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Abstract

This paper introduces a novel neuro-dynamical model that accounts for pos-
sible mechanisms of action imitation and learning. It is considered that
imitation learning require at least two classes of generalization. One is gen-
eralization over sensory-motor trajectory variances, and the other class is on
cognitive level which concerns on more qualitative understanding of compo-
sitional actions by own and others which do not necessarily depend on exact
trajectories. This paper describes a possible model dealing with these classes
of generalization with focusing on the problem of action compositionality.
The model was evaluated in the experiments using a small humanoid robot.
The robot was trained with a set of different actions concerning object manip-
ulations which can be decomposed into sequences of action primitives. Then
the robot was asked to imitate a novel compositional action demonstrated
by human subject which are composed from prior-learned action primitives.
The results showed that the novel action can be successfully imitated by
decomposing and composing it with the primitives by means of organizing
unified intentional representation hosted by mirror neurons even though the
trajectory-level appearance is different between the ones of observed and
those of self-generated.

1. Introduction

The understanding of other’s actions and imitating them is a significant
cognitive capability for humans. Human adults can easily acquire various
actions within a very short time by watching other’s actions. The learning of
such skilled actions should not be considered just as recording a set of expe-
rienced motor trajectories in rote memory but as acquiring certain structures

Preprint submitted to Elsevier July 22, 2011

Accepted in Robotics and Autonomous Systems, 2011.



from them. One of such essential structures should be so-called the “behav-
ior compositionality” [1]. The term compositionality here is adopted from
“Principle of compositionality” [2] in linguistics. The principle claims that
the meaning of a complex expression is determined by the meanings of its
constituent expressions and the rules used to combine them. This principle
can be adopted also in action domain – skilled actions can be generated by
combining a set of re-usable action primitives adaptively by following rules.
For example, an attempt of drinking a cup of water might be decomposed
into multiple action primitives such as reaching to a cup, grasping the cup
and moving the cup toward one’s mouth. Each action primitive can be re-
utilized also as a component for other actions e.g. reaching to a cup can be
used for another goal such as clearing it away.

This idea of decomposition of whole actions into sequences of reusable
primitives has been considered by Arbib [3] as motor schemata theory. The
theory considers that a set of action primitives might be preserved in a mem-
ory pool and the higher level might retrieve adequate primitives from the
pool in order to combine them in generating desired actions. A substantial
number of engineering as well as theoretical researches have attempted to
implement this idea into autonomous agents including robots [4, 5, 6] as a
key mechanism to generate their diverse and complex actions. The typical
implementations are to prepare a set of local modules for registering action
primitive patterns by using soft computing scheme such as neural network
models [7] or fuzzy systems [8] in the lower level and combining those prim-
itives into sequences by manipulating pointers to them symbolically in the
higher level. However, such hybrid approaches are likely to have symbol
grounding problems [9]. This is because the interface between the higher
level of symbol processing and the lower level of pattern processing can be
just arbitrary since the symbol systems consisting of arbitrary shapes of to-
kens cannot share the same metric space with the analog patterns in their
interactions [10, 11].

On this account, Tani and his colleagues [10, 11, 12] considered that whole
systems might be better constructed on seamless analog dynamical systems
instead of having hybrids of symbol and pattern systems. This idea seemed
possible because theory of symbolic dynamics [13, 14] had already shown
that dynamical systems can exhibit equivalence of symbol-like computation
by means of combinatorial mechanics of chaos and fractals. It had been also
shown that adaptive dynamical systems, especially recurrent neural network
(RNN) model can acquire equivalences of desired symbolic systems of finite
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state machines (FSM) by self-organizing fractals [15, 16] or chaos [17] in
the internal dynamics. Our expectation has been that cognitive processes
of being compositional, yet contextual and situated to the reality, could be
resulted by means of the seamless interactions between the top-down cogni-
tive processing and the bottom-up sensory-motor processing in the embodied
neuro-cognitive dynamical systems under the name of “organic composition-
ality” [1].

Now, we explain how dynamical systems framework can be utilized to
achieve compositionality in generating diverse actions more specifically. Firstly,
we explain simpler problems of how repertory of multiple sensory-motor prim-
itives can be embedded in dynamic neural network through learning. There
are two distinct schemes: one is local representation scheme and the other is
distributed representation scheme. In the local representation scheme, each
sensory-motor pattern is learned as forward model in a specific local dynamic
neural network.

Each forward model predicts how sensory-motor state x changes in time
by means of its dynamic function f(x, c) where c is the internal state which
is not observable from the external. This type of dynamic function can be
realized by continuous time recurrent neural network model (CTRNN) [18,
19]. The output of a corresponding local network can be selected externally
among others, for example, by utilizing a winner-take-all dynamics (WTA)
type gating mechanism [20, 21].

On the other hand in the distributed representation scheme, a set of
sensory-motor primitives are embedded in a single dynamic network. How
can each distinct repertory of sensory-motor pattern can be selectively gen-
erated? There are two ways to achieve this. One way is to utilize the param-
eter bifurcation characteristics of nonlinear dynamical systems. A dynamic
function associated with a parameter p, which is denoted as f(x, c, p), can
generate multiple dynamic patterns by modulating the value of p. Tani et al.
[22] implemented this idea in a neural network model so-called the recurrent
neural network with parametric biases (RNNPB).

