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1. Introduction

Recurrent neural networks (RNNs) have been successfully
applied to the modeling of various types of dynamical sys-
tems. Since the universal approximation ability of multilayer
neural networks has been proved, RNNs can model arbitrary
dynamical systems and turing machines [1–3]. However,
applying RNNs to a desired model may be very difficult
even if such RNNs exist [4]. For example, building RNNs to
implement required multiple attractor dynamics is a difficult
problem for standard training, such as the gradient descent
method. Doya and Yoshizawa [5] demonstrated that RNNs
can acquire two limit cycles in the gradient descent method
using initialization with small connection weights, whereas
learning for more than three limit cycles is difficult [6]. This
is due to the fact that the learning of several time series causes
a conflict with respect to the changing of the connection
weights. How to form RNN models that can learn several
temporal sequence patterns has proved to be a challenging
problem.

There have been some approaches to this problem.
In order to avoid conflicts in the change of parameters,
the mixture-of-experts-type architecture has been inves-
tigated [7, 8]. The mixture-of-experts model consists of
RNNs as experts and a hierarchical gating mechanism.

At the end of successful learning, each expert implements
attractor dynamics as locally represented knowledge, and
a gating mechanism chooses only one expert at any time.
The system can acquire many attractor patterns although
there is a disadvantage in that the system does not
have the generalization ability on the attractor patterns.
As the other approach to implement multiple patterns,
the parametric bias (PB) method has been developed to
improve the learning capability of RNNs [9, 10]. In an
RNN that employs the PB method (RNNPB), PB values
provide the information needed in order to individualize
each sequence. It has been reported that the number of
time series that RNNPBs can learn is greater than that
which RNNs without PB can learn. However, the PB
method cannot avoid the conflict caused by each attractor
learning. Therefore, learning multiple time series by an
RNNPB tends to fail when the number of time series
increases.

In the present study, we will focus on the training
method for RNNs to learn multiple attractor dynamics.
Furthermore, we will show that the present research is
related to research into RNNs with contraction transition
functions. In recent years, RNNs with contraction transi-
tion mapping have been investigated with respect to the
performance of time series learning [11–13], generalization
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Figure 1: Architecture of the recurrent neural network. Solid
arrows, dotted arrows, and boxes represent fixed connections,
adjustable connections, and network states, respectively.

ability [14], and memory capacity [15]. Jaeger [11, 12]
demonstrated that an “echo state network,” which is an
RNN with contraction mapping, successfully learns the
Mackey-Glass chaotic time series, a well-known benchmark
system for time series prediction. In order to formally
express the generalization ability, Hammer and Tiňo proved
that RNNs with contraction are distribution-independent
learnable in the probably approximately correct (PAC) sense
[14]. From the above results, RNNs with contraction might
be regarded as powerful tools for modeling dynamical
systems. However, RNNs with contraction have difficulty in
representing multiple attractor dynamics because dynamic
states governed by the contraction transition function are
globally attracted to one point. In this paper, the represen-
tation capability of RNNs with contraction mapping will be
improved such that the RNNs can obtain multiple attractor
dynamics.

We start by defining the concepts of the RNN and
the training method for multiple attractor dynamics. The
RNN has the Elman net-type architecture, and the training
method for RNNs is basically based on the backpropagation
through-time (BPTT) algorithm [16]. We then show in
numerical simulation that the RNNs can acquire multiple
periodic attractors constituted by five Lissajous curves, or
a Van der Pol oscillator with twelve different parameters.
Moreover, we consider why the RNNs successfully learn
multiple attractors and how the performance of learnability
depends on parameters of the RNNs. Finally, we link the
results obtained herein to other learning strategies, and
consider other advanced research topics.

