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Abstract
In this paper, we will explore possibilities of dynamic interactions between human and neuro-
cognitive robots especially focusing on the psychological problems of joint attentions and
turn-taking. Firstly, we will show that movement patterns of a joystick-type haptic device
which are driven by a simple attractor-based memory dynamics of recurrent neural network
(RNN) can introduce novel interactive experiences to human subjects based on their force
and proprioceptional sensations. Secondly, we will show experiments of joint attention game
between human and a humanoid robot based on imitation learning. In the experiments, an
extended scheme of RNNs is utilized for constructing a mirror system by which recognition
of other’s movements and generation of owns can be naturally synchronized in the real-
time imitation. These experiments suggest that spontaneous shifts in joint attentions as
well as turn taking have resulted from so-called the open-dynamic structures where stable
and unstable manifold coexist in the coupling between the robots and human cognitive

processes.

1 Introduction

In entertainment robotics, achieving natural interactions between robots and their users is one of the most
essential issues to be solved. Human communications involve dynamic processes such as joint attention
and turn taking with others. Joint attention is to share behaviors, events, interests and contexts in the
world among agents from time to time. It requires mutual awareness of companion’s attentions. On the
other hand, turn taking is to switch the initiatives in interactions among agents spontaneously. Turn
taking is considered to be prerequisite for joint attention.

Recent research on robotics have implemented a model of joint visual attention [3] between robots and
humans [9, 12]. In such models, the robot guess the human’s attentional target by detecting their gazing
and pointing, and also pays attention to it. And then joint attention can be archived by the recognition
of the robot’s attention by human. However, in human communications, it seems that there are more
complex situations of joint attention that can never be achieved by simply using such static and explicit
cues [8]. For example, to share topics in streams of dialogues or to share a dancing pattern from one
to another between couples. It seems that the targets of such joint attention are determined in the flow
of ongoing interactions in contextual ways where embodiments in terms of movements and haptics play
an important role. We speculate that such context dependent communicative interactions could emerge
in terms of a class of dynamical structures appeared in the mutual adaptation processes between robots
and humans.

In order to explore such communicative interactions based on embodied dynamical systems approach,
we have conducted some experimental studies using neuro-cognitive robotics platforms. Our first experi-
ment presented in this paper is about force-based interactions with human and a joystick device which is
implemented with a simple recurrent neural network (RNN) model for its adaptive processes. Even with
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this simple setting, a class of complex dynamic interactions appear where human users can experience
novel phenomena especially in their haptic sensation.

In the second study [6], we conduct experiments of the so-called the joint attention game with a
humanoid robot in which dynamical mechanism of mutual imitative interactions were explored by im-
plementing an extended model of RNNs, recurrent neural network with parametric biases (RNNPB)
[17, 18, 19, 15]. The imitation in our robot platform is not yet goal-oriented ones as have been discussed
by [20]. Also the correspondence problems [4] between the perceptual space for others and motor space
of own in learning are simplified. However, it has been observed that quite diverse and complex mutual
adaptive processes could emerge by utilizing the distributed representation characteristics of the RNNPB
for embedding multiple behavior schema.

It is highly speculated that these two experiments would account for crucial mechanisms on embodied
communicative interactions of rather unconsciousness levels. The paper will discuss our hypothesis that
the open dynamic structure [16] appeared in the coupling between the robots and human could account
for the underlying mechanisms for spontaneous switching of joint attention as well as turn-taking.

2 Haptic interaction with “adaptive” joystick

In this section, a minimal form of an adaptive interactive system is introduced. For the purpose of realizing
direct physical interactions with the machine, a force-feedback joystick is employed as an interface since it
is considered that force is one of the most direct and the least articulated human sensory modalities. The
force-feedback joystick is bi-directionally connected to an artificial neural network which is simulated
in a real-time computer. When a subject manipulates the joystick with certain movement patterns
repeatedly, the neural network learns to predict how the movement trajectory proceeds in future steps
in an on-line manner. Upon this on-line learning, the neural net drives the joystick toward the direction
of the prediction. If the prediction agrees with the movement patterns by the subject, the subject would
feel that the joystick moves smoothly with less efforts in his or her hand. Otherwise, the subject would
experience a resistant force against his or her will from the joystick. Our preliminary experiments explore
what sorts of interactions can emerge between human subjects and this on-line adaptive haptic device.
The next subsection describe the technical details of this system as well as the employed neural network
model.