The other way is to utilize the initial sensitivity characteristics of nonlin-
ear dynamical systems of which mechanism will be the focus in the current
paper. The idea is schematized in Figure1(a). The dynamic function can
generate different trajectories of x depending on initial internal state ct=0

given. Based on this idea, Nishimoto et al. [23] showed that a humanoid
robot learns to generate three different actions of (α): grasping object and
moving it to left, (β): grasping object and lifting it up, and (γ): grasping

3



Initial 

State 

Branching Point 

(a) (b) 

C

t X1 

X2 

Dynamic 

system 

(Forward) 

β

γ

α

Figure 1: (a) The dynamic function generates different trajectories of x depending on
initial internal state ct=0. (b) An example of generating three different x trajectories
which trifurcate after the branching point depending on the initial internal state values.

object and moving it to right by starting from the same home position via
repeated supervised training of trajectories. It was shown that the differ-
ences in the initial internal state values which are self-determined through
learning enables the robot trajectories to trifurcate after the robot grasps
the object (see the schematics of the idea in Figure1(b)). In this situation,
initial internal states is regarded as setting of intentions for particular action
programs.

The above mentioned scheme are further extended to be applied to goal-
directed planning problems [24]. If distal states of sensory trajectories of
learned are taken as goal states e.g., object moved to left, upward or to right
in the previous example, the initial internal states which lead to these goal
states can be inversely computed (Figure2(a)). This inverse computation re-
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Figure 2: (a) The internal initial state for achieving a distal goal state is inversely com-
puted. (b) Multiple initial states can exist for achieving the same distal goal state.

quires iterative search for finding an optimal initial state value. This process
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corresponds to deliberative planning processes. There could be cases that
the same distal goal state can be achieved by multiple trajectories as shown
in Figure2(b). In such cases, multiple plans in terms of these corresponding
initial states should be found through iterative search [24].

It is generally thought that introduction of hierarchy can increase behav-
ioral complexity of the system significantly. Yamashita and Tani [25] showed
that functional hierarchical structure responsible for generating action prim-
itives and sequencing of them can emerge in dynamics of CTRNN which
consists of multiple time-scale dynamics as illustrated in Figure3. In the
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Figure 3: Functional hierarchical structures appear in a dynamic neural network model
consisting of multiple time-scales (fast and slow) dynamics.

slow dynamics part different profiles of slowly changing dynamic patterns
(Sa, Sb or Sc) appear depending on action programs in terms of the initial
state (ISa, ISb or ISc) given which turn out to drive the fast dynamics part
to generate corresponding sequences of primitive patterns (Fa, Fb or Fc).

Now let us consider possible correspondences of above mentioned mod-
els to system level neuroscience. Tani et al. [1] speculated that setting or
determining initial internal states might correspond to building-up of motor
program which is known to take place in premotor (PM) as well as sup-
plementary motor area (SMA) [26]. Furthermore prefrontal cortex which
has been assumed to play important roles in planning [27] might involve in
searching optimal motor programs in terms of the initial state in PM or in
SMA. It has been widely considered that PM involves more with generation
of sensory-guided action while SMA does with the ones by internal drives
[26]. Especially, the roles of mirror neurons [28] in ventral premotor (PMv)
for action generation and recognition of the same action by others have drawn
large attentions recently. Some emphasize mutual interactions between PMv
and inferior parietal lobe (IPL) in generation of own actions and recogni-
tion of the same actions by other [29, 30]. They assume that PMv receives
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integrated sensory information from IPL and PMv sends back the efference
copy to IPL. Under these circumstances, the current paper focus on trian-
gular functional relations among PFC, PMv and IPL in generation of own
skilled actions and recognition of ones by others. One specific assumption
in the current model is that IPL might play essential roles in acquiring the
predictive model for well-practised actions by means of so-called the sensory-
forward model[1]. More specifically, IPL might anticipate coming sensory
flow in terms of proprioception and vision associated with a currently in-
tended action. The assumption of the anticipation function for IPL might be
unusual to some readers because the main role of IPL has been regarded as
an integrator for different modalities of sensory perceptions [31]. However,
there have been glowing evidences [32, 33, 34, 35] which could support the
ideas of anticipatory functions in IPL.

The global picture of the proposed brain model would be like as shown in
Figure 4. In this figure, PFC might set an intention for action program into
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Figure 4: The proposed brain model where triangular functional relations among PFC,
PMv and IPL are shown.

PMv by providing initial states. PMv might generate abstract sequencing
of action primitives by means of its slow dynamics while IPL, which is bi-
directionally connected to PMv, might generate detailed visuo-proprioceptive
flow by anticipation by means of its fast dynamics. The prediction of propri-
oception in terms of body posture represented in the joint coordinate system
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may provide target position at next moment to motor cortex or cerebellum
in which necessary motor commands might be obtained by means of inverse
computation. On the other hand, the prediction of visual image would gen-
erate visual mental imagery for future of which signal might descend the
visual pathway in top-down manner. PFC might utilize the visual mental
imagery generated in IPL for the purpose of searching the action programs
in PMv which could provide the best match between the desired visual goal
images and mentally simulated ones. The details of the brain model will be
described in the later sections.