2. Model

2.1. Recurrent Neural Network. We first consider a neural
network model with recurrent connection, such as the Elman
net [17] (see Figure 1). The RNN contains I/O units,
orthogonal units, and internal units. We denote the dynamic
states of I/O units, orthogonal units, and internal units at
time step n by xn ∈ RN1 , rn ∈ RN2 , and un ∈ RN3 ,
respectively. The RNN is defined by functions fθ and gθ
with a parameter θ ≡ (W1, W2, W3, V, b, d), where fθ :

RN1 × RN2 × RN3 →RN3 and gθ : RN3 →RN1 × RN2 are of the
forms

fθ(x, r, u)=(1− ε)u+ε
(

W1 · x + W2 · r + W3 · F(u) + b
)
,

(1)

gθ(u) = F
(

V · F(u) + d
)
, (2)

where W1 ∈ RN1×N3 , W2 ∈ RN2×N3 , W3 ∈ RN3×N3 , and
V ∈ RN3×N1N2 are matrices, b ∈ RN3 and d ∈ RN1N2 are
vectors, ε ∈ R is a time constant that satisfies 0 ≤ ε ≤ 1,
and F denotes a componentwise application such as Fi =
tanh.

Dynamic states of the RNN at time step n are updated
according to

(
xn, rn

) = gθ
(

un
)
,

un+1 = fθ
(

xn, rn, un
) = fθ

(
gθ
(

un
)
, un
)
.

(3)

From these equations, the RNN can be represented by an N3-
dimensional dynamical system.

We now define bistability for the RNN.

Definition 1. Assume fθ : RN1 ×RN2 ×RN3 →RN3 is as above.
The function fθ is bistable with respect to the third variable u
if a real value ω > 1 and an integer Ns exist such that

wij = ω if i ≤ Ns, i = j,

wij = 0 if i ≤ Ns, i /= j,

∣∣wij

∣∣ <
1
N3

otherwise,

(4)

for every element wij of the matrix W3.

The bistability of a function fθ is a key concept of
our learning method. We will show in Section 4.1 that the
bistable function fθ plays an important role in the learning
of multiple attractor dynamics.

2.2. Learning Method. We present a formulation of the
training procedure for the RNN with a multiple teacher I/O
time series. For every 1 ≤ k ≤ m and Lk ∈ N, we assume that

(x(k)
1 , . . . , x(k)

Lk ) is a sequence of teacher I/O of length Lk.

Initialization of Parameters. We initialize every element of
matrices W1(0), W2(0), and V(0) and vectors b(0) and
d(0) randomly from the uniform distribution in the interval
(−1/N3, 1/N3). A matrix W3(0) is randomly assigned such

that fθ is bistable. For all 1 ≤ k ≤ m, u(k)
1 (0) is randomly

initialized in the interval [−1, 1].
Assume that r(k)

n (0) is an m-tuple of vectors

(s(k,1)
n (0), . . . , s(k,m)

n (0)) for 1 ≤ k ≤ m and 1 ≤ n ≤ Lk,
and that the dimension of s(k,l)

n (0) is equivalent to that of

s(k′,l′)
n′ (0) if l = l′. We initialize s(k,l)

n (0) such that

s(k,l)
n (0) =

⎧
⎨

⎩

0 if k = l,

−1 otherwise.
(5)
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Figure 2: Trajectories of the teacher I/O time series in experiment 1.

Run Network with Teacher I/O and Compute Error Function.

For every 1 ≤ k ≤ m, the sequence (x̂(k)
1 (t), . . . , x̂(k)

Lk (t)) of I/O
units of the RNN at learning step t is defined by

(
x̂(k)
n (t), r̂(k)

n (t)
) = gθ(t)

(
u(k)
n (t)

)
,

u(k)
n+1(t) = fθ(t)

(
x(k)
n , r(k)

n (t), u(k)
n (t)

)
.

(6)

The error function E(k)(t) of the RNN at learning step t with
the kth teacher I/O time series is defined by

E(k)(t) =
Lk∑

n=1

e
(

x̂(k)
n (t), x(k)

n

)
+ e
(

r̂(k)
n (t), r(k)

n (t)
)
, (7)

where e denotes the mean square error function e(x, x′) =
(1/2)(x− x′)T · (x − x′). Finally, the error function E(t) at
learning step t is defined by

E(t) =
m∑

k=1

E(k)(t). (8)

Update Parameters. Let ρ(t) ∈ {W1(t), W2(t), V(t), b(t),
d(t)} be a parameter of the RNN at learning step t. We
determine the parameter ρ(t + 1) by