2.1 RNN and joystick device

Figure 1 illustrates how the force-feedback joystick is connected to a neural net model simulated in a
computer. Upon the manipulation of the joystick, the current encoder positions of the driving motors of
the joystick (x¢,y:) is sent to the so-called recurrent neural net (RNN). The RNN is well known for its
learning capability of temporal structures from example sequences utilizing its context feed-back loops[7].
The RNN, receiving (z,y;) in the input layer, outputs its prediction at next time step as (¢41, Yet+1)-
This prediction outputs are sent back to the motors as the target position signals and the motor force
are generated according to the position error between the target and the current ones. The actual motor
positions are determined by the sum of the motor and the subject’s forces. The subject feels the stronger
force from the joystick when the RNN prediction error become larger. On the other hand, the subject feels
easy to manipulate it as the error becomes smaller. The error detected between the predicted positions
and their outcomes are used for on-line training of the RNN. The synaptic weights of the RNN is modified
by means of the back-propagation through time algorithm [13] in an on-line manner.
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Figure 1: A force-feedback joystick (a) which is bi-directionally connected to a recurrent neural net (b).

2.2 Interaction experiments

In the first step of the experiment, the basic performance of the system was examined. We asked a
subject to draw a circle with holding the joystick with about 2 seconds periodicity. It was found that
the joystick starts to move autonomously along trajectories of this circle after the subject introduces this
pattern for several periods. Then, the subject introduce a different pattern, such as a figure of eight to
the joystick. During the introduction of this new pattern, the subject senses a strong anti-force from the
joystick in the beginning. Then later after several periods, he senses less amount of anti-force and the
joystick started to move autonomously with drawing the figure of eight. It could be interpreted that the
subject senses through his haptics, a sort of resistance force of the machine to preserve its own memory
self-organized in the RNN.

Nextly, we examined how the subjects interact with the adaptive joystick in rather more free setting.
We repeated the following experiment session for several subjects. Before starting each session, we asked
each subject to play with the joystick for a few minutes so that he or she could be accustomed to the
system’s behaviors. Then, in the experiment session, the subject was told to manipulate the joystick
freely with closing his eyes. This eye closure procedure makes the subject to concentrate on his haptic
sensation. The experiment was continued for three minutes while we recorded the RNN dynamics and
the motor driving force. One of a typical session with a subject is introduced here.

We plotted the so-called bifurcation diagram of the RNN dynamics in the upper part of Figure 2 which
illustrates how the neural dynamical structure modulates during the session.

The bifurcation diagram was obtained by observing the RNN context units activities at a certain
Poincare section [23] at each time step. The lower part of Figure 2 shows the associated time-development
of the absolute values of the motor forces. It is observed that there exist two distinct phases, the stable
and the fluctuated phases, in the bifurcation diagram. It is also observed that the absolute value of the
force decreases in the stable phases and it increases in the fluctuated ones. We further plotted the phase
diagram of the RNN dynamics at typical time-windows in Figure 3. Figure 3 (a) (b) and (c) show the
phase diagrams at time-windows during the stable phases and Figure 3 (d) and (e) do for those of the
fluctuated phases. From the examination of the Lyapunov exponent for those dynamics, it was shown
that the dynamics sampled in (a) (b) and (c) correspond to attractor of limit cycling and those in (d)
and (e) do for strange attractor of chaos.

Although it is quite difficult to examine exactly what the subject felt at each moment, the oral report of
the subject indicated that there are at the least two different phases, namely the automatic unconscious
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Figure 2: The bifurcation diagram of the RNN activities in the upper part and the motor force during
the session.
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Figure 3: The RNN attractor appeared in typical time-windows in the session.
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Figure 4: A user is interacting with the Sony humanoid robot QRIO SDR-4XII.

phase and the conflicting conscious phase. The former corresponds to the stable and coherent phases
where the prediction of the RNN agrees well with the actual movement of the subject. The subject
frequently reported that as if he or she floated smoothly in river flow passively in this phase. On the
other hand, in the incoherent phase, the conflicting force initiated by means of the RNN prediction
error make the subjects “conscious” about gaps appeared between the machines and themselves. It
can be interpreted that joint attention is achieved for a movement pattern between the machine and
the subjects in the coherent phase. However such joint attention can take place only momentary, as the
current joint attention is likely to be shifted to another movement pattern intermittently by going through
the incoherent phase. However, it is fair to say that the current analysis is only at the preliminary stage.
Especially, the methodologies to examine the phenomenology of the subjects should be developed further.