The current paper introduces a novel experiment concerning imitation of
actions using a humanoid robot implemented with above mentioned neuro-
dynamic model. We consider that there are two different ways of imitation.
One is a trajectory level imitation, in which an imitator mimick an action
trajectory of a demonstrator exactly[36]. This trajectory level imitation can
be achieved by acquireing the ability of motion tracking, pose estimation,
body correspondence and coordinate transformation. The other one is prim-
itive level imitation, in which an imitator recognizes a demonstrated action
as a sequence of action primitives, then the imitator maps demonstrator’s
primitives to own ones and generates own action primitive sequence. In the
current paper, we are focusing on the latter case.

At first, the robot learns to bind observation of a human subject’s (demon-
strator’s) actions with generation of own corresponding actions in supervised
ways (see Figure5 for schematics). The learning is conducted for a set of
different actions concerning manipulation of an object which can be decom-
posed into sequences of action primitives. The robot learning is conducted
with having variations in relative observational angles from the robot to the
human demonstrator as well as in object positions for the purpose of gain-
ing generalization via accumulated learning. It is important to note that
there could be a potential difference in visual perception during observation
of demonstrator’s action and generation of own corresponding action. So the
robot should acquier more qualitative understanding of actions independent
of the view, that is to find a set of action primitives shared by own generation
case and observation of demonstrator’s case as segmented from continuous
perceptual trajectories even though their trajectory-level appearances are
different between the two.

Then, an interesting test is to see how the robot can imitate novel actions
shown by the demonstrator which are composed from prior-learned action
primitives. This examination would address general questions in the imita-

7



Robot Imitator Human Demonstrator

Binding 

Learning 

Test 

Bind 

?
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tion learning community that how imitation can be conducted with qualita-
tive understanding of other’s actions rather than merely mimicking physical
action trajectories and how generalization via learning could be achieved
[37, 38, 39]. The current paper attempts to show a possible account from
our proposed neuro-dynamic systems perspective.

2. Model

In this section, our proposed neuro-dynamic model is explained in more
details. Next section describes the over whole information flow by making
possible correspondences to anatomical organization of brains. Especially,
we describe two specific modes of on-line generation of anticipatory actions
and off-line goal-directed plan generation mode. Then, more details of the
neural network modelling scheme will be given in next-next subsection.

2.1. Brain model

2.1.1. Generation of anticipatory actions

Figure 6 illustrates how anticipatory actions are generated by going through
interactions between PMv and IPL. It is supposed that PMv receives inputs

Set Initial State 

Self 

PMv 

Self / Others 

IPL 

Physical Interaction 

by Others 

Physical Interaction 

by Self 

Cerebellum 

Vt+1 

Vt 

Pt+1 

Pt Pt+1

mt+1 

Others 
Others 

Self 
  

Figure 6: Generation of anticipatory behaviors via interactions between PMv and IPL.

from PFC which switch the system’s operational mode between the ’self
mode’ and the ’demonstrator mode’. (Such neurons of distinguishing be-
tween own actions and demonstrator’s were found in parietal cortex [40] but
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not yet in premotor.) The visuo-proprioceptive inputs accompanied by own
actions are predicted in the ’self mode’ while visual perception of observing
demonstrator are predicted in the ’demonstrator mode’. PFC also sets the
initial states (the initial potential values of some neuronal units) in PMv. Af-
ter starting from the initial state, neuronal activation profiles change slowly
in PMv which affects the forward dynamics in IPL by having mutual in-
teractions between the two. In the ’self mode’, coming visual inputs and
proprioceptive inputs in terms of body posture are predicted in IPL based
on the prior learning. The prediction of proprioception (posture in terms of
joints angles) in next time step is utilized as the target to be achieved in
next time step. Cerebellum or motor cortex might compute necessary mo-
tor torques to achieve the target for joint angels. On the other hand in the
’demonstrator mode’, the visual inputs in next time step during observation
of the demonstrator’s action are predicted. Although there are prediction
outputs for the proprioception also in the ’demonstrator mode’, they are not
utilized but are fed back as recurrent inputs.

2.1.2. Planning

In the current setting, planning is regarded as a process to determine the
optimal action program which matches the distal visual images of mentally
simulated with the goal image of specified (See Figure7). For this purpose,
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Figure 7: Planning by interactions among PFC, PMv and IPL.

the initial state of PMv is iteratively searched such that look-ahead prediction
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of the visual image by IPL can fit with the goal image specified. The look-
ahead prediction in IPL is conducted by means of mental imagery with closing
the loops between the next step prediction and current step inputs for both
vision and proprioception. The planning can be conducted both for own
actions and demonstrator’s actions by switching between the ’self’ and the
’demonstrator’ modes.

2.2. Mathematical model

2.2.1. Overview

The multiple timescale recurrent neural network (MTRNN) [25] model
used in this study is shown in Figure8. A small humanoid robot, which has
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current visuo-
proprioceptive
state
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Figure 8: Neural network model interfacing with a robot

two 4-DOF arms, a 2-DOF neck and a stereo camera, is used in the role of
a physical body interacting with actual environment. The neural network
model receives the proprioceptive state (Pt) representing the posture of arms
in terms of the joint angles, the direction of the camera in terms of the neck
joint angles (V d

t ) and the visual image obtained with the camera (V v
t ).