ρ(t + 1) = ρ(t) + αΔρ(t),

Δρ(t) = βΔρ(t − 1)− ∂E(t)
∂ρ(t)

,
(9)

where Δρ(0) = 0; α and β are the constants of the learning
rate and momentum, respectively. On the other hand, a
connection matrix W3(t) is not changed as W3(t+1) = W3(t)
in order to hold the bistability condition. We compute the

initial state u(k)
1 (t + 1) of the internal units at learning step

t + 1 such that

u(k)
1 (t + 1) = u(k)

1 (t) + α′Δu(k)
1 (t),

Δu(k)
1 (t) = βΔu(k)

1 (t − 1)− ∂E(t)

∂u(k)
1 (t)

,
(10)

where Δu(k)
1 (0) = 0, and α′ is the constant of the learning

rate of the initial state. Assume that s(k,l)
n (t) is a vector as a

component of the orthogonal units r(k)
n (t), such as r(k)

n (t) =
(s(k,1)

n (t), . . . , s(k,m)
n (t)). The vector s(k,l)

n (t + 1) is defined by

s(k,l)
n (t + 1) =

⎧
⎪⎨

⎪⎩

s(k,l)
n (t) + α′′Δs(k,l)

n (t) if k = l,

−1 otherwise,
(11)

Δs(k,l)
n (t) = βΔs(k,l)

n (t − 1)− ∂E(t)

∂s(k,l)
n (t)

, (12)

where Δs(k,l)
n (0) = 0, and α′′ is the constant of the learning

rate of the orthogonal units.
Note that the maximum value of the error function E(t)

depends on the number of units and the length of the teacher
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I/O time series. Thus, we should scale the learning rates α, α′,
and α′′ with the number of units and length of sequences. In
the present paper, we consider parameters γ, γ′, and γ′′ such
that α = γ/(N1 + N2)

∑
kLk, α′ = γ′/(N1 + N2), and α′′ =

γ′′/(N1 + N2).

3. Numerical Experiments

In this section, we conduct two types of experiments as
examples of using the training method for RNNs proposed
in Section 2. The first experiment shows the learning of five
Lissajous curves. The second experiment shows the training
of multiple attractors of a Van der Pol oscillator with 12
different parameters.

3.1. Experiment 1: Lissajous Curves

3.1.1. Teacher I/O Time Series. Our first task is to learn the
five Lissajous curves defined by

x(1)
n,1 =

4
5

sin
(

2πn
M

)
, x(1)

n,2 =
4
5

cos
(

2πn
M

)
,

x(2)
n,1 =

4
5

sin
(

4πn
M

)
, x(2)

n,2 =
4
5

cos
(

2πn
M

)
,

x(3)
n,1 = x(2)

n,2, x(3)
n,2 = x(2)

n,1,

x(4)
n,1 =

4
5

sin
(

2πn
M

)
, x(4)

n,2 =
4
5

cos
(

4πn
M

)
,

x(5)
n,1 = x(4)

n,2, x(5)
n,2 = x(4)

n,1,

(13)

and we consider constants M = 32 and Lk = 200 for all 1 ≤
k ≤ 5 (see Figure 2).

3.1.2. Learning and Testing. We now describe the specific
conditions applied to RNN training. The time constant ε is
set to 0.1. The number N2 of orthogonal units is 10, and the

dimension of a vector s(k,l)
n is 2 for all 1 ≤ l ≤ 5. Suppose

that fθ is bistable with N3 = 30, Ns = 15, and ω = 2.5. The
learning rates and momentum are given by γ = 0.1, γ′ =
γ′′ = 0.01, and β = 0.9, respectively.

