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Abstract. The current paper introduces a model for associative learn-
ing between linguistic modality and behavior modality. The model consti-
tutes of language and behavior modules both of which are implemented
with a hierarchical dynamic network model and they interact densely
through hub-like neurons, the parametric biases (PB). By implementing
this model to a humanoid robot in the task of multiple objects manip-
ulation, the robot was tutored to associate sentences of two different
grammatical types to corresponding sensory-motor schemata. One type
is a verb followed by an objective noun as like ”hold red” or ”hit blue”
and the other is a verb followed by an objective noun and further fol-
lowed by an adverb phrase as like ”Put red on blue”. Our analysis on the
results of a learning experiment showed that two clusters corresponding
to these two types of grammatical sentences appear in the PB activity
space where a specific micro structure is organized for each cluster.

1 Introduction

The compositionality by meaning that whole can be constituted by reusable
parts is one of the essential human cognitive characteristics [1]. In the linguistic
processing, diversity of meaning can be generated by combining words by follow-
ing grammatical rules and semantic constraints. Moreover, diversity in spoken
words is originated from compositions through multiple levels from segments to
syllable and syllable to lexicons. In the action generation, complex actions can
be generated diversely by combining behavior primitives [2]. Both of these com-
positional systems of language and action have been considered to be organized
with specific hierarchy in neuronal anatomy.

In the conventional neuroscience, these two types of compositional processing
about language and action have been treated as independent processes. Recently,
however, some researches those look at these two functions by utilizing various
brain imaging techniques including fMRI, PET and EEG, began to suggest that
there are certain dependency between the two. Hauk etal [3] showed in their
functional MRI experiment that reading action related words with different end
effectors, ”Lick”, ”Pick” and ”Kick” evoke neural activities in the motor areas
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those overlap with the local areas responsible for generating motor movements
in face, arm and leg, respectively. This result as well as [4] suggest that under-
standing action related words or sentences may require specific motor circuits
responsible for generating those actions and therefore brain functions for lan-
guage and actions might be organized as interdependent.

If everyday experiences of speech and its corresponding sensory-motor sig-
nal tend to overlap during infant development, synaptic connectivity between
the two circuits can be reinforced by the hebbian learning as discussed by Pul-
vemuller [5]. This suggests a possibility that meaning and concepts of words
and sentences can be acquired as associated with the related sensory-motor ex-
periences, as discussed in the usage-based approach [6] in Cognitive linguistics.
Sugita and Tani [7] conducted synthetic neuro-robotics study to examine the idea
of the usage-based approach. They proposed a connectionist architecture which
consists of a linguistic recurrent neural network (RNN) [8] module and an action
(RNN) module which are interacted via associative learning of proto-language
and actions of robots. The results of the robot learning experiment showed that
the robot can acquire a set of action related concepts by self-organizing certain
compositional structure related to verbs and object nouns.

The current paper introduces a trial to extend the aforementioned study [7,
9]. The main motivation is to introduce functional hierarchy both in the linguistic
and the behavioral modalities by employing a dynamic neural network model so-
called the multiple timescale RNN (MTRNN) developed by our group [10–12].
It is expected that the behavioral modality could have a functional hierarchy
where behavior primitives are acquired in the lower level with fast dynamics
network and the action compositions do in the higher level with slow dynamics
network [10]. Also the linguistic modality could be developed with organizing
hierarchy consisting of the alphabetical level, the lexical level and the sentence
level by utilizing the time scale difference at each level of the network[9]. The
processes for these two modalities could be associated by a similar scheme of
the PB binding as described in [7]. In the current task setting, a humanoid
robot learns a set of multiple object manipulation behaviors as associated to
command sentences. The sentences are comprised of two classes of grammars
where one type of sentence is organized as verbs followed by object nouns, as
like ”Hold Object-A”. The other is verbs followed by object nouns and further
followed by adverb phrases, as like ”Put Object-A on Object-B”. These actions
are more complex than the ones described in [7] because these require adequate
visual attentions on the objects as well as their sequential shifts. The current
study will examine what sorts of internal representations can be self-organized
in the consequences of the associative learning of these classes of sentences and
corresponding actions accompanied with visual attention shifts.