At first, current sensory inputs (Pt, V
d
t , V v

t ) are pre-processed using topol-
ogy preserving maps (TPM), which transforms a vector of continuous values
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into neural population coding. After this transformation, input signals are
sent to the MTRNN and the MTRNN predicts sensory inputs, which was
encoded by neural population coding, for the next time step. This predicted
signal is transformed inversely from neural population coding to continuous
values (Pt+1, V

d
t+1, V

v
t+1) using TPM. Then the actual robot movement just

follows this prediction of the proprioceptive state. In addition, the system
can be operated also in so-called the closed-loop mode to generate “men-
tal simulation” of sensory sequential patterns without generating physical
movements by feeding back the prediction of the next sensory inputs to the
current ones.

In our current model, the MTRNN consists of three parts, namely input-
output units, fast context units and slow context units. Both the input-
output units and fast context units correspond to the IPL. In addition, the
slow context units corresponds to the PMv. The number of neural units
is 100 for fast context, 50 for slow context respectively. Among the slow
context units, there are four special neuronal units. Two of them are used
to specify action programs. The initial states of these neurons (IS) take the
same value both in generating a particular action in the ’self mode’ and in
generating “mental imagery” of observing the corresponding action by the
demonstrator. Each initial state for corresponding action sequence is self-
determined in the learning process as bound to be the same for the both
modes. Other two neurons function as a switch between ’self mode’ and
’demonstrator mode’. The neuronal activation of these switching units are
set different value, which takes constant value from the start to the end of
the action sequence, by PFC depending on the operational modes between
the ’self mode’ and the ’demomstrator mode’.

In our current model, PFC have two functions. The first one is to re-
member initial states of the PMv, which were self-determined in the learning
process, as a database. When the robot is required to generate action se-
quence, which the robot have already experienced, PFC recall the initial
state from the memory and set the initial state of PMv. The other is to
find the initial state of PMv corresponding to the optimal action program
to achieve the given goal state. This search algorithm is described in the
following section.

2.2.2. Sparse encoding of input-output

Input to the neural network are sparsely encoded in the form of a pop-
ulation coding using topology preserving maps (TPM). The current model
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has three TPMs, one map corresponding to proprioceptive state P , one map
corresponding to neck joint angle V d and one map corresponding to camera
image V v. The TPM is a type of a neural network that produces a dis-
cretized representation of the input space of training samples. This sparse
encoding of input trajectories reduces the overlaps of input sequence, so that
it improves learning ability of the MTRNN as described in [25]. The size of
TPMs are 100(10× 10) for proprioception, 36(6× 6) for neck joint angle and
144(12 × 12) for camera image respectively.

In the current study, TPMs are trained in advance of MTRNN training
using conventional unsupervised learning algorithm[41]. Training data set of
TPMs included all teaching signals for the MTRNN. The TPM transforma-
tion is described by following fomula,

qi,t =
exp{−‖ki−kteach‖2

σ
}∑

j∈Z exp{−‖kj−kteach‖2

σ
}

(1)

where if i ∈ P , then Z = P and kteach = Pt, if i ∈ V d, then Z = V d and
kteach=V d

t , if i ∈ V v, then Z = V v and kteach = V v
t . σ is a constant value,

which indicating the shape of the distribution of qi,t, set at 0.1 in the current
study. ki is reference vector of i-th neural unit in a TPM.

The MTRNN generates prediction of next step sensory visuo-proprioceptive
state based on the aquired forward dyanmics described later. This predic-
tion generated by MTRNN can be assumed to correspond to an activation
probability distribution over the TPMs. It is inversely transformed to a
visuo-proprioceptive input signal using the same TPMs:

kout =
∑
i∈Z

yi,tki (2)

where if i ∈ P , then Z = P and kout = Pt+1, if i ∈ Vd, then Z = V d and
kout = V d

t+1, and if i ∈ Vv, then Z = V v and kout = V v
t+1.

2.2.3. Forward generation of MTRNN

The MTRNN [25] is a type of the continuous time recurrent neural net-
work (CTRNN). In the CTRNN, neuronal activations are calculated using
conventional firing rate model shown in Eq.3.

τi
dui,t

dt
= −ui,t +

∑
j

wijxj,t (3)
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yi,t =

{
exp(ui,t)

P

j∈Z exp(uj,t)
, if i ∈ Z

1
1+exp(−ui,t)

, otherwise
(4)

xi,t+1 =

{
qi,t+1, if i ∈ Z

yi,t, otherwise
(5)

where ui,t is the potential of each i-th neural unit at time step t, xj,t is the
neural state of the j-th unit and wij is synaptic weight from the j-th unit to
the i-th unit and Z is P or V d or V v and qi,t is input vectors using TPMs.

The characteristic of the MTRNN is that they consist of neurons of multi-
ple time-scales dynamics. The MTRNN, which is used in the current study,
consisted of input-output units and non-input-output units, the latter re-
ferred to as context units. Context units are divided into two groups based
on the value of time constant τ . The first group consisted of fast context
units with small time constant (τ = 2), whereas the second group consisted of
slow context unit with a large time constant (τ = 10). This characteristic en-
ables the MTRNN to articulate complex visuo-proprioceptive sequences into
reusable primitive patterns by self-organizing a functional hierarchy of them
while learning. The effect of having multiple time-scale dynamics among
groups is roughly summarized as follows: neurons with fast time constant
assemble a set of primitives and neurons with slow time constant ”manipu-
late” them in various sequences depending on IS.