Figure 3 shows the error function E(k)(t) for 20 000
learning steps. We also show the Kullback-Leibler divergence
between the teacher I/O time series and a sequence of I/O
units in the RNN computed by (3) which do not use external
perturbation by the teaching sequences. We use the Kullback-
Leibler divergence as a measure of the discrepancy between
two sequences. Formally, the Kullback-Leibler divergence
between two probability distributions p and q is defined
as

dKL(p, q) =
∫
(

log p(x)− log q(x)
)
p(x)dx. (14)

By definition, in order to compute the Kullback-Leibler
divergence, it is necessary to obtain probability distributions
of the teacher I/O time series and a sequence of I/O
units. However, obtaining the probability distribution of

a sequence of I/O units is very difficult. Therefore, we
quantize a time series of real-valued vectors into a symbolic
sequence such that if the real value is less than 0, then
the symbol 0 is appropriated, and otherwise the symbol
1 is appropriated. In addition, we use the probability
distribution whereby sub-blocks with a block length of
l appear in the symbolic sequence given by the above
quantization.

Figure 4 describes attractors of the trained RNN com-
puted by (3) of which the initial state of internal units is

u(k)
1 (t) for each 1 ≤ k ≤ 5. By comparing the attractors

with the teacher I/O time series displayed in Figure 2, we can
see that the RNN can generate sequences similar to training
data.

In Figure 5, examples of attractors for the RNN with
random initial states are displayed. This shows that, in
addition to the attractors corresponding to teacher I/O time
series, there exist many attractors of the RNN.

3.2. Experiment 2: Van der Pol Attractors

3.2.1. Teacher I/O Time Series. Our second task is to learn
multiple attractors given by the Van der Pol oscillator with
different parameters. The Van der Pol oscillator defined by

d2y

dt2
− μ
(
1− y2)dy

dt
+ y = 0 (15)

is a model of an electronic circuit that appeared in very early
radios. It is well known that there exists a limit cycle for the
Van der Pol oscillator. In this experiment, we consider twelve
teacher I/O time series, where the kth teacher I/O time series
x(k)
n is given by

x(k)
n,1 = ay(t) + bk, x(k)

n,2 = a
dy(t)
dt

+ ck, t = n

τk
, (16)

for μ = 0.25 and a = 0.15, where bk and ck are constant
parameters representing the center position of the limit cycle,
and τk is a time constant of the oscillator. We assume that the
parameters bk, ck, and τk are given by combining the values
of bk = ±0.4, ck = ±0.4, and τk = 2, 4, 6. Figure 6 shows the
teacher I/O time series given by (16). The length of training
data is Lk = 200 for 1 ≤ k ≤ 12.

3.2.2. Learning and Testing. The parameters for learning are
set as follows. Let fθ be bistable with N3 = 40 and Ns = 20.

The dimension of the vector s(k,l)
n is 1 for every 1 ≤ l ≤

12 so that N2 = 12. Other parameters are the same as in
experiment 1.

The error function and the Kullback-Leibler divergence
for 200 000 learning steps are displayed in Figure 7. Figure 8
shows attractors of the trained RNN, and the initial state of
the internal units of which is set to u(k)

1 (t) for every 1 ≤ k ≤
12.

This result allows us to consider that the RNN acquires
multiple periodic attractors constituted by the teacher I/O
time series.
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Figure 3: Error and Kullback-Leibler divergence between the teaching sequences and output generated by the RNN for 20 000 learning steps
in experiment 1.
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Figure 4: Time series xn generated by the trained RNN in experiment 1. For each time series, only the initial state u0 is different.

4. Numerical Analysis

4.1. Contraction and Bistability. Assume that X and U are
sets and that U is equipped with a metric structure. A
function f : X × U→U is a contraction with respect to U

if a real value C ∈ [0, 1) exists such that the inequality

∀u1,u2 ∈ U ∀x ∈ X
∣
∣ f (x,u1)− f (x,u2)

∣
∣ ≤ C

∣
∣u1 − u2

∣
∣

(17)

holds for all x ∈ X and u1,u2 ∈ U .
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Figure 5: Time series xn generated by the trained RNN with random initial state u0 in experiment 1.
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Figure 6: Teaching sequences of experiment 2. (a) Trajectories on R2. (b) Temporal trajectories of teaching sequences.
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Figure 7: Error and Kullback-Leibler divergence between the teaching sequences and output generated by the RNN for 200 000 learning
steps in experiment 1.
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Figure 8: Time series xn generated by the trained RNN in experiment 2. For each time series, the initial state u0 is the same as the training
phase. (a) Trajectories on R2. (b) Temporal trajectories.

