMv dynamics generates
a corresponding abstract action plan in terms of temporal sequences of motor acts
imagery. The generated image of sequences of motor acts are fed into the inferior
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parietal lobe (IPL) after which the IPL generates a look-ahead prediction of the
corresponding visuo-proprioceptive (VP) flow by means of the so-called ”sensory-
forward model” 113, This scenario can be rephrased as follows: PMv generates
an abstract scenario for achieving a given goal while IPL anticipates the detailed
sensation based on the scenario. It should be noted that our assumption of the
anticipation function for IPL might be unusual to some readers since the main role
of IPL has been regarded as an integrator of different modalities of sensory input'?.
However, there has been some evidence!%:16:17:18
in detaile in the next section. Our assumption for the role of PMv accords with the

main arguments proposed by the Rizzolatti group'® that the mirror neurons encode

supporting our ideas as described

the underlying goals of movements rather than exact movement profiles.

Goal Specified

Prediction of Visuo-proprioceptive flow

Fig. 1. The top-down pathway to predict visuo-proprioceptive flow in the proposed three-leveled
architecture

Our model architecture consists of three-level dynamical systems as shown in
Figurel. First, the prefrontal lobe initiates the PMv forward dynamics by setting its
initial state after which the PMv generates an abstract action scenario as a slowly
changing temporal pattern. Then, by receiving these patterns as input from the
PMyv, the IPL anticipates the exact VP profile by utilizing its forward dynamics of
having faster time-constant.

In our robotics setting, with a given action program in terms of slowly changing
patterns, the sensory-forward model generates a forward prediction of the next VP
sensory state from the current one, where the visual state represents the visual
image of the currently attended object, and the proprioceptive state represents
the posture of the arm. Therefore, for a given goal, such as grasping a mug, the
sensory-forward model can generate a predicted image of how the arm postures as
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well as visual image of a mug changes in the course of grasping the object. Then, the
predicted arm movement image can be enacted by inversely computing the necessary
motor torque in the cerebellum and the motor cortex. Here, the entire process of
generating a motor behavior from a given goal can be carried out automatically
without any deliberation in the sense that certain temporal patterns are developed
spontaneously in combined neural network dynamics from a given initial state.

Next, we consider how brains can generate novel combinations of action pro-
grams for achieving novel goals. One possibility is to utilize stochastic noise to
combine parts of learned trajectories into novel ones. The current paper, however,
investigates an alternative possibility, in which deterministic chaos plays an essen-
tial role in generating novel combinations. If a forward model is learned by a set of
target sequences utilizing the initial sensitivity, the mapping of initial states to gen-
erated temporal patterns would be simple, as has been shown in Ref.!3. However,
if the forward model is learned as being associated with certain networks whose
dynamics is characterized by chaos, the mapping can become complex by means
of the strong initial sensitivity of the chaos. In such situations, the forward model
can generate diverse imagery of novel sequences by combining and modulating the
prior-learned temporal patterns depending on the initial state. Then, it might be
possible to search for the initial state, which leads to the generation of novel ac-
tion programs satisfying newly given goals. This search process of the initial state
by chaos might correspond to the deliberation of action planning which has been
assumed to take place in the prefrontal cortex. In particular, if the search process en-
counters difficulties with respect to finding the best match for the goals, this would
entail consciousness. It is intuitive that truly novel or “creative” ideas are likely to
appear with certain criticality in our everyday lives. Also, we often experience that
many of such novel ideas could be ineffective in reality. Therefore, we know that
tentatively generated novel plans or images have to be examined by enacting them
in the reality. This might be the same even for our simple experimental robots who
seek novel action plans.

The present paper describes neuro-robotics synthetic experiments for embodying
the above-mentioned ideas. A small humanoid robot is trained for a set of different
goal-directed actions by tutors. First, after consolidating the trained experiences
to the internal memory, we examine how trained actions can be regenerated auto-
matically. Then, we examine our main focus of how the robot can generate diverse
imagery of possible plans to satisfy given novel goals by utilizing prior-acquired
memory and how they can be enacted in the reality. The next section begins with
a description of the proposed model.

2. Model

This section introduces the proposed model with accounts for its biological plausi-
bility, the neural network mathematics and the implementation details of humanoid
robot.
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Figure2 shows the overall schematics of how each part of the brain functions and

interacts with other parts in the proposed model.
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(b) Searching for a novel goal-directed action plan

Fig. 2. Correspondences of the model to the brain anatomy where the execution of skilled goal-
directed actions in (a) and searching for action plans for novel goal states in (b)
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2.1.1. Generation of well-trained actions

Firstly, let’s look at the case of generating well-trained goal-directed actions, as
shown in Figure2 (a). When a goal to be achieved is specified from well-trained
ones, its corresponding initial state is set to PMv by remembering it. Both of the
PMv and IPL are implemented by a continuous time recurrent neural network
(CTRNN) model?>?!. The CTRNN dynamics in the PMv is designed to be chaotic
with pre-wired synaptic connectivity. The synaptic weights inside the chaotic net-
work are designed such that the maximum Lyapunov exponent becomes positive,
which will be detailed later. On the other hand, the synaptic connectivity in the
IPL is determined through the learning processes.