2 Model

2.1 Brain Model

We propose a brain inspired model in which three cognitive functions of speech
comprehension, action generation and visual attention switching are integrated
via their mutual interactions. Firstly, the action generation pathway is consid-
ered. We [13, 11] hypothesized that the inferior parietal lobe (IPL) may play
a role of sensory forward model for given action programs from recent neuro-
physiological evidences [14]. This means that the IPL may predicts coming visuo-
proprioceptive sensation flow which is associated with action plans provided from
the frontal cortex. For example, when the frontal cortex sends an abstract action
plan to the IPL for grasping a mug in front of us, the sensory forward model
predicts how our arm and hand postures would change in time, how our hands
reaching to the mug would be visually perceived and how tactile stimulus of
touching the mug would arise.

Skilled behaviors of acting toward objects as like manual object manipula-
tions require adequate timing of visual attention shifts to the target objects.
Here, we consider a functional hierarchy where an abstract plan of visual at-
tention shift is generated in the frontal eye field (FEF) [15] and the exact eye
saccadic movement to achieve the attention shift is generated in the intraparietal
sulcus (IPS) [16] in the downstream. The current model assumes that the FEF
predicts sequences of shifts of visual attention to particular objects for given
action programs and the IPS generates eye movements to attended objects by
following our prior model [17].

Although it has been considered that speech comprehension is performed in
the Wernicke’s area in the temporal cortex, recent evidences [18] have shown
that the Broca’s area in the inferior frontal gyrus, which is considered to be
responsible for speech generation, actively participates in the process. Also, Tet-
tamanti etal [4] showed that listening action related sentences evoke activation
spreading from the Broca’s area to specific premotor and motor cortex regions
which is considered to be topographically responsible for generating the cor-
responding motor activities expressed in the sentences. Here, we could draw a
hypothesis from these evidences that listening action related sentences could
evoke corresponding activation in the Broca’s area which can lead to regenera-
tion of neuronal activities in two ways simultaneously. One is activation in the
premotor and motor cortices which generates the corresponding motor imagery
and the other is that in the Wernicke’s area to generate the auditory imagery.

The core part of our hypothesis for the speech comprehension is that streams
of auditory signal might be recognized by inferring the corresponding neural ac-
tivation patterns in the Broca’s area which can regenerate them via forward
model assumed in the Broca’s area. Furthermore, it is speculated that the for-
ward model is constituted hierarchically by the Broca’s area responsible for
sentence level, the MTG for lexical level and the STG for phonetic level.

Finally, our basic idea of integrating three neural processing systems of
the speech comprehension, the visual attention and the action generation is



overviewed. Because all of these neural processing systems seem to constitute
functional hierarchy by connecting different local networks, we propose to model
each of them by MTRNN. Then these three neural processes are integrated with
the Broca’s area as a ”hub” of connecting these three neural pathways as shown
in Fig. 1. For given speech inputs in STG as targets, the speech comprehension
system consisting of the Broca’s area, the MTG and the STG attempts to recon-
struct them in its forward computation (depicted by a blue arrow) by inferring
adequate activation patterns in the Broca’s area (depicted by a red dotted ar-
row). Then, the obtained activation patterns in the Broca’s area initiate forward
computation in two pathways of the visual attention and action generation. In
the visual attention system, the FEF generates predictive sequences of atten-
tion shifts from one object to another in the workspace and the IPS generates
the corresponding eye saccadic motion while the premotor generates predictive
sequences of shifts of behavior primitives and the IPL generates detailed predic-
tion of visuo-proprioceptive flow. The prediction of the posture change in time
is utilized to compute necessary motor commands in motor cortex to achieve the
change.

2.2 Computational Model

Overview As described in previous section, the architecture is based on our
prior proposed model of MTRNN [10]. In the current study, as shown in Fig.1,
the whole network consists of behavior module network in the right-hand side,
the liguistic module network in the left-hand side and the binding network which
may correspond to Broca’s area in human brains in the upper part. The binding
network contains parametric biases (PB) neurons[7]. The idea is that specific
static vector values of the PB maps to generation of a linguistic temporal pattern
in the linguistic network and the corresponding behavioral temporal pattern in
the behavior network as a generative model.