IS values are set by PFC before forward generation. Those values are
self-determined under the condition that they take the same value when
generating the particular action in the ’self mode’ and the corresponding
mental imagery in ’demonstrator mode’ through the learning process. The
potential values u of neural units corresponding to self-other switch are set
100 in ’self mode’, whereas the values are set -100 in ’demonstrator mode’.
During the learning phase of the MTRNN, the same potential values are
used.

2.2.4. Learning of own and demonstrator’s action sequences

In our current study, the TPMs are trained in advance of the MTRNN
training using conventional unsupervised learning algorithm. The goal of
training the MTRNN is to find the optimal values of the connective weights
and IS which minimize the value of E, which is defined as the learning error.
We define the learning error using Kullback-Leibler divergence as a following
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equation,

E =
∑

t

∑
i∈IO

y∗
i,t log(

y∗
i,t

yi,t

) (6)

where IO represents input-output units, y∗
i,t is the desired activation value

of the output neuron at time t and yi,t is the activation value of the output
neuron with current connective weights and IS. As training method, we use
the general Back Propagation Through Time (BPTT) algorithm [42]. Us-
ing the BPTT algorithm, the network can reach their optimal levels for all
given teaching sequences by updating the connective weights in the opposite
direction of the gradient ∂E/∂w.

wij(n + 1) = wij(n) − α
∂E

∂w
(7)

where α is the learning rate constant, and n is an index representing the
iteration epoch in the learning process. Note that there are both own ac-
tion sequence and demonstrator’s action sequence in the training data set.
However, there are no teaching signals for proprioceptive sequence when the
neural network is trained with demonstrator’s action sequence, and so the
error is calculated only with the direction of the camera (V d

t ) and visual
image (V v

t ) for demonstrator’s action sequences. ∂E
∂w

is given by:

∂E

∂w
=

∑
t

1

τi

∂E

∂ui,t

yj,t−1 (8)

and ∂E
∂ui,t

is recursively calculated from the following recurrence formula

∂E

∂ui,t

=


yi,t − y∗

i,t + (1 − 1
τi

) ∂E
∂ui,t+1

if i ∈ IO∑
k∈N

∂E

∂ui,t+1

[
δik(1 − 1

τi

) +
1

τk

wkif
′(ui,t)

]
if i /∈ IO

(9)

where f ′() is the derivative of the sigmoidal function and δik is Kronecker
delta.

In addition, an update of the initial context unit values corresponding to
action sequence (IS) is obtained simultaneously by utilizing the delta error
∂E

∂ui,0
back-propagated through time steps to the context unit at the initial

step.

ci,0(n + 1) = ci,0(n) − α
∂E

∂ui,0

(10)
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where ci,0 is the potential of i-th neural unit. As described in previous sec-
tion, the initial states correspond to same action programs should be the
same value either in the ’self mode’ or ’demonstrator mode’ in the proposed
“bind” learning schema. To satisfy this condition, the initial state value
correspond to same action programs are averaged among the training data
set after applying the Eq 10. It is summarized that the learning proceeds
with dense interaction between the top-down and the bottom-up pathways
where “imagery” of visuo-proprioceptive (VP) sequences generated in the
top-down pathway by means of current weights and IS values are iteratively
encountered by the actual VP sequences of the bottom-up. As the generated
error is propagated through all neurons including the fast and slow parts,
the synaptic weights in the whole network can be updated.

2.2.5. Goal-directed planning

When the goal state is given by a experimenter, in terms of distal visuo-
proprioceptive state (Pgoal, V

d
goal, V

v
goal), IS value to generate VP sequences

that include the goal state in their distal steps, is searched. The search is
conducted by means of BPTT algorithm [42] but without modulating the
synaptic weights. Firstly, the MTRNN generates “imagery” of VP sequence
by closed-loop operation with temporarily set IS values. At this time, neu-
ronal activation of context neurons corresponding to self-other switch are set
to ’self mode’. Then, the Euclidean distance between the given goal state and
the state generated in the imagery VP sequences are calculated for all time
steps in the sequences, and the particular time step where the calculated
Euclidean distance becomes minimum are marked up. The error is back-
propagated from this marked step to the initial step in the sequence and the
IS values are updated using Eq 10. The search is started by setting the initial
IS values randomly and it is iterated until the error is minimized. Then the
plan is enacted by the robot in the physical environment with activating the
network forward dynamics with setting IS with the obtained values in the
search.

3. Experiment

3.1. Task design

The experiment was carried out by using a small humanoid robot named
HOAP3. The robot was fixed to a chair, and a workbench was set up in
front of the robot. A movable rectangular solid object which is painted
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half blue and half red was placed on the workbench. The neck joints are
controlled by PID controller, which is programmed to track a red-color object
to be centered in the retinal image. Inputs to the neural model are angles
of arm joints Pt (8 dimensional vector) and neck joints V d

t (2 dimensional
vector) and the visual perception V v

t (16 × 12 dimensional vector). Each
pixel component of the visual perception vector can take one of four possible
values (0, 0.375, 0.625, 0.875) depending on the color (others, green, blue,
red) of corresponding retinal cell, respectively.