By having connectivity between these two networks, the IPL learns the details
of the VP patterns by predicting the VP state at the next step (Vit1, Pi41) from
the previous one (V;, P;), while the PMv tends to combine and modulate those
patterns memorized by IPL through interacting with it. The central assumption in
the current model is that brains might utilize cortical chaos in enhancing diversity of
the behavioral patterns generated by utilizing its initial sensitivity characteristics.
The initial state in terms of the neural activation states in the chaotic neural network
is manipulated in order to generate different goal-directed actions.

The training of IPL is conducted in a supervised manner by utilizing the VP
sequences acquired as input to the IPL through the tutor guidance of the robot.
The error signal is back-propagated among IPL to PMv by which the synaptic
weights in the IPL network are tuned. It is important to note that the learning
proceeds with accompanying the pre-wired chaotic dynamics such that different
initial states of the chaotic network initiate trajectories of different trained goal-
directed actions. In our proposed learning scheme these initial states as well as the
synaptic weights in IPL are self-determined in the course of training with a set of
goal-directed action trajectories. The time constant of the chaos dynamics in PMv
is set relatively to be larger than the one in IPL such that two levels of functions
dealing with abstract plan scenarios and primitive behavioral pattern details can
emerge. In the recent study of our group Yamashita and Tani?? showed that such
functional decomposition can emerge in the neural network model of multiple time
scales RNN (MTRNN).

2.1.2. Generation of novel actions

Next, we describe the case of generating novel goal-directed actions. As we discussed
in the previous sections, some goal-directed behaviors which have not yet been expe-
rienced can be generated by combining partially learned motor acts. This might be
conducted by searching of the initial state and examining the imaginary generation
of VP trajectories. Let’s see the ideas by looking at Figure2 (b). Firstly, the goal
specified externally is stored in the working memory assumed in the dorsolateral
prefrontal cortex (DLPFC). Then the distal goal image which is generated by the
forward dynamics with a particular initial state is matched with the specified goal
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image in the working memory. This is performed in the so-called closed-loop mode
without the actual execution of motor acts in which the consequences of one’s own

d%923 | The forward dynamics is conducted without

actions are mentally simulate
the actual sensory input but with the sensory imaginary loop utilizing its own pre-
diction as shown by the dotted lines in Figure2 (b). If matching the specified goal
image and the generated one fails, another initial state is examined. This search
continues until perfect match is achieved.

If perfect match is obtained with a certain initial state, the actual movement is
initiated by setting this initial state to PMv in the same way as described in Figure2
(a). It is also possible to perform on-line planning of a given goal-directed actions
after actual movements are initiated. In this case the current activation states of the
same neural units utilized for the initial state setting is manipulated for searching
for the best match with the goal in an on-line manner. This sort of on-line planning
becomes important when the environmental situations tend to change dynamically.

2.2. Mathematical Modeling

In the following sections, we describe the mathematical details of MTRNN with
chaotic dynamics network model. The MTRNN model used in this study is shown
in Figure3. We used a small humanoid robot which interacts with the environment
with utilizing vision. The neural network model receives the proprioceptive state
representing the posture of the robotic arm in terms of the joint angles, and visual
state representing the direction of the camera and the image obtained with the
camera. At first, these sensory inputs are pre-processed using topology preserving
maps (TPM), which transform a vector of continuous values into neural popula-
tion coding. This type of representation is considered to correspond to the neural
representation in primary sensory cortices, such as V1 and S1.

After this transformation, input signals encoded by population coding are sent
to the MTRNN. The role of the MTRNN is to predict the VP state at the next time
step on the basis of the current one. This prediction is made possible by the capabil-
ity of the MTRNN to preserve the internal state associated with complex dynamics.
The actual robot arm movement just follows this prediction of the proprioceptive
state.

In our current model, the MTRNN consists of three parts, namely input-output
network, context unit network and chaos network. Both the input-output network
and the context unit network correspond to the IPL. In addition, the chaos network
corresponds to the PMv, which plays an important role in generating goal directed
actions, as describes in previous section.

Since chaos has strong initial sensitivity characteristics, diversity of temporal
sequences can be generated by setting different initial state values for the chaos
network. On the other hand, if exactly the same initiail state is given to the chaos
network, it always generates the corresponding temporal sequences. The training
of multiple goal-directed actions is conducted utilizing this initial sensitivity and
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Fig. 3. Neural network model interfacing with a robot

deterministic characteristics. It is worth mentioning that the chaos neural network
is easily perturbed by the external noise in the environment when generating actions
using physical robot in our current study.

The teaching VP sequence is obtained through the manual guidance of the robot
arms for each target goal-directed action. Each VP sequence sampled through the
guidance is utilized for adapting the connective weights in the TPMs, the input-
output network and the context unit network. In addition to adjusting the connec-
tive weights, the optimal initial state value in the chaos network is determined for
reconstructing each VP sequence. After the successful training of the networks, the
goal-directed actions can be regenerated by setting the specific initial state values.

