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ABSTRACT

This paper describes how the internal
representation of the world can be self-organized
in modular and hierarchical ways in a neural
network architecture for sensory-motor systems.
We develop an on-line learning scheme -- the so-
called mixture of recurrent neural net (RNN)
experts in which a set of RNN modules becomes
self-organized as experts in order to account for
the different categories of sensory-motor flow
which the robot experiences. Autonomous
switching between winning expert modules,
responding to structural changes in the sensory-
motor flow, actually corresponds to the temporal
segmentation of behavior. In the meanwhile,
another mixture of RNNs at a higher level learns
the sequences of module switching occurring in the

network.

https://kaken.nii.ac.jp/d/p/08279101/2000/6/en.en.html

(J. Tani and S. Nolfi)

lower level, by which articulation at a further
more abstract level is achieved. The proposed
scheme was examined through simulation
experiments involving the navigation learning
problem. The simulated robot equipped with
range sensors traveled around rooms of different
shape. It was shown that representative building
blocks or “concepts" corresponding to turning
right and left at corners, going straight along
corridors and encountering junctions are self
organized in respective modules in the lower level
In the higher level network, the
“concepts” corresponding to traveling in different
rooms are self-organized by combining the ones
obtained in the lower level into sequences. The
robot succeeded in learning to perceive the world
as articulated at multiple levels through its
recursive interactions. :

1. Introduction .

How can sensory-motor systems attain the
internal representations of the  world in
structurally organized ways? A consensus in
cognitive science and artificial intelligence is that
complex worlds would be represented efficiently
utilizing modular and hierarchical structures of
symbol systems [Newell76, Newell80]. However,
it 1s still not well understood that how such
modular and hierarchical representation, if they
existed, could be self-organized in analog neural
systems from their iterative sensory-motor
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interactions.

The difficulty lies in the question that how the
continuous sensory-motor flow can be perceived as
articulated into sequences of meaningful
representative modules. Kuniyoshi [Kuniyoshi94]
addressed this articulation problems in the robot
learning context. In his experiment with an
assembling robot, the robot recognizes the various

. task performances by decomposing them into

sequences of  modular representations.
Subsequently, the robot is able to learn various
tasks in terms of compositions of the reusable
modular representations obtained. For attaining
such modular representation, the task
performance was temporally segmented by
means of detecting “meaningful changes" in the
observed sensory flow. The problem, however, is
that the definitions of these “meaningful
changes" were predetermined by designers. Our
investigation is of how a robot can define
“meaningful changes" by itself, the use of which
allows a task performance to be segmented into
reusable modules.

Robot navigation learning, which has a quite long
research history, faces the same type of problem.
There are basically two types of approach. One is
the neural network learning approach. Krose
[Krose94], Zimmer [Zimmer95] and Nehmzou
[Nehmzou96] showed that for relatively simple
workspaces, localization problems for robots can
be solved using the topological preserving map
scheme [Kohonen82)]. It is, however, difficult to
scale-up using this scheme since the very plain
representation by a single neural network hardly
organizes the modular and hierarchical structure
of the learned contents at all. The other approach
is the machine learning approach, which is used
in landmark-based navigation [Kuipers87,
Mataric92]. In this approach, the travel of the
robot is temporally segmented by means of
landmarks such as turning at corners,
encountering junctions, or going straight along
corridors. This temporal segmentation enables
the abstraction of robot experiences into a simple
chain representation of these landmark
types.The scheme can be scaled-up much more
readily than the neural network learning
approach since the landmarks play the roles of
the representative modules. However, the
problem is that the landmark types, which are

defined by designers, are not necessarily intrinsic
to the perceptions of a robot. The representative
modules such as corners, junctions, or corridors, if
necessary to the problem's solution, ought to be
generated from the robot's experiences.

In this paper, we introduce a novel scheme based

on the dynamical systems approach [Beer95,
Thelen94] whereby the problems of articulation
and structural formation of modules and

-hierarchy are explained solely by the dynamical

systems terms such as self-organization,
ooherence and phase transition. The scheme has
been developed as inspired by a modular and
hierarchical learning method using neural nets,
namely the mixture of experts proposed by Jacobs
and Jordan [Jacobs91]. We have extended this
original architecture dramatically such that it can
cope with learning of not only spatial patterns but

* also spatio-temporal patterns which sensory-

motor systems are inevitably involved with. The
readers will see that the sensory-motor flow are
articulated in autonomous manners as modules
and their hierarchy are self-organized in our
proposed architecture.