Lemma 2. Let one consider a dynamical system onRN3 defined
by the transition function un+1 = fθ(gθ(un), un), where fθ and
gθ are defined in (1) and (2), respectively. Assume that each
element wij of the matrix W3 satisfies (4), and ν ∈ R is the
maximum absolute value of elements in W1, W2, and b. If there
exist three solutions of

x − ω tanh(x) + v
(
N1 + N2 + 1

) = 0, x ∈ R, (18)

then

(1) there are 2Ns invariant sets of a dynamical system
un+1 = fθ(gθ(un), un);

(2) suppose that U ⊂ RN3 is an invariant set of the
dynamical system; then, the restriction of fθ to RN1 ×
RN2 × U is a contraction with respect to U and
the maximum norm | · |∞, where |u − u′|∞ ≡
max1≤i≤N3 |ui − u′i |.

Proof. We suppose that (18) has three solutions, such as x1 >
x2 > x3 (see Figure 9). In general, x1, x2 > 0 and x3 < 0.

(1) Assume 1 ≤ i ≤ Ns and x1 ≥ u(i)
n ≥ x2. Then, the

expression

u(i)
n − ω tanh

(
u(i)
n

)
+ v
(
N1 + N2 + 1

) ≤ 0

=⇒ u(i)
n − ω tanh

(
u(i)
n

)−O(i)
n ≤ 0

⇐⇒ −ε(u(i)
n − ω tanh

(
u(i)
n

)−O(i)
n

) ≥ 0

⇐⇒ (1− ε)u(i)
n + ε

(
ω tanh

(
u(i)
n

)
+ O(i)

n

) ≥ u(i)
n

⇐⇒ u(i)
n+1 ≥ u(i)

n

(19)

is satisfied for all xn ∈ RN1 , rn ∈ RN2 , and un, u′n ∈ RN3 ,

where O(i)
n is the ith element of the vector On = W1 · xn +

W2 · rn+b. Hence, u(i)
n+1 ≥ u(i)

n if x1 ≥ u(i)
n ≥ x2. Furthermore,

if u(i)
n ≥ x1, then u(i)

n+1 ≥ x1 because

u(i)
n ≥ x1

=⇒ tanh
(
u(i)
n

)

≥ tanh
(
x1
) (

because x1 > 0
)

=⇒ (1− ε)u(i)
n + ε

(
ω tanh

(
u(i)
n

)
+ O(i)

n

)

≥ (1− ε)x1 + ε
(
ω tanh

(
x1
)

+ O(i)
n

)

=⇒ u(i)
n+1 ≥ x1 (because x1 ≥ u(i)

n ≥ x2 =⇒ u(i)
n+1 ≥ u(i)

n

)
.

(20)
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Figure 10: Kullback-Leibler divergence between the teaching
sequences and output generated by the trained RNN with ε =
0.1, N2 = 10 (dim s(k,l)

n = 2), N3 = 30, and Ns = 15.

Therefore, the region [x1,∞) is a stable set of the ith element

of vector un satisfying the fact that if u(i)
n ∈ [x1,∞) then

u(i)
n+k ∈ [x1,∞) for any k ∈ N.

Similarly, we can easily show that if u(i)
n ≤ −x1, then

u(i)
n+1 ≤ −x1. Thus, there are two stable regions of the ith

element of vector un for each 1 ≤ i ≤ Ns. Then, there are
2Ns invariant sets.

(2) Let U ⊂ RN3 be the invariant set presented above.
Assume that un, u′n ∈ U .

For any 1 ≤ i ≤ Ns, the inequality

∣
∣u(i)

n+1 − u′(i)n+1

∣
∣

= ∣∣(1− ε)
(
u(i)
n − u′(i)n

)

+ εω
(

tanh(u(i)
n

)− tanh
(
u′(i)n

))∣∣

<
∣∣(1− ε)

(
u(i)
n − u′(i)n

)
+ ε
(
u(i)
n − u′(i)n

)∣∣

= ∣∣u(i)
n − u′(i)n

∣
∣

(21)

holds because if |x| ≥ x1, then ω|d tanh(x)/dx| < 1.