2.2.1. Implementation in a humanoid robot

The robot has a head, which is equipped with a stereo camera, and two arms, each of
which has 4 rotational joints. Our neural model receives the following sensory-input
from the robot, namely the proprioception P; (an 8-dimensional vector representing
the angles of the arm joints), the direction of the camera on the head V¢ (a 2-
dimensional vector representing the rotational angle of the neck joints), and the
visual perception V¥ (16x12 dimensional vector representing the retinal image).
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Each pixel component of this visual perception vector can take one of four possible
values (0, 0.375, 0.625, 0.875) depending on the color (others, green, blue, red) of the
corresponding retinal cell, respectively. The direction of the camera is controlled by
a PID controller which is programmed to track a red-colored object to be centered
in the retina image. Receiving the current VP state (P;, V4, V,?), the neural network
generates the next step prediction of them as Ppy1, V;4 |, V;% . Then, the robot arm
is moved toward Py as target joint angles with a PID controller.

The sensory-inputs of the proprioception, the direction of the eyes and the vi-
sual perception are initially processed by the corresponding TPMs. The TPM has
characteristic that the topological properties of the input space is transformed into
the sparsely activated population map?%2°. Therefore this sparse encoding trans-
formation reduces the overlap of the VP trajectories. The size of the TPMs is 144
(12 x 12) for proprioception, 36 (6 x 6) for the direction of the camera head and
100 (10 x 10) for the visual perception. The mathematical details are described in
the paper written by Yamashita and Tani??.

2.2.2. Forward generation of MTRNN

We designed our neural network model using the multiple time constant recur-
rent neural network (MTRNN) model??. The MTRNN is a type of the CTRNN
model?%21 in which neurons have multiple time constants. This difference with
respect to time constant plays an important role in self-organizing the functional
hierarchy structure. Essentially, the MTRNN takes input as different modalities of
sensation and mingles those inputs together to generate predictions of their time
development in the future. This model has the ability to segment VP sequences into
reusable primitives and self-organize a functional hierarchy of them while learning
complex VP sequences. When generating an action, these reusable motor primitives
are flexibly integrated into various patterns of complex VP sequences. The effect of
having multiple time constants among neurons is roughly summarized as follows:
neurons with fast time constant remember each primitive and neurons with slow
time constant switch between these primitives.

The MTRNN has three groups of neural units in our current model, namely
input-output units (280), context units (80) and chaos network units(20). The num-
ber inside each parenthesis indicates the number of units for each network. Among
the input units, the first 144 units (i = 1 — 144) correspond to proprioceptive input
P, the next 36 units (i = 145 — 180) correspond to the direction of the camera (V)
and the rest (i = 181 — 280) correspond to visual perception (V¢). In the follow-
ing section, r denotes this 280-dimensional vector transformed by TPMs using the
actual state of the robot.

Synaptic weights within the chaos network are pre-defined and fixed. These
neurons in the chaos network receive input signals from context neurons. The neural
units in the chaos network and the context units are mutually connected with
randomly determined fixed synaptic values. The context units are connected with
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the input units of which synaptic weights are determined through learning. The
activation of these neurons is calculated using the following equations.

du;
Ti dgt = —Uj ¢ + ZU}ZJQEJJ‘ (21)
J

where u;; is the potential of each i-th neural unit at time step ¢ and x;; is defined
as follows

Tt ifieO
wje=9 " . (2.2)
Yit—1 otherwise

At the i-th neural unit, the signal from the j-th presynaptic neural unit has a weight
of w;. In Eq.2.2, y; ; represents a neuronal activation of the i-th neural unit at time
step t, and Tis the time constant of the neural unit. This time constant affects the
response rate of the neuronal activation. If the parameter 7 is small, the potential
of the neural unit can change rapidly. Otherwise, the change is slow. The time con-
stants are set to 2.0 and 3.0 for input-output units and context units, respectively.
The neural activation for i-th neuron, y; +, is calculated using the following equation

op(uid) ifje

Z exp(u;¢) (2.3)

Yit = jez
fluie) otherwise
f) = s (24
VT e '

where Z is P or V® of V?. The update rule of the internal activation state, Us ¢,
for each integration time step is given by discretizing Eq.2.1 where the time step
interval At is taken as 1.

1 1
U g1 = (1- ;i)ui,t + EZ Wi Tj ¢ (2.5)
J

The neuronal activation of context neurons is calculated by using the conventional
sigmoidal function. Alternatively the input-output neurons are calculated using soft-
max activation, which allows the MTRNN to maintain consistency with the TPM
output. The output vector of the MTRNN is sent to the TPM and subsequently
transformed into the predictions of proprioception P;yq, the direction of the eyes
Vil | and the visual perception V;%, using Eq.??. After this, the robot initiates
movement using these predicted values.

2.2.3. Learning of synaptic weights

In our current study, the TPMs are trained in advance of the MTRNN training using
conventional unsupervised learning algorithm. The goal of training the MTRNN is
to find the optimal values of the connective weights which minimize the value of E,
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which is defined as the learning error. We define the learning error using Kullback-
Leibler divergence as a following equation,

E=30 3 vidoa(C) (2.6

t €O

where y;, is the desired activation value of the output neuron at time t, and y;
is the activation value of the output neuron with current connective weight. As
a training method, we use the general Back Propagation Through Time (BPTT)
algorithm?%. Using the BPTT algorithm, the network can reach their optimal levels
for all given teaching sequences by updating the connective weights in the opposite
direction of the gradient F/Jw. In the actual learning process, the update rule of
a connective weight from the i-th neuron to the j-th neuron at the n-th learning
iteration step is as follows,

oF
“ow
where « is the constant parameter, which adjusts the learning rate. The gradient
OE /0w is given by following equations.