The compositional actions used in current experiment is shown in Figure
9. As shown in this figure, compositional actions assumed in the experimental
task had a temporal structure which could be described by a path of state
transitions with branching. The first half of the action is moving the object
to the right (R) or moving the object to upward (U), whereas the last half
of the action is knocking over the standing object to lie by left arm (K) or
moving the object to the left (L). Totally, as combinations of the first half
and the last half, there are four actions, i.e (RK), (RL), (UK), (UL).

In order to obtain a teaching signal of self actions, the human tutor guided
both hands of the robot along the trajectory of the action without provid-
ing explicit cues of showing segmenting points for the primitives. In these
actions, the robot started to move from the same home position so that the
MTRNN can not utilize the initial posture difference information to generate
difference action programs. As the robot hands were guided along the tra-
jectory, the joint angles at each step were recorded and their sequences were
used as teaching sequences. For each actions, the robot was tutored 3 times
with changing the initial object position as 2cm left from the original posi-
tion, the original one and 2cm right from original one. Meanwhile, other’s
action sequences were obtained by showing the corresponding demonstrator’s
actions to the robot. The sensory information during this observation of the
demonstrator’s actions consists of the vision inputs and the head direction
of the robot. For each action by the demonstrator, the action sequence was
recorded 3 times with changing the relative position between the demonstra-
tor and the robot as located in front, in 15 degree right and in 15 degree
left. In the current setup of the experiment, the demonstrator demonstrated
action sequences using only one hand. Therefore the appearances of the same
actions by the demonstrator and the robot could be significantly different as
shown in Figure 10.

At first, we examine how the robot can imitate novel actions shown by the
demonstrator by utilizing prior-learned behavior skills. For this purpose the
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Move right (R)

Move up (U)

Move back 
to center

Knock over (K)

Move left (L) Back to home 
position

Back to home 
position

Start from 
home position

Figure 9: Task design:Robot was trained for three task trajectories of (R)(K), (U)(K) and
(U)(L) with starting and going back to home position. Then, it was tested if the robot can
generate (R)(L) task trajectory by observing its corresponding action by demonstrator.

(b)(a)

Figure 10: These pictures show the appearance of compositional actions performed by the
robot or human imitator. In (a) the robot move the object upward using both hands,
meanwhile the demonstrator performed the corresponding action using only one hand. In
(b) the robot or demonstrator knock over the object from its left-hand side to its right-hand
side.
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robot was trained for three actions including (RK), (UK) and (UL) by means
of the bind training of the observation of the demonstrator’s actions and
the own ones. After the training, another observation of the demonstrator
doing the action sequence (RL) was added to the training data set and the
corresponding initial state values was calculated. In the test generation, it is
examined if the robot can successfully generate the novel own action sequence
of (RL) by using the initial state obtained by learning of the observation of
its corresponding action by the demonstrator.

In the next, we examine how plans for actions can be generated in the
proposed scheme. The test was conducted using the network trained in the
previous experiment. In the planning, the action program should be made to
achieve the goal state of the object being located in the left hand side from
the initial state of the object standing on the workbench with the robot’s
posture in its home position. Note that this goal state can be achieved by
generating either action sequence of (RL) or (UL). In this experiment, action
plans were generated by searching for the initial state from which the sensory-
forward model can bring the best match between the specified goal state and
the predicted one in the distal step as described in the previous section.

3.2. Results

3.2.1. Regeneration of the trained actions

All three TPMs were pre-adapted before the training of the MTRNN
utilizing the sensory patterns including self and other’s action sequences. For
the training of MTRNN, BPTT was iterated for 12000 epochs with randomly
set initial weights, and it took about 5 hours in the current setting. The
mean square error (MSE), which is the average square error per input-output
neurons per step over all teaching sequences, conversed to 0.000733.

After the training, the MTRNN was tested to regenerate trained actions
by the robot by setting the IS with the corresponding values determined
through the learning process. Each action was tested with varying the ob-
ject position among three of originally trained positions and two of novel
positions which were 1 cm left and right from the center. Each trial was
repeated for three times. The result of the experiment show that the robot
could regenerate trained actions with a success rate of 100%. Figure11 shows
the time development of the actions in which the object is placed in the orig-
inal position. The upper graph shows the encoder readings of four joint
angles of the right arm which are shown as unified in the range between 0.0
and 1.0. The lower graphs show the activation history of the IS neurons by
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Figure 11: Time development of three actions generated. Each pair of three graphs cor-
responding to the three actions as described in Figure9. The upper graphs show the
proprioceptive state (PS) for the four joint angles in the right arm. The lower graphs
show the activation history of the IS neurons.
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red and blue lines whose initial values were self-determined in the learning.
As shown in this figure, the initial values of the IS neurons are different
depending on the action sequence. In order to analyze the relationship be-
tween the IS and corresponding action sequences generated, we constructed
the initial state map which shows the mapping from two-dimensional initial
state to the resulting imagery VP sequences. The result can be seen in Fig-
ure 12. We compared a mental image, which is generated with each initial
state in the grid, with trained action primitive pattern and classified the
mental image manually. Each grid shows a label of representing generated
combination of action primitive pattern, where (R), (L), (K), (U) denoting
classified primitives, (X) denotes unclassifiable “distorted” ones. It is seen
that three of trained combinations of the primitives, namely (UL), (UK) and
(RK) appear as large clusters while distorted one appear in small regions.
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0.1