On the other hand, for every Ns ≤ i ≤ N3,

∣
∣u(i)

n+1 − u′(i)n+1

∣
∣

=
∣
∣∣
∣
∣(1− ε)

(
u(i)
n − u′(i)n

)

+ ε
∑

j

wi j
(

tanh
(
u

( j)
n
)− tanh

(
u′(i)n

))
∣
∣∣
∣
∣

≤ (1− ε)
∣∣u(i)

n − u′(i)n

∣∣

+ ε

∣
∣
∣∣
∣

∑

j

wi j
(

tanh
(
u

( j)
n
)− tanh

(
u
′( j)
n
))
∣
∣
∣∣
∣

≤ (1− ε)
∣∣u(i)

n − u′(i)n

∣∣ + ε

∣∣
∣
∣∣

∑

j

wi j
(
u

( j)
n − u

′( j)
n
)
∣∣
∣
∣∣

≤ (1− ε)
∣∣u(i)

n − u′(i)n

∣∣ + εN3 max
j

∣∣wij
(
u

( j)
n − u

′( j)
n
)∣∣

≤ (1− ε)
∣
∣u(i)

n − u′(i)n

∣
∣ + εN3max

j

∣
∣wij

∣
∣max

j

∣
∣u

( j)
n − u

′( j)
n
∣
∣

≤ ((1− ε) + εN3max
j

∣
∣wij

∣
∣) max

j

∣
∣u

( j)
n − u

′( j)
n
∣
∣

< max
j

∣
∣u

( j)
n − u

′( j)
n
∣
∣.

(22)

Then, |un+1 − u′n+1|∞ < |un − u′n|∞ is obtained for any
un, u′n ∈ U . Accordingly, the restriction of fθ toRN1×RN2×U
is a contraction with respect to U and the maximum norm
| · |∞.

For any N1,N2 ∈ N and ν ≥ 0, there is a real number
q such that if ω ≥ q, then (18) has three solutions. Thus, if
ω is large enough and matrices W1 and W2 represent small
connection weights, then fθ contains 2Ns invariant sets, and
each restriction of fθ to an invariant set is a contraction with
respect to a third input. Moreover, the integer N3 − Ns is
the effective degree of freedom for each contraction mapping
restricted to an invariant set. If N3 −Ns is a large value, then
RNN can acquire a more complex time sequence. In Figures
10 and 11, we plot the Kullback-Leibler divergence of the
trained RNN for parameters ω and Ns, in which the training
data are the same as those for experiment 1. These results
imply that it is necessary that ω, 2Ns , and N3 − Ns be large
values in order to learn multiple attractor dynamics.

4.2. Orthogonality. In the last paragraph of the previous
section, we have shown that RNNs have many stable regions,
and the existence of the stable regions plays an important
role in the learning of multiple sequences. However, the
existence of multiple stable regions is not sufficient for
success in the multiple attractor learning because if the
change of parameters corresponding to each time series
influences other changes, each time series cannot necessarily
be embedded into each region. Similarly, this problem
appears in the method of RNNPB.

In the training algorithm defined in Section 2, each state
of orthogonal units r = (s(1), . . . , s(m)) is trained by (5)
and (11). Thus, firing of s(k) only occurs in the generation



10 Advances in Artificial Neural Systems

K
L

di
ve

rg
en

ce

0

1

2

3

4

5

6

7

8

9

10

Ns

0 5 10 15 20

(a)

K
L

di
ve

rg
en

ce

0

1

2

3

4

5

6

7

8

9

10

Ns

0 5 10 15 20 25 30

(b)

K
L

di
ve

rg
en

ce

0

1

2

3

4

5

6

7

8

9

10

Ns

0 5 10 15 20 25 30 35 40

(c)

Figure 11: Kullback-Leibler divergence between the teaching
sequences and output generated by the trained RNN with ε =
0.1, ω = 2.5, and N2 = 10 (dim s(k,l)

n = 2). (a) N3 = 20, (b) N3 = 30,
and (c) N3 = 40.

of the kth teaching sequence. This implies that orthogonal
units allow the conflict of parameter changes caused by
multiple time series learning to be avoided because orbits
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Figure 12: Average dV (k)(t) of the kth learning ratio for the
connections between internal units and orthogonal units s(k) for
200 000 learning steps in experiment 1.

corresponding to each teaching I/O time series run around
the orthogonal state space of the trained RNN.