Wij (’I’L + 1) = W4 (’I’L) — (27)

OF 1 OF
w Z Emyj,t—l (2.8)
Buie | D p— [l — )+ wnf ()] i O 29)
Ug,t+1 T; Tk

where f/() is the derivative of the sigmoidal function and d;;is Kronecker’s delta
(0;x = 1 if ¢ = k, otherwise d;, = 0).

Through the iterative calculation of the BPTT, the values of the connective
weights reach to their optimal values in the sense that the error between the teach-
ing sequences and the output sequences is minimized. Throughout the learning
iteration, the learning rate « is fixed at 0.0008. The initial values of the connective
weights were set with random values ranging from -0.1 to 0.1

In the BPTT calculation, the predicted value of Py, V,4, V;¥ can serve as imag-
inary sensory feedback for the next time step ¢ + 1 instead of the actual feedback
from the robot movement. We call this imaginary sensory feedback as mental sim-
ulation, as described in the previous section. During the training iterations, this
mental simulation is also mixed with actual sensory feedback in order to accelerate
the convergence. Specifically, we use the following equation.

Pi,t+1 = 0.9P¢1t+1 + O.lP;t+1 (210)
‘A/i[,ltJrl = 0-9V$+1 + 0-1Vi§+1 (2.11)

Vil,)tﬂ = 0.9Vl + 0'1‘/;1,};,—1 (2.12)
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where Py, Viflt 11, Vft 41 represents the virtual sensory feedback for the next
timestep, P; 141, V;‘ftH, V%1 represents the predicted value and P, | ;, Vi‘f*H, V;f’;_l
represents the actual sensory feedback, respectively.

For both learning and generation, the initial states of the context units, except
for two units in the chaos network, are set to their neutral values, i.e., the potential
of those units are set to 0. On the other hand, the initial activation states of the
two chaos units are self-organized during the learning iteration. The details of this
method are described in the next section.

2.2.4. Chaos Network

As mentioned previously, our neural model has pre-defined connective weights in
the chaotic network. These connective weights are defined in the way dynamic
activities of these neurons should be chaotic, meaning that the maximum Lyapunov
exponent becomes positive. One way to implement a chaotic neural network is based
on Ruelle-Takens-Newhouse scenario that is to connect multiple neural oscillators
having different time constants. As shown in Figure4, the neural oscillators, which

Fig. 4. Chaotic oscillator

consisted of two neurons, are connected through neurons which have even index
numbers. In the oscillator, each two neurons which have the same time constant
are connected with connective weights of 5.64 and -9.6, as shown in Figure4. The
neuronal activation of these neurons is calculated using the following equation.

it = f(uie +01) (2.13)

dUi’t
di = — U4t + Ej:wijxj (214)
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where f() is the sigmoidal function defined in Eq.2.4 and z; is neuronal activation
including input-output and context neurons. The bias values 6; are set as follows

6, — 0 if 7 is even (2.15)
—6 if 7 is odd

In our current model, there are 20 neurons in the chaotic neural network, and
the initial activational states of 18 neurons are set as neutral for both training and
generation. The initial activational state for the other two neurons is self-organized
during the learning iteration. The learning rule for these two initial values is based
on the gradient descent method. In the learning phase, the squared error, defined
as following equation, is evaluated for each target behavior.

E _Zzyzt_yzt (216)

t €O

¥ is the desired activation value of the output neurons represented by pop-

where yk
ulation coding, and yﬁt is the activation value of the output neurons with current
connective weights. In order to calculate the local gradient information, small per-
turbation is added to the initial activation value of two neurons in chaos network.
Then, the initial activation value of the two neurons is slightly shifted in the direc-

tion of the negative gradient at that point.

2.2.5. Planning by the initial state search

In our current study, the goal state is specified by the corresponding visual state
(Vg”wl, Vg‘f)al). The neural network generates multiple imaginary VP sequences by
closed-loop operation with sweeping the 2-dimensional initial state space. Among
these multiple VP sequences, the Euclidean distances between the distal visual
state of the imaginary VP sequence (V.. Vddisml) and the specified visual state
(Vyoars ngoal) are calculated. Here, the distal state is defined as a state at a particular
time step where the Euclidean distance takes a minimum value within the predefined
step length. The distance is calculated using vectors represented as a population

coding and the best match is taken by finding the closest VP sequences.

3. Experiment
3.1. Task design

The experiment was carried out by using a small-scale humanoid robot named
HOAPS3. The robot was fixed to a chair, and a workbench base was set up in front
of the robot. A movable rectangular solid object which is painted half blue and half
red was placed on the base immediately in front of the robot. Also, a low height
pedestal was fixed to the base behind the object. The robot was required to learn
a set of goal-directed actions of manipulating the object. A human tutor prepared
teaching target VP sequences used for training of the neural network model. In these
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goal-directed behaviors, the robot started to move from the same starting posture
while the object was placed as either standing or lying on the base in immediately
in front of the robot.