3 Humanoid robot experiments

In the previous experiment on the haptic interactions, it was rather difficult to preserve multiple movement
patterns simultaneously in the dynamic memory of the RNN. In the course of on-line learning, a learned
movement pattern is destroyed later by learning another pattern. In our second experiment, the RNNPB
which is an extended model of RNN is introduced for the purpose of preserving multiple movement
patterns in the robot memory. The game of joint attention in this new experiment is that human
subjects attempt to explore possible movement patterns memorized by the robot by attempting various
interactions to the robot. If the subject happen to demonstrate one of the memorized pattern to the
robot, the robot can synchronize to it by retrieving the corresponding memory.

The experiments were conducted by using the Sony humanoid robot QRIO SDR-4XII (see Figure 4).
The movements of the subjects are restricted to their both arms movements in the current setting. As
the subjects hold two differently colored balls in their both hands, the robot can recognize their hands
positions by using the color information. The perceived hand positions of the subjects are utilized as
the main sensory inputs for the robot. The robot is trained to imitate the hand movement patterns of
the subjects by utilizing 8-DOF motor joints in its two arms by means of direct teaching. The robot
learns to predict both of the subjects hand movements and its own corresponding arm movements for
multiple movement patterns through the off-line supervised training of the RNNPB. After the learning
is completed, the game of the imitative interaction is conducted in the interaction phase.

The next subsection will describe the RNNPB [17, 18] implementation regarding to the task. More
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details should be referred to [6].

3.1 RNNPB modeling

RNNPB is a version of the Jordan-type RNN [?] where the PB units allocated in the input layer play the
roles of mirror neurons since their values encode both of generating and recognizing the same movement
patterns. In generating patterns, the PB values function as control parameters for modulating the
forward dynamics of the RNN. On the other hand in recognizing patterns, the corresponding PB values
for currently perceiving patterns can be dynamically obtained by using the inverse dynamics of the
RNN. It is, however, important to note that these recognition and generation processes are conducted
simultaneously in the interaction phase i.e.— the robot generates corresponding patterns while recognizing
the user’s movement patterns. These ideas are detailed in the following associated with descriptions of
the learning scheme.

A set of movement patterns is learned, in terms of the forward dynamics of the RNNPB, by self-
determining both the PB values, that are differently assigned for each movement pattern, and a synaptic
weight matrix that is common for all patterns. The information flow of the RNNPB in the learning phase
is shown in Figure 5(a).

In the imitation learning of the subject movement patterns, the robot is directly taught with the motor
joint movement patterns as corresponding to the subject’s hand positions movement patterns which are
visually perceived. The learning of the RNNPB is conducted by off-line with using both target sequences
of the robot joint angles m; and the subject’s hand positions s;.

With given m, and s; in the input layer, the network predicts their values at the next time step in the
output layer as myy; and s;51. The outputs are compared with their target values my4; and s;; and
the error generated is back-propagated [13] for the purpose of updating both the synaptic weights and
PB values. Note that the determined synaptic weights are common to all learning patterns, but the PB
values are differently determined for each pattern.

¢ represents the context units where the self-feedback loop is established from ¢,y in the output layer
to ¢; in the input layer. The context unit activations represent the internal state of the network.