In order to show the effect of the orthogonal units on
the conflict among teaching sequences, we consider the kth

learning ratio dv(k)
i j (t) defined by

dv(k)
i j (t) = ∂E(k)(t)

∂vi j

(
∂E(t)
∂vi j

)−1

, (23)

where vi j is an element of the matrix V . If dv(k)
i j (t) is

nearly equal to 1, then the change in vi j is approximately
independent of teaching sequences rather than the kth
sequence. In Figure 12, we plot the value dV (k)(t) determined
by

dV (k)(t) = 1
(N3 −Ns)|R(k)|

∑

i∈R(k)

N3∑

j=Ns

dv(k)
i j (t), (24)

where R(k) is a set of indices corresponding to the elements of
the vector s(k). The value dV (k)(t) represents the average of
the kth learning ratio for connections between internal units
and orthogonal units s(k). In this numerical experiment, for
each learning step, dV (k)(t) is clearly larger than 1/m = 0.2,
where m is the number of teaching sequences. Then, the
sum of the kth learning ratios of connection weights between
internal units and orthogonal units s(k) is dominant. There-
fore, in changing matrix V , there is no conflict generated by
multiple teaching sequences. However, we could not find a
strong bias of the learning ratio for the matrices W1 and W2

and every element vi j ofV with i < Ns. Thus, we consider that
connection weights between internal units and orthogonal
units encode information on an individual time series, and
other connection weights encode whole information.
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5. Discussion

In this report, we have investigated a method of embedding
multiple time series into a single RNN. In order to clarify
the characteristics of the proposed approach, we compare
the proposed approach with other approaches with respect
to information representation of multiple sequences in the
models. The mixture-of-RNN-experts-type model composes
local representation in an RNN for each sequence. The
local representation provides robustness against changing
the parameters in learning, but it lacks the ability to
extract common patterns included in the sequences because
of the independency of the local representation. In the
proposed model, the local representation is constructed into
orthogonal units, while the global representation is also
constructed into internal units using the connection weights
between I/O units and internal units. Since each sequence
generated by the proposed model shares the state space and
connection weights, the model can extract common patterns
of the sequences as well as conventional neural networks.

Another characteristic, which clarifies the difference
between our model and other models, is whether the
classification of each time series is self-organized into the
state space. For example, in the mixture-of-RNN-experts-
type model, the allocation of time series to each RNN
is determined automatically. As another example, in the
RNNPB model, PB values are self-organized such that the
PB can individualize each time series. On the other hand, the
proposed model needs the information of orthogonalization
for each time series. Since the sparse firing patterns which
appear in orthogonal units, corresponding to time series, are
given as teaching information externally, the classification of
sequences is not self-organized. The characteristic whereby
the time series cannot be automatically classified is a
disadvantage of the proposed model. However, the time
series can be classified using other clustering techniques
before applying the proposed method. Thus, by combining
the proposed method and other clustering techniques, an
algorithm that automatically classifies and generates multiple
time series can be constructed.

6. Conclusion

In this paper, we have presented an RNN model and a
learning algorithm that can acquire the ability to generate
multiple sequences. The RNN model consists of two distinct
properties called bistability and orthogonality. Bistability
guarantees the existence of multiple attractor structures in
RNNs, and provides the RNNs with contraction transition
mapping. Orthogonality, which is given as a function of the
orthogonal vectors of RNNs, helps prevent conflicts with
respect to parameter changes caused by multiple training
sequences. In the numerical experiments, RNNs which have
bistability and orthogonality can learn multiple periodic
attractors constituted by five Lissajous curves or 12 Van der
Pol oscillators. Based on these results, the proposed model
can be applied to the modeling of various types of dynamical
systems that include multiple attractors.
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