(a) Move the
standingobject

Starting posture with to the right
the objectstanding on
the base
(b) Move the
standingobject
onto the
pedestal
(c) Knock overthe

standing object
to lie

Starting posture with

the objectlying on the (d) Move the lying
objectto the
right

(e) Move the lying
objectonto the
pedestal

Fig. 5. Five types of goal-directed actions

The robot was tutored for five operational actions, which are shown in Figure5:
(a) move the standing object to the left, (b) hold up the standing object and put
it onto the pedestal, (c) knock over the standing object to lie, (d) move the lying
object to the right, (e) hold up the lying object and put it onto the pedestal. The
object was placed in the center in front of the robot in actions (a-c) and in the
left-hand side in actions (e,f). For each operational action, the robot was tutored 3
times with changing the initial object position as 2cm left of the original position,
the original one and 2cm right of the original one. Therefore, a total of 15 VP
sequences were sampled for the training of the network.

After the training, two types of the robot behavior generations were examined.
The first one was simply regenerate the 5 trained goal-directed actions. The network
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was set with the corresponding initial state values which had been self-determined
for each goal state with the case of the original object position in the training phase
and then the robot was started to move. The robot movement was tested for the
left, the original and the right object position cases for each goal-directed action.

The second one is to plan and to generate a novel goal-directed action. The
goal state is given as the visual state of the object lying on the pedestal with the
condition that the object is initially standing on the base in front of the robot. Note
that this combination of the goal state and the object initial position is novel for the
robot, i.e., the robot has to generate novel motor-act sequences of firstly knocking
down the object to lye on the base and then holding up this onto the pedestal. In
this experiment, action plans are generated by searching for the initial state which
can bring the best match between the specified goal state and the predicted one in
the distal step by the sensory-forward model. The search is iterated 100 times with
a 0.1 grid in the two-dimensional initial state space in the range between 0.05 and
0.95 for each dimension. Then, the plan of the best match is enacted by the robot
in the physical environment with activating the network forward dynamics with the
corresponding initial state values.

3.2. Results
3.2.1. Regeneration of the trained goal-directed actions

All three Kohonen networks were pre-adapted before the training of the MTRNN
utilizing the sensory patterns acquired for the 15 tutoring sequences. For the training
of MTRNN, BPTT was iterated for 10000 epochs with randomly set initial weights.
The mean square error (MSE), which is the average square error per input-output
neurons per step over all teaching VP sequences, converged to 0.000179.

The networks after the training were tested to regenerate the trained actions
by the robot. Each goal-directed action is tested with varying the object position
among the left, the original, and the right ones. Each trial was repeated for three
times. The results of the experiment show that the robot could regenerate 15 actions
(3 positions x 5 actions) with a success rate of about 70%. The details are shown in
the Tablel. As shown in this table, the success rate was 93% when the object was

Table 1. The number of successful trials within three trials in regeneration
of the trained actions.

. . . Position of the object
Specified goal-directed action cm left | original | 2cm right

(a) standing object to right 3 2 2

(b) standing object onto the pedestal 0 3 1

(c) standing object to lying 3 3 3

(d) lying object to right 0 3 2

(e) lying object onto the pedestal 3 3 0
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placed in the original position. The score becomes lower when the object is located
in the left or right positions. It can be said that in most cases the trained actions can
be regenerated successfully. We found that the instability of light reflection on the
colored object in the visual sensation caused certain fluctuations in the MTRNN
dynamics during the task execution.

Figure6 shows the time developments of the goal-directed actions for the first
three of the five representative cases in which the object is placed in the original po-
sition. The upper graphs show the activation of some neurons in the chaos network.

Chaos activation
Chaos activation
Chaos activation

PS
PS
PS

0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Time step Time step Time step
action (a) action (b) action (c)

Fig. 6. Time developments of three goal directed actions. Each pair of three graphs corresponding to
the three goal-directed actions (a-c) as described in Figure5. The upper graphs show the activation
profile of the chaos network units. The lower graphs show the proprioceptive state (PS) for the
four joint angles in the right arm.

Especially, the two bold lines (solid and a dotted) represent the activation of the
neural units whose initial values were self-determined. The activation of these two
neural units starts from different initial values depending on the goal. The lower
graph shows the encoder readings of four joint angles of the right arm which are
shown as unified in the range between 0.0 and 1.0.