In the interaction phase, the pre-learned network is utilized without updating the synaptic weights.
While the forward dynamics of the RNNPB generates the prediction of the sensory-motor sequences,
the PB values are inversely computed by utilizing the error information obtained between the sensory
prediction and the outcome. See Figure 5(b) for the information flow of the network in the interaction
phase. The visually perceived hand positions are fed into the RNNPB as the target sequences. The
RNNPB, when receiving s;, attempts to predict its next value s;y; in the outputs. The generated
prediction error from the target value s;y1 in the outputs is back-propagated to the PB units and the PB
values are updated in the direction of minimizing the error. Note that although the PB plays the role
of the inputs for the forward computation, its values are gradually modulated in order to adapt to the
current target sequence patterns. If pre-learned hand movement patterns are perceived, the PB values
tend to converge to the values that have been determined in the learning phase while minimizing the
prediction error. It is guaranteed that by minimizing the prediction error to zero the forward dynamics
does not modulate anymore since the PB values converge. Then, the network becomes able to generate
the associated motor patterns m¢y; as previously learned. The robot movement patterns are generated
based on the PB values while these values are adapted by perceiving the hand movement patterns. An
interesting feature of this model is that generation and perception are performed simultaneously in one
neural dynamic system.
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Figure 5: The system flow of RNNPB in learning phase (a) and interaction phase (b).
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3.2 Imitation by synchronization

As the first step, we examined how the robot can imitatively regenerate one of learned movement patterns
by synchronizing with the subject movement pattern. Firstly, the robot learns three movement patterns
shown by user’s hand movements in the learning phase. In the interaction phase, we tested how the
robot can follow target patterns of the subject while the subject switches to demonstrate from one taught
pattern to another.

The results of the experiment are plotted in Figure 6. It is observed that when the user hand movement
pattern is switched from one of the learned patterns to another, the patterns in the sensory prediction
and the motor outputs are also switched correspondingly by accompanying substantial shifts in the PB
vector. Although the synchronization between the user hand movement pattern and the robot movement
pattern is lost once during the transitions, the robot movement pattern is re-synchronized to the user
hand movement pattern within several steps. The experiments also showed that once the patterns were
synchronized they were preserved robustly against slight perturbations in the repetitions of the user’s
hand movements. Our further analysis concluded that the attractor dynamics system, with its bifurcation
mechanism via the PB, makes the robot system manipulatable by the users as well as robust to possible
perturbations.

3.3 Joint attention game

The previous experiments focused mainly on the adaptation in the robot side. We conducted another
experiment which focus on bi-directional adaptation in mutual interaction between the robot and users.
In this new experimental set-up, after the robot learns 4 movement patterns in the same way as described
previously, subjects who are ignorant of what the robot learned are faced with the robot. The subjects
are then asked to find as many movement patterns as possible for which they and the robot can synchro-
nize together by going through exploratory interactions. Five subjects participated in the experiments.
The settings of the network and the robot were exactly the same as those in the previous interaction
experiments. Each subject was allowed to explore the interactions with the robot for one hour, including
four 5 minute breaks.

Although most of the subjects could find all movement patterns by the end, the exploration processes
were not trivial for the subjects. If the subjects merely attempted to follow the robot movement patterns,
they could not converge in most situations since the PB values fluctuated when receiving unpredictable
subject hand movement patterns as the inputs. If the subjects attempted to execute their desired move-
ment patterns regardless of the robot movements, the robot could not follow them unless the movement
patterns of the subjects corresponded with the ones learned by the robot.

One example of the interaction in imitation game is plotted in Figure 7. It is observed that joint
attention to a certain movement pattern between the robot and the subject as synchronization is achieved
after some exploratory phase. It is also observed that this joint attentional state is break down once but
joint attention to another pattern is achieved again.

There are interesting points in this new experiment as compared to the previous one. First, the master-
slave relation, which was fixed between the subjects and the robot in the previous experiments, is no longer
fixed but is instead spontaneously switched between the two sides. (Recall that the subjects initiated new
movement patterns while also switching among multiple learned patterns in the previous experiments.)
When the subjects feel that the robot movement patterns become close to theirs, they just keep following
the robot movement patterns passively in order to stabilize the patterns. However, when the subjects feel
that they and the robot cannot match each other’s movements, they often initiate new patterns, hoping
that the robot will start to follow them and become synchronized. Second, there are autonomous shifts
between the coherent phase and the incoherent phase after the subjects become familiar with the robot
responses to some extent. When the subjects happen to find synchronized movement patterns, they tend
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Figure 6: Switching of the robot movement pattern among three learned patterns as initiated by switching
of user hand movement. User hand position and its prediction by the robot are shown in the first and the
second row, respectively. The third and fourth rows show motor outputs and PB vectors, respectively.