The behavior network learns to generate two types of sequence patterns,
one for proprioception in terms of arm posture pt and the other for so-called
the visual attention command at. The behavior network outputs the attention
command with specific color category to the visual attention module. Then, the
visual attention module searches for an object of the specified color in the retina
image (see the detail implementation in [17]). Then, the camera head of the
robot moves to target the attended object by means of a hand-coded program.
The current angle position of the camera head vt is fed into the input of the
behavior network. In summary, the behavior network predicts which color of the
object to be attended next and it receives the relative position of the attended
object in terms of the camera head angle positions. At the same time the network
predicts how the arm posture changes in time with receiving sensation of the
relative position of the currently attended object.

The linguistic network learns to generate alphabetic sequences lt for com-
mand sentences. It can generate sequences autonomously with a closed-loop
operation in which the input of the current alphabet lt is fed from its prediction
in the previous step instead of the one given externally. The behavior network
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Fig. 1. MTRNN Model with Robot Platform.

can be operated only with the open-loop with receiving the external input vt of
representing relational position of the attended object.

The current model is adopted to a robot task which proceeds with the lin-
guistic phase followed by the behavior phase. In the linguistic phase, the robot
receives an alphabetic command sequence without moving and infer the PB val-
ues as will be detailed later. Then the robot starts to move with the acquired PB
values in the following behavioral phase. The associative training is conducted
for each pair of alphabetic sequence (command sentence) and behavior sequence.
The behavior training sequence corresponding to each command sentence is gen-
erated by guiding the arm posture associated with the visual attention command
at each time step. A set of command sentences and their corresponding behavior
sequences can be associated by determining specific PB value for each pair. The
delta errors generated in both module networks during the association learn-
ing were propagated through the both networks to the PB units in the binding
network. The PB values responsible for each associative pair in the training



sequences are updated by utilizing this delta error while the optimal synaptic
weights for minimizing the learning errors for all the training pairs are searched.

After the learning for all pairs is converged with minimizing the training er-
ror, the robot is tested as folllows. A command sentence in terms of alphabetic
sequence is shown to the linguistic network as the target to be recognized. This
can be done by reconstructing the target sequence by inferring an optimal PB
value by back-propagating the error between the target sequence and the re-
generated one. Once the PB value is determined, the robot is operated by the
behavior network with setting the obtained PB value into the neural units in
the binding network.

Mathematical Detail The current model consists of seven groups of neural
units as shown in Fig.1, namely linguistic input-output units (IOl), behavioral
input-output units (IOb), linguistic fast context units (CFl), behavioral fast
context units (CFb), linguistic slow context units (CSl), behavioral slow context
units (CSb) and binding units (PB).

The activation value of the i-th neural unit at time step t is calculated as
follows.
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j∈IO exp(ut,j)
, (i ∈ IO)

1
1+exp(−ut,i)

, (i /∈ IO)
(1)

ut,i =

⎧⎪⎨
⎪⎩
0, (t = 0 ∧ i /∈ PB)

PBi, (t = 0 ∧ i ∈ PB)

(1− 1
τi
)ut−1,i +

1
τi

∑
j∈Iall

wijxt,j , (otherwise)

(2)

xt,j = yt−1,j (3)

ut,i : internal state of the i-th unit at time step t

PBi : neural activation of binding units (PB value)

τi : time constant of i-th unit

wij : connection weight from j-th unit to i-th unit

xj,t : input from j-th unit at time step t

Number of neural units and time constant are shown in Fig.1.The time constant
of the binding network is set with large value so that the neural activation of
binding units can be considerd as static vector values like PB.

Connection weights and PB value are udjusted using the Back Propagation
Through Time(BPTT) algorithm as follows.
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n : iteration number in updating process

E : prediction error

y∗t,i : value of current training sequence for i-th neural unit at time step t

η, α : learningrate

The PB values are determined for each training sequence independently while
the connection weights do for all the sequences. To recognize a linguistic sequence
after the associative learning, the PB value corresponding to given alphabetic
command sequence is searched using BPTT with fixed connection weights.