3.2.2. Planning and generating actions for achieving the specified novel goal
state

In this experiment, imaginary VP sequences were generated utilizing closed-loop op-
eration, in which predicted sensory values serve as virtual sensory feedback, so the
network can generate imaginary VP sequences without generating physical move-
ments of the robot. As a result of searching the best match VP imaginary sequences
with varying the initial state for 100 times, only one VP sequence was found to sat-
isfy the specified goal state in its distal step image. The initial state of the successful
sequence was (0.35, 0.95). We constructed the initial state map which shows the
mapping from the two-dimensional initial state to the resulting VP imaginary se-
quences of 230 steps period. This map indicates how the mental imaginary sequences
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vary as sensitive to the initial state. The result can be seen in Figure7, where each
grid is labeled in accordance to the generated behavioral pattern categories, where
from “A” to “E” denoting the trained ones, “X” denotes an unclassifiable distorted
one, and “Z” denotes frozen one i.e., the dynamics is stopped at equilibrium points.
It is seen that most of these VP sequences appear to combine the trained ones as

00 01 02 03 04 05 06 07 08 09 10

00 o7 Tea [0z [ ex | 8 | 8A | 88 | AB | xx | xa8
01 Tog [ ec | &5 | o8 | 85 | 85 | AA | AC | xB | X8
02 "oy oa | AC | 88 | 88 | BC | AA | AA | AA | £B
03 "6a |88 | 88 | 85 | BX | AA | AE | AA | BA | CB
04 Fea [ca | ca|cs|cc|calcalce|calce
05 ca|ce|cB|cB|calcalcs|calcalca
06 CA|calca|c|calcalcee|ce|calcc
07 CA|CA|CB|CB|CA|CA|CB|CA|CB]CA
Bl alclalc|alalalc|a
03 CAlca|lcz|O|cc|calcalce|cB|ca
1.0

Fig. 7. The initial state map obtained after the first training of the network. Each axis represents
the activational values of two chaos neural unit. Each grid is labeled in accordance to the gen-
erated behavioral pattern categories where from “A” to “E” denoting the trained ones, “X” for
unclassifiable distorted one, “Z” for frozen one and “(0)” denotes the best match VP sequence.

like “CA”, “CB”, “DB”. It is observed that these combinations appear as clusters in
several regions in the map. Among those “()” denotes the best match VP sequence
imaged for the given novel goal state.

The upper part of figure8 shows the generated sequence of the visual imagery
in the retina and the direction of the head camera represented as its corresponding
TPM in the lower part of the figure, starting with the best match initial state (0.35,
0.95). It is seen that when the two-colored object is standing on the base at the Oth
step, the object is knocked down by the right arm of the robot at the 30th step, the
object is lying on the base with the left hand of the robot is in the air at the 45th
step, the object is held up at the 90th step, then the object is put on the pedestal
by both arms, and finally the object is lying on the pedestal after both arms release
the object. It should be noted that the TPM population coding for the direction of
the head camera is different between the two situations where the object is lying
on the base at the 45th step and that where it is lying on the pedestal at the 210th
step. Therefore, this imagery is regarded as a sequential combination of knocking
over the object and then holding up the lying object onto the pedestal.
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The object standing  Knock overthe object The object lieson the Hold up the object by
onthe base by rightarm base botharms

t=15 t=30 t=45 t=60 t=T. t=90 t=105

'R L ELY
BN EEEETS M

Putthe object on the pedestal

t=120 t=135 t=150 t=165 t=180 t=195 t=210 t=225

W W T e, u u
E PR B

Fig. 8. Imaginary sequence generated with the initial state (0.35, 0.95) where the upper part shows
the retinal image and the lower part does for the TPM population coding for the camera head
direction.

However, it is true that this combination appears in only one grid: (0.35, 0.95).
We further investigated the initial state sensitivity in generating the VP imaginary
sequences within this grid in order to examine the stability of generating imaginary
sequences of achieving the novel goal. It was found that even minor shifts of the
initial state modulate the VP imaginary sequences substantially in this local region.
Figure9 (a) and (b) show the imaginary sequences with the initial state set to (0.36,
0.96) and (0.32, 0.93), respectively. In the case of the initial state (0.36, 0.96) shown
in Figure9 (a), it is observed that the imaginary sequence is mostly the same as the
one with the initial state set to (0.35, 0.95). However, the object suddenly stands up
from lying position at the very end of this imaginary sequence. In Figure9 (b), where
the state is set to (0.32, 093), the generated VP imaginary sequence is completely
different from the other two. In this case, the object was held and moved to the
right-hand side of the robot. However, the object comes back to the original position
by itself, so the robot repeated the same action. These results indicate that adequate
VP imaginary sequences of achieving the specified novel goal state can be generated
only by chance in the critical region in the initial state space where diverse imaginary
sequences are generated. On the other hand, it was found that the generation of
well-trained ones was much more stable without having keen initial state sensitivity
around the regions determined in the training phase.

Next, we investigated whether the robot can physically achieve the specified
goal state successfully by setting the initial state with (0.35, 0.95) of which plan
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t=0 t=15 t=30 t=45 t=60 t=75 t=90 t=105

“, .
L R

(a) Imaginary sequence with the initial state set to (0.36, 0.96)
Hold up the object by both arms

t=0 t=15 t=75 t=090 t=105

y 3y e e w iy
H B B E E E B E

t=120 t=135 t=150 t=165 t=180 t=195 t=210 t=225

T TR T T gy u W
E E E E N 8 B N

(b) Imaginary sequence with the initial state set to (0.32, 0.93)

Fig. 9. Imaginary sequences generated with the initial state values within the vicinity of the best
match case.

was found to be the best match. However, it was found that the robot could not
achieve the goal with this initial state values. Next, the robot actions were generated
repeatedly with varying the initial state within the found grid of (0.3-0.4, 0.9-1.0).
It was found that successful accomplishment occurred in only two out of 40 trials.
The VP sequence of one successful case is shown in Figurel0. It was also found that
the same initial state of one time successful case hardly repeats the same behavior
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Fig. 10. Actual performance of the robot to achieve the given novel goal state. The upper graph
shows the activation of chaos network units. The bottom graph shows the proprioceptive state
(PS) for four joint angles in the right arm. Bottom pictures show the actual state of the robot at
specific time steps.

patterns of the robot. It can be concluded that both the plans and their enactions
for the given novel goal state are substantially sensitive to the initial state as well
as to the external noise in the environment as compared to the cases of regenerating
the well-trained ones.