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Figure 12: The initial state map obtained after the first training of the MTRNN. Each grid
is labeled in accordance to the generated combination of action primitive pattern, where
(R), (L), (K), (U) denoting the classified primitives, (X) denotes unclassifiable distorted
one

3.2.2. Generation of novel action by imitation

After the first training, observation of the demonstrator doing the novel
action sequence (RL) was added to the training dataset. Then BPTT learn-
ing was iterated for 3000 epochs on the trained synaptic weights which had
been obtained through the first training, and it took about 75 minutes. As
a result the MSE conversed to 0.000591 with the new dataset including the
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observation of novel action sequence. The imitational action sequence was
generated by using the initial state determined for the novel action sequence
with the ’self mode’. The generated action sequence was tested with varying
the object position that was the same condition of regeneration of trained
action sequences. The result of this experiment shows that the robot could
generate imitational action sequences with a success rate of 100%. The time
development of the imitational action sequence in which the object is placed
in the original position is shown in Figure 13.
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Figure 13: Time development of the imitational action. The upper graph shows the
proprioceptive state (PS) for the four joint angles in the right arm. The lower graph
shows the activation history of the IS neurons.

When looking at Figure11 and Figure13, we can find that the IS values
shown by the initial value of red and blue lines take different value depending
on the combination of action primitives. When the first half of the action
sequence is (U) the blue line in the lower graph starts from lower value,
whereas it starts from higher value when the first half of the action sequence
is (R). Likewise the red line in the lower graph starts from lower value when
the last half of the action sequence is (L) and it becomes (K) when the red
line starts from higher value. This observation suggests that compositional
action primitive sequences are successfully embedded in the slow dynamics
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of the IS neurons.
Figure 14 indicates the initial state map obtained after the additional

training. With comparing with Figure 12, the novel cluster corresponding
to the action sequence (RL) appears in the left bottom of this map while
positions of the clusters corresponding to previously learned action sequences
(UL), (UT), (RT) change only slightly. This result is interpreted that a novel
own action program that corresponds to observation of demonstrator’s action
can be generated by utilizing prior learned structures of action primitives.
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Figure 14: Initial state map generated after the additional training of novel action sequence
(RL)

3.2.3. Planning of action for given goal state

The action plans to achieve the specified goal state as described in the
previous section were generated by searching the optimal IS values. The
search calculation was iterated 2000 epochs with the learning rate α = 0.2,
and it took about 50 minutes in the current setting. As had been expected,
two distinct action plans of (RL) and (UL) were generated in terms of imagery
VP sequences depending on the initial setting of the IS values in the search
process. Those two typical VP sequences are shown in Figure 15 for RL and
Figure 16 for UL. In these figures, imagery sequences generated in both ’self
mode’ and ’other’s mode’ are shown. These figures indicate that two possible
imagery for own action as well as for other’s in achieving the specified goal
are successfully generated by means of planning. It was also confirmed that

23



the robot can successfully execute those plans in its physical behaviors by
setting the IS with those values obtained in the search.

(a)

(b)

Figure 15: The visual imagery corresponding to RL generated as a result of planning. In
(a) visual imagery for own action in the lower row and actual execution of the plan in the
upper row. In (b) visual imagery for demonstrator’s action in the lower row and actual
demonstrator’s action demonstrated to the robot in the upper column.

To carry out more detailed analysis, we constructed a map which shows
the mapping from the initial IS (IIS) values, which is set to the IS in the onset
of the search, to action sequences generated from the converged IS value in
the search. The IIS values are adjusted in the range between 0.0 and 1.0 with
0.1 interval. The result is shown in Figure 17. It can be seen that the search
process can generate correct action plans of either (RL) or (UL) with setting
the IIS at most points in the space. Also, we can see two clusters of (UL)
in the upper part and of (RL) in the lower part in the space those overlap
largely with the corresponding clusters shown in Figure 14. This analysis
indicates that goal-directed planning can be performed quite robustly.

4. Discussion

The current paper presented a neuro-dynamic systems approach to the
problem of generating/understanding actions of own/demonstrator’s by in-
troducing our synthetic robot modeling study. In the following, we show our

24



(a)

(b)

Figure 16: The visual imagery corresponding to UL generated as a result of planning. See
the caption of Figure 14.
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Figure 17: Initial IS map. This map shows the mapping from the initial IS (IIS) value
to imagery sequences generated with the converged IS value in the search. Each grid
indicates a label of imagery sequences.
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interpretation and discussion about the obtained experimental results quali-
tatively with focusing on the problems of generalization in imitation learning
and creations of novel actions. We will also discuss future related studies.

4.1. Generalization in imitation learning

It is considered that imitation learning require at the least two classes of
generalization [37, 38, 39]. One is generalization over sensory-motor trajec-
tory variances such as caused by differences in object size, position and shape
to be manipulated or by view differences in observing “demonstrator”. The
current study showed that such trajectory level variances related to object
positions and views on “demonstrator” can be resolved by introducing unified
intentional states in terms of the initial internal states values over such vari-
ances by means of the proposed binding learning scheme. Such intentional
states might be hosted by mirror neurons [28] in PMv.