The paper introduces the robot navigation
learning as a prototype problem; our simulation
experiments will illustrate how a set of primitive
representative building blocks or “concepts"
emerge and how they construct the ones in the
higher level dynamically. Our hierarchical
learning is developed as combined with the
prediction learning scheme which is described in
the next section. ‘

2. Prediction Learning Using Sensory-
Motor Flow

Learning to predict next sensation means that
the system acquires some analogical models of
the target observed. Elman [Elman90] was the
first to show that a recurrent neural network
(RNN) can learn to predict word sequences by
extracting regularity hidden in example sentences.
Tani [Tani96] applied the RNN prediction
learning to the navigation learning problem. In
this scheme, a robot learns to predict
encountering sensory sequences according to its
action sequences taken in a given workspace.
Actually, it was shown that a real mobile robot
with a range sensor learned structure hidden in
an obstacle workspace from the sensory-motor
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flow experienced. The structure of the
environment was embedded in an attractor self-
organized in the RNN by means of the prediction
learning. However, a crucial critics in this scheme
is that the prediction of sensory input is made in
reality in a discrete temporal manner by means of
the predefined branching mechanism. Branching
plays the role of landmarks and invokes the
temporal segmentation of the sensory-motor flow.
Our new experiment is to attempt to eliminate
these types of predefined mechanisms for
temporal segmentation in the hope that the robot
itself will find them.

One possible way to implement temporal
segmentation of the sensory-motor flow is to focus
on the magnitude of its change with time
(Billard96]. For example, while a robot travels by
following a straight wall using the range image,
the image will be almost invariant. However, the
sensory-motor state will change dramatically
when the robot encounters a corner and starts
turning left or right. This rapid change could be
used as a signal for the segmentation between the
two behaviors of following straight walls and
turning at corners. However, the difficulty in this
scheme is that the cornering behavior can be
segmented several times since the sensory-motor
state probably changes rapidly all through the
cornering process. It is clear that the change of the
sensory-motor state at a single moment provides
only partial information about the on-going
behavioral process. A specific mechanism is
required by which a meaningful time interval of
the behavioral process, such as a cornering
behavior, can be recognized as a unique event
through extracting its specific spatio-temporal
structure from the sensory-motor flow.

3. New Schéme

Our new proposal in this paper is to use multiple -

module RNNSs, each of which competes to become
an expert at predicting the sensory-motor flow for
a specific behavior. The experts achieve their
status through learning processes. For example,
one module RNN would win in predicting the
sensory-motor flow while traveling around a
corner; another would win while following a
straight wall. The switching between the winning
RNN modules actually corresponds to the
temporal segmentation of the sensory-motor flow.
The essential point in this scenario is that the

segmentations take place by means of
pronounced changes in the observed dynamical
structure in the sensory-motor flow, rather than
just temporal differences in the sensory-motor
state. These highly pronounced changes
correspond to switching between the dynamical
functions each of which is embedded in an RNN
through havinglearned the specific sensory-motor
flow. One might ask how each RNN can choose to
learn its corresponding sensory-motor flow. The
speciality of each module is determined during the
processes of on-line learning. The competition
between the modules during the simultaneous
processes of recognition and learning result in
generating their specialties. The next section will
introduce a new architecture called the mixture of
RNN experts which has been extended from the
original idea of the mixture of experts first
expounded by Jacobs and Jordan [Jacobs91].

3.1 Architecture

Figure 1 shows the proposed architecture for the
mixture of RNN experts (MRE) which is used for
the prediction-learning of the sensory-motor flow.

Fig. 1(a) shows -a hierarchical architecture
consisting of two levels; more levels are possible in
general.

Each RNN module in the lower level receives the
sensory-motorinputs, X;: (s;, m,), and outputs the
prediction of the sensory-motor inputs at a time
At afterwards in the form Xui : (Sw1, mey), as
shown in Fig. 1(b). The total output of the network
1s obtained from the weighted average of each
output with its associated gate opening at the
time g, for all modules. The gate opening is
computed dynamically with time using the
prediction errors of each module, which are
obtained from the difference between the
prediction (s,1, my1) and the outcome (8”4, m*.)).
The gate opens more if its module produces a
relatively lower prediction error than the other
modules. The module with the lowest error
over a suitable time interval becomes the winner.
The original work on the mixture of experts
[Jacobs91] used a gating network which selected
the module with the closest correspondence to the
inputs. In our architecture, the module is
activated autonomously without the gating
network as the result of dynamical competition
between all modules over time steps, utilizing
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on-line monitoring of the prediction errors. The
winning module changes from one module to
another as the profile of the sensory-motor flow
changes with time.

target: Q'ryy

target: 141

Xt sy, my)

target: (@741, 9201, .. 0 e)

Cr: context
sensory motor

gate-opening state

(b) (©)

Figure 1: The complete architecture of the mixture
of RNN experts for prediction learning. (a)
hierarchical learning architecture, (b) details of
each RNN module for learning sensory-motor flow
in the lowerlevel, and (c) RNN module for learning
gate opening dynamics in the higher level.

The higher level network learns the gate opening
dynamics of the lower level network: More
specificly, each RNN module in the higher level
samples the gate opening state of the lower level
in the current time step Gr :(gr', g .... grand
makes a prediction for the next time step G, as
shown in Fig. 1{c). T denotes the time step inthe

higher level; the higher level sampling interval A
T is much larger than that in the lower level. The
modules in the higher level compete for gate
opening g7, in the same way as shown for the
lower level, and the resultant gate openingcan be
sent to yet higher levels in a recursive manner.
The higher level network observes the lower level
activities by means of perceiving its gate opening
dynamics while the lower level network perceives
the sensory-motor flow. In this manner, the signal
is “bottom-up" as abstracted from one level to the
next.