3.2.3. Additional reinforcement of effective actions generated

Next, we examined whether the novel effective actions generated by chance in the
previous section could be reinforced such that they could be regenerated in more
stably. Two successful VP sequences which had been generated by the robot for
achieving the specified novel goal were added to the original 15 VP sequences for
additional incremental training. The additional training was conducted with 4000
BPTT iterations starting with the synaptic weights of the prior-trained one. The
resultant MSE converged to 0.000167. Figurell indicates the initial state map ob-
tained after the additional training. It is seen that the regions corresponding to
achieving the desired novel goal state (denoted by “()” labels) are substantially
enlarged in comparison to the one shown in Figure7. These regions, labeled as “C”
in the previous map, are mostly converted to “()”. This is because action of “C”,
which means knocking over the object, is now reinforced to be followed by the ac-
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00 01 02 03 04 05 06 07 08 09 10

00 EC | EC | XA | BA | BE | AA| XB | XE | XA | XA
01 BA | BA | BE | BE BE | AA| AA | AA| XE | XB
02 O | CA|CA|BC|AA|BZ|AA| AX | AA| EA
“lololo|o|olo|lo|o]o]|m
“Iolololo|lo|o|olo|o|a
“Iololololalalolololo
o€ o|o|lo|Oo|Oo|O|O|ca|lc]|O
“[ofololololo|o|o|ale
o8 0O|0|0|0O|O0O|O|O|ca|O|cs
jz olo|olo|o|o|o|o|o]|c

Fig. 11. Initial state map generated after the additional reinforcement of successful trials for the
novel goal.

tion of holding up the lying object onto the pedestal. It was observed that mostly
the same VP imaginary sequences are generated from these regions. When those
plans were enacted by setting the initial state with those values, the robot was able
to achieve the specified novel goal state with more than 70% success rate. This
experimental result suggests that the reinforcement of successful trials by chance
can increase the stability of regenerating them.

3.2.4. Replacing the chaos network with a limit cycling network

In order to clarify the functional role of the chaos network, we examined how the
ability to generate novel action plans changes if the current chaos network is replaced
with a networks which are characterized by limit cycling dynamics. The result
indicated that, the network with limit cycling dymanics could not generate novel
actions that achieve the given goal state. It was also observed that the diversity
of generating VP sequences decreased significantly. These results might indicate
that chaos is essential in searching novel action images by generating diverse action
imaginaries.

4. Discussion

4.1. Criticality in creating novel goal-directed actions and their
reinforcement

Our experiments showed that chaos plays an essential role in generating diverse
mental images for actions by utilizing its initial sensitivity characteristics. It is,
however, also true that chaos can also generate false images which do not cor-
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respond to the reality. In the current experiment, it was found that the case of
achieving the novel goal is quite sensitive to the initial state and that even minor
perturbations of the initial state could lead to the generation of false behaviors.
Novel and meaningful actions are likely found at such criticality because it is the
source of inherent diversity.

It means that our model generates diverse VP sequences; however, the actual
generations of successful novel goal-directed actions are quite sensitive to noises and
the initial states. Therefore, it is crucial that robots enact the generated images in
reality and evaluate their consequences. And if some of such trials are found to be
effective, such experiences should be reinforced by additional learning for its future
utilization. It was observed that the novel goal-directed actions turned to be skilled
ones with gaining their robustness after their reinforcement in our experiments.
Finally, those actions can be generated automatically by remembering their initial
states without deliberations.

4.2. Origin of novelty

It is also worthwhile considering that where the novelty comes from. The automatic
generation of novel actions is essential for any exploratory-based learning systems.
The standard reinforcement learning scheme?” utilizes noise for generating novel
motor patterns. The most likelihood actions for achieving the goals in the current
step are mutated to novel ones by adding external noise. If the outcomes of these
novel actions turn out to be effective, they are reinforced.

In the current model, the novelty is originated not from external noise but from
the nonlinearity emerged in the network memory dynamics. Each memory of a goal-
directed action is considered to be embedded in a distinct basin of attraction which
can be accessed with the key of a specific initial state. Here, it is noted that each
memory exists not as independent one but as a relational one among others because
each neurons in the network participates in generating all memories. If the number of
goal-directed actions to be memorized are increased, the relational structures among
those memories become highly nonlinear as described as ”attractor crowding” by
Walter Freeman?8.