3 Experiment

3.1 Task Design

A small humanoid robot as shown in Fig.1 was used as an experimental platform.
The robot was fixed to a chair, and a table was set in front of the robot. The
robot was suppoed to associate a set of alphabetic sequences of two different
grammatical types to corresponding behavioral sequence. The first type (type-1)
was a verb followed by an objective noun where the verbs can take two words of
“hold” and “up-down” and the objective nouns for “red”, “blue” and “green”.
This generates six sentences. The other type (type-2) was a verb followd by
an objective noun and further followd by an adverb phrase. In this type the
verb can be just one word of “put” and both objective nouns and adverbs can
take three words of “red”, “blue” and “green”. This generates six sentences.
For each action, the robot was tutored three times with changing the initial
position of the object as 4cm left from the original position, the original one and
4cm right from original one for the purpose of gaining generalization in object
manipulation behaviors. Each action was tutored in every possible combination
of object position (left, center and right) and color of the object (red, blue and
green). Totally there were 18 behavior sequences for the type-1 and 54 for the
type-2.

3.2 Results

After the training, the robot was tested wheather it can recognize all 12 linguistic
command sentences and generate corresponding behavior with different object
position situations (left, center and right). The recognition was done by the
searching optimal PB values. The search calculation was iterated 2000 epochs



with α = 0.2 for each linguistic command sentences. The performance was scored
in terms of a success rate across all trials. It was considered that a trial was
successful if the robot can generate corresponding behavior sequence with the
obtained PB values. As the results, it was confirmed that the robot could gen-
erate correct behavior with 82% success rate. It was further confirmed that the
robot recognize all the 12 sentences because it can generate correct behaviors at
the least one specific object position case for each command sentence.

The Fig.2 shows two examples of time development of sequences. Here it
can be seen that the profile of fast context containes more complex patterns as
compared to those in the slow context in both linguistic and behavior network.
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Fig. 2. Examples of sequences generated with obtained PB values. (a) shows “Up Down
Red” and (b) shows “Put Red on Green” case. Vertical dashed lines indicate the onset
of the behavioral phase. The first row shows alphabetic sequence by representative four
characters (“silence”, “d”, “n” and “o”). The second and the third raw show activations
of fast and slow context units in linguistic network. The fourth row shows joint angles
of right arm of the robot. The fifth raw shows visual attention command corresponding
to “home”, “red”, “blue” and “green”. The sixth and seventh raws show activations of
fast and slow context units in behavior network.



4 Analysys

We applied principal component analysys to visualize the structure of the PB
space. Fig.4 shows the 1st and 2nd principal components of neural activation of
binding units (PB). It can be observed that there are two clusters corresponding
to the type-1 sentences and the type-2 sentences. The cluster for type-1 sentences
shows that a compositional structure of two verbs multiplied by three objective
nouns appears in a two dimensional grid which is similar to the structure ob-
served in our previous study[7]. On the other hand, any systematic structures
can not be found for tye type-2 although the mapping from these sentences to
the actions was successfully generated but without forming generalized repre-
sentation.
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5 Conclusion

In this paper, we reported on the integrative learning of linguistic and behavioral
sequences by the MTRNN. We trained the model with a set of linguistic and
behavioral sequences. As a result of our experiment, we found that the model can
aquire the capability to recognize linguistic sentences and generate corresponding
behavioral sequence patterns. Our analysys showed that compositional structure
can be self-organized for the type-1 sentences but not for the type-2 ones.

Two possibilities might be suggested to account for this result. One possibil-
ity is that the PB space cannot embed two distinct compositional structures, i.e.
type-1 and type-2 simultaneously. The other possibility is that the number of
examples in learning of type-2 structures are too small for achieving the general-
ization as the type-2 was trained only with one verb case of “put” in the current
study. Our future study will examine these accounts and also will pursue scal-
ing of the system in terms of number of words, diversity of grammar types and
behavior complexity.
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