10 Second Int’l Workshop on Man-Machine Symbiotic Systems

: pattern 1 & : pattern 2 .

Target User Hand
(Position)

(Position)

Parametric Bias Predicted User Hand

Figure 7: Joint attention as synchronization between the robot and the subject in imitation game. User
hand position and its prediction by the robot are shown in the first and the second row, respectively.
The third row shows PB vectors of the RNNPB.

to keep the achieved synchronization for a moment in order to memorize the patterns. However, this
coherence can break down after a while through various uncertainties in the mutual interactions. Even
small perturbations in the synchronization could confuse the subjects if they are not yet fully confident
of the repertoire of the robot’s movement patterns. Also, the subjects’ explorations of new movement
patterns makes it difficult for the robot to predict and follow their movements.

4 Discussion

The authors speculate that appropriate analysis of these observed phenomena might shed a ray of light
on the mechanism of joint attention [2, 11] as well as turn taking behaviors [21]. In our experiments of the
haptic interactions with the joystick device as well as the joint attention game with the humanoid, when
movement patterns of the robot and human are synchronized, joint attention to the pattern is assumed
to have been achieved . However, the current joint attention can break down and another joint attention
(attending to another movement pattern) can emerge after a while. Although joint attention itself might
be explained simply by synchronization [10, 1], a more interesting question is how a joint attention can
break down and flip to another one spontaneously. This sort of spontaneity is also essential in turn taking
behaviors. It was observed that the initiatives leading to synchronization switch spontaneously between
the robot and the subjects. The essential question here is how the spontaneous shifts in turn taking
behaviors can emerge.

Although extensive analysis of the observed data is required for further reasoning of the underlying
mechanisms, the authors speculate that they might be closely related to the so-called open dynamic
structure [16]. It was argued that the system state tends to flip between the coherent and the incoherent
phases if stability, in terms of rational goal-directedness, and instability, caused by unpredictability of
the open environment, coexist in cognitive systems. Tani [16] proposed one possible explanation of the
spontaneous breakdown of self-consciousness through dynamic system characteristics. A more theoreti-
cal framework of this idea has been explained by the chaotic itinerary [22]. Furthermore, Tkegami and
Tizuka [5] recently showed that spontaneous turn taking behaviors can emerge by evolving the coupled-
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dynamics for a simulated pair of agents. Their analysis indicated that both stable and unstable manifolds
are generated in the evolved coupled dynamics. Our results could be explained in the similar way. In
our experiments of mutual interactions, the stability originated from the synchronization mechanisms for
shared memories of movement patterns between the robot and the subjects. The instability arose from
the potential uncertainty in predicting each other’s movements. It is likely that the coexistence of stable
and unstable characteristics in the system dynamics might be the main cause for the spontaneous shifts.
Recently, Sato [14] related this characteristics to the undecidability of the turing test in the theoretical
analysis of imitation game, although further examination is required in this part of the analysis. Future
collaborative research among developmental psychology, synthetic modeling studies, and theoretical non-
linear dynamics studies would gain further understanding of the essential mechanisms in joint attention
and turn taking behaviors.

In the joint attention game experiments, most of the subjects reported that they occasionally felt as
if the robot had its own “will” because of the spontaneity in the generated interactions. It is speculated
that the spontaneity originated from the total system dynamics including the users in the loop might
play an important role in attracting people to play with entertainment robots.

5 Summary

Our human interaction experiments with adaptive neuro-cognitive robots have shown that diverse dy-
namic interactions can emerge in the form of either coherence or incoherence between the robot and the
user. The robot can follow the learned user movement patterns synchronously by generating coherent
dynamic states. It can be said that joint attention is accomplished for the current movement pattern
shared in both the memories of the robot and the user. Our experiments of the mutual adaptation suggest
that the essential mechanism for autonomous shifts in joint attention and turn taking behavior could be
explained by the open dynamic structures in which stability, in terms of rational goal-directedness, and
instability, caused by unpredictability of others coexist.
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