In this situation, the network mediated by the intrinsic chaotic dynamics tends
to generate a diversity of false memories depending on the initial state. The resultant
initial state map exhibits a rugged landscape in which the VP imaginary patterns
vary abruptly even with minimum shifts of the initial state in some specific local
regions while they do not in other local regions. Under this sort of highly nonlinear
condition, truly novel and “creative” imaginary patterns might be generated only at
such critical points because these are the edge of near break down of the relational
memory structure consolidated. It can be said that both effects of attractor crowding
and the initial sensitivity of the intrinsic chaos contribute to the generations of
such local criticality. It is again reminded that the criticality affords diversity in
generating novel patterns but with the costs of losing its stability and robustness.
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4.3. Related studies

The current study is related to many other studies focusing on the roles of chaos
in brains, cognition and behaviors. It is known well that Walter Freeman’s group
is the first to find chaos in brains. Based on EEG measuring of olfactory bulbs of
rabbits, it was shown that chaos appears in the so-called “I don’t know” states
for the current smell®. On the other hand the neuronal dynamics is trapped into
attractor of limit cycle when the smell is identified. This result suggests that chaos
works as a catalyst for the networks to search flexibly identity of unfamiliar smells
in the memory. This idea seems analogous to our interpretations of chaos shown in
the current study. When the robot faces novel goals, the robot has to search for
action plans utilizing chaos. On the other hand, familiar goals do not require the
search by chaos.

Our ideas of organizing memories of behavior scheme in a distributed and rela-
tional manner shares with that by Walter Freeman discussed in his recent book?®.
If the memory is organized with the distributed representation rather than with the
local one in the neuronal ensembles of either in the sensory-forward model or in
olfactory bulbs, the nonlinearity of the network dynamics is enhanced. Such non-
linearity could afford “gestalt” in perceptions as well as in generation of motor
behaviors. Furthermore, novel and “creative” actional images should emerge from
such ”gestalt” as have been discussed in the previous section.

Tsuda and his colleague®:3° have speculated that cortical chaos may exhibit so-
called the “chaos itinerancy” (CI). In their proposed chaos neural network model,
the memory search dynamics tends to visit one quasi-stable attractor to another
with preserving long temporal correlations in its itinerancy. Our preliminary study
using the current model network showed that the similar phenomena take place
when the network is trained with a set of behavior primitives of cyclic patterns
such as holding up and down, moving left and right and pushing and pulling an
object. Also in our current study, most of imaginary VP sequences generated by our
model are combination of traind actions. So we considerd that with starting from the
different initial states, the dynamics travels among primitives embedded in different
limit cycle attractors with specific orders. Because the dynamics characteristics of
CI seem to depend largely on the nonlinearity of the pre-wired chaos network, it is
interesting to explore the details of such relations in future study.

Kuniyoshi et al.3! recently showed that a simple coupling between a group of
central pattern generators (CPGs) and robot body dynamics tends to generate
diverse and meaningful behavior patterns when the intrinsic dynamics of the CPGs
is chaotic. Although the proposed model by Kuniyoshi is still in a primitive form
without having any internal models or mental simulation capability, their results
have inspired the current study.
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4.4. Future studies

Future studies should focus further more on dynamics of the incremental learning
for novel goal-directed actions. The current study showed the case of only one-time
reinforcement learning. It is, however, not clear that how much this learning can be
iterated for acquiring further more novel actions. There should be a limitation for
the memory capacity for this sort of the incremental learning. If so, do they scale
with number of neurons allocated in the proposed model? However, more interesting
question would be how the criticality is developed in the course of the incremen-
tal learning. It might happen that novel action can be recursively generated as a
bootstrap from the previous learning of other novel actions with creating another
critical region in the initial state map. However, in the course of packing new ex-
periences by the bootstrap, do we expect to have a catastrophic breakdown of the
whole memory system as like the self-organized criticality phenomena observed in
the sand pile experiments by Bak32. If so, how does the system behave immediately
before the catastrophic breakdown and after? This question should be related to
understanding the basic principle of open-ended development of both biological and
artificial cognitive systems and left for future studies.

5. Summary

The current study proposed a synthetic model of representing how well-skilled ac-
tions as well as novel ones can be generated in goal-directed ways by utilizing neuro-
dynamical systems characteristics. The proposed hypothetical model consists of the
sensory-forward model assumed in IPL, a chaotic network model assumed in PMv
and prefrontal cortex model responsible for manipulating the initial state of the
chaotic network.

Our experiments using a small humanoid robot implemented with the model
showed that (1) all of tutored goal-directed actions can be regenerated robustly by
setting each corresponding initial state obtained in the learning phase, that (2) the
robot was able to create actional imaginaries of achieving the specified novel goal
state with the consolidated memory at the critical regions of the initial state map,
that (3) enactions of such generated plans brought potential instability in achieving
the goal and however that (4) the reinforcements of some effective trials generated
by chance gained the stability in regenerating those trials.

This result suggests that generation of novel or “creative” behaviors require two
prerequisites for cognitive systems. One is that a good amount of sensory-motor
experiences had been consolidated with self-organizing certain relational structures
in distributed memories. The other is an existence of intrinsic cortical chaos which
could enhance the criticality of the dynamic structure of the consolidated memory
for generating diverse actional imaginaries. The continuous iterations of experienc-
ing, consolidating and meditating would lead to developments of truly open-ended
human-like intelligence.
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