The other class of generalization is on cognitive level which concerns
on more qualitative understanding of actions by own and demonstrator’s
which do not necessarily depend on exact action trajectories. Understanding
of actions require understanding of multiple possible ways of achieving the
same goal with abstraction. This requires decomposition of original visuo-
proprioceptive trajectories into reusable primitives and their recombinations
into multiple pathways to achieve the same goal. Our experimental results
showed that such abstraction can be realized by learning in multiple time-
scales neuronal dynamics and that the action planning scheme of searching
the initial state can construct mental imagery of multiple pathways to achiev-
ing the same goal.

On this aspect, some may claim that the same function could be accom-
plished by some hybrid system approaches [7, 8] of interfacing symbol level
constructed by some machine learning scheme and analog representation in
sensory-motor level by using neural nets of fuzzy systems. We, however, ar-
gue that such approaches may suffer from the symbol grounding problems [9]
because the interface between those level can be just arbitrary. On the con-
trary, in our proposed dynamical systems approach, there are no explicit sep-
aration of symbol level and sensory-motor level because the whole cognitive-
behavioral function is realized by one body of neuro-dynamical system. When
seamless interactions are iterated between the top-down goal-directed inten-
tionality and the bottom-up sensation of the reality in the adopted neuro-
dynamical system through repeated learning, cognitive constructs of being
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compositional, yet situated to sensory-motor reality should emerge upon the
self-organized dynamical structures.

4.2. Creation of novel actions

One of interesting question to ask might be how diversity of novel action
programs can be generated by utilizing and modifying prior-learned action
scheme. Our experiment showed that after the robot observes demonstra-
tor’s action, its corresponding own action, which is novel for the robot, can be
successfully generated by adequately mapping the observed one to the own
one by utilizing the prior-learned own primitive. The initial state mapping
analysis shown in Figure 14 indicated that relatively large clusters appear
for the IS of the novel combination of action primitives as well as for that
of other trained combinations but that only small region does for that of
distorted combination of primitives. It was, however, shown in our prelimi-
nary experiment that such novel combination cannot be generated anymore
unless the observation of corresponding demonstrator’s action is binded in
the 2nd time learning. On the contrary, our prior study [24] using MTRNN
indicated that diverse novel combinations of action primitives including that
of distorted ones can be generated by introduction of chaotic dynamics in
the slow dynamics part in the network. These results suggest that diversity
of creating novel actions of combining prior-learned primitives can be drasti-
cally increased by introduction of chaos. It should be, however, also true that
introduction of chaos may lead to unstable situations where useless distorted
actions are more likely to be generated. It is speculated that “creativity”
for generating novel actions could face the dilemma between flexibility and
stability.

4.3. Future studies

Future studies should extend the vision system for the purpose of scaling
the task complexity. In the current experiments, variance of relative position
between the robot and the demonstrator was limited in narrow range of plus-
minus 15 degrees. Therefore, the visual sensation of the demonstrator can
be easily mapped to that of the imitator by nonlinear function of adopted
network. It is, however, not certain that the same scheme can be applied
to the case of larger range of view variances. In such case, vision processing
known as “mental rotation” [43] might be required.

In the course of scaling task complexity, the mechanisms of visual atten-
tion and saccading might be required to deal with manipulation of more than
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one object. In our current setting, because it was assumed that there is only
a single object to be manipulated, no attention switching mechanism was re-
quired. It is left for future studies to investigate how the scheme of attention
switching accompanied by saccading can be attained through learning.

Another line of interesting future investigations might be comparison be-
tween the stochastic learning approach using Bayesian formulation [44] and
deterministic dynamical systems approach. Recently, fast progress in the
stochastic computational models such as hidden Markov model (HMM) at-
tract large attention in many research area. The action imitation task had
been also achieved by using the HMM[45]. One interesting recent results by
Namikawa and Tani [46] is that forward model by CTRNN can learn proba-
bility of branching of primitives as embedded in its self-organized chaos. Such
capability of mimicking stochastic sequences by deterministic dynamic neu-
ral network model should be qualitatively examined with comparison with
various stochastic modelling scheme.

5. Conclusion

The current paper presented a synthetic robot modeling study which ac-
counts for how actions by others can be recognized and imitated with com-
positionality in terms of the mirror neuron system by utilizing a dynamic
neural network model of MTRNN. The method was evaluated in the ex-
periments using a small humanoid robot implemented with the model. The
results showed that (1) all of tutored actions can be regenerated robustly
by generalizing the variance of the position of the target object, that (2)
novel actions demonstrated by the demonstrator can be imitated by means
of combining prior acquired primitives into the corresponding actions of self-
generated, and that (3) when the goal state is given in terms of own visuo-
proprioceptive state, multiple action plans which achieve the given goal state
can be found robustly through iterative search. It is finally concluded that, by
having seamless and dense interactions between the top-down goal-directed
intentionality and the bottom-up perception of the reality through repeated
learning of own experiences, cognitive constructs of being compositional, yet
situated to sensory-motor reality can emerge as the results of self-organization
of adequate neuro-dynamical structures.
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