3.2 Algorithm

This subsection describes the mathematical
formulae for the proposed scheme of the MRE.
Suppose a single level network consists of n RNN
modules for in general, where X, y'.n1, y*1, and g,
are the inputs, the outputs, the target outputs for
teaching and the gate opening of the i-th module
RNN, respectively. x; and yu.; correspond to the
sensory-motor state or the gate opening state
depending on the levels of the network.

The “soft-max" activation function is used to
represent the i-th gate opening g, given by:

gz et/ S0, e o)

where s/, is the current internal value of the i-th

‘gate opening. The total output of the network is

Yin, glven by:

Y+ ?é?t'"ﬁﬂ @
P

We define the following likelihood function which
is maximized for prediction learning; it has been
obtained by modifying the original definition of
Jacobs and Jordan [3].

2

' 2
InL = ]_n]g]g"t'— e-'2q I Iy*lﬂ—yi{-«»]'l 3

o denotes a scaling parameter.

Both the weight of each RNN and the gate opening
are updated simultaneously such that the
likelihood function is maximized. This point is
essential for the on-line learning scheme. In order
to obtain the update rules for these two processes,
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we consider the partial derivatives of the
logarithm of the likelihood function with respect to
the internal value s and with respect to the
output of the i-th RNN

¥ given by:

olnL /0st = g(i] X,y .)€, )
GInL /0y =gl X,y )~ o Vi )/ o * (B)

where g(i/x,,y",, ) is the a posteriori probability
that the ith module RNN generated the target
vector ¥',,,, in terms of X,.

! A o 2 . . .,
g(l/xw.vwl): (g:'= e_l/z”l Iy‘t+lhy11+1] !l)/

ro b 2 . . 2
(Zge- e || Y Vil )
=1 A (6)

where | | y'u17ys1] |? represents the square of the
error of the current prediction. Eq. (4) denotes the
direction of update for the internal gate opening
value si. The ', can be obtained dynamically by
means of the steepest descent, which

consequently determines the current gate opening.

The differentiation of InL with respect to ¥,
involves the error term y°,,, . /.., weighted by the
a posteriori probability associated with the i-th
module RNN as shown in Eq. (56). Thus the
connective weights of the RNN is adjusted to
correct the error between the output of the I-th
RNN and the global target vector, but only in
proportion to the a posteriori probability. By this
means, the individual expert RNN which is the
expert for the on-going input sequence tends to
learn exclusively. The error distributed to each
module RNN is:

erroriy, = g(i/xc,y*m)' e —yjcﬂ) » (7

The details of derivations of these equations from
Eq. (4) to Eq. (7) should be referred to [Jacobs91].

Upon obtaining the mathematical formulae, the
actual update of the gate opening and the
connective weights for each RNN are computed
incorporating with the back-propagation through
time (BPTT) algorithm [Rumelhart86]. In this
computation, the sequence of the sensory-motor
inputs as well as the gate internal states for last

] steps are temporally stored in the window
memory. When new sensory-motor inputs are
received, the window memory is shifted one step
to the forward; the forward and backward
computation by means of BPTT are iterated for
nepochs; finally the I steps sequence of the gate
internal states as well as the connective weights
for each RNN module are updated. The update for
s’s, which is the ith gate internal state in the kth
step in the window memory, is obtained as:

Asy= € 0InL/ -0k - 7 g (8% - 81) ®

The first term in the right-hand side in the
equation represents the direction of the update
obtained in Eq. (4); the second term represents
the dumping term in order to suppress abrupt
changes in the gate opening; ¢, and 5 , are
parameters. This update is computed in the
forward direction in the window memory from k=1
to k=1. The error obtained from Eq. (7) is back-
propagated [Rumelhart86] through the window
memory for each RNN; the update of connective
weights are obtained by means of the steepest
descent method with parameters of learning rate
¢ and momentum «.

4 Experiments

4.1 The environment
The scheme proposed above was investigated in
the context of the navigation learning problem by
simulation. We assumed a mobile robot with a
sensor belt on its forward side holding 20 laser
range sensors. The robot, upon perceiving the
range image of its surrounding environment,
maneuvers in a collision-free manner using a
variant of the potential method [Khatib86]. (For
further details of this maneuvering scheme, see
Ref. [Tani96].)
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which has 6 inputs, 6 outputs, 4 hidden units and
2 context units, learns to predict the sensory-
motor state in the next step. The higher level .
network, which consists of 5 RNN modules each of
which has 5 inputs, 5 outputs, 4 hidden units and
2 context units, learns to predict the gate opening
state in the lower level network in the next step.
Other parameter settings for the networks are ¢ =
0.002, «= 0.9, e, = 0.007, y, = 0.02. These
settings are the same for the both levels. The
sampling interval in the higher level is 10 times
longer than that in the lower level (AT = 10" A
t). We observed how modules become self-
organized in a hierarchical manner by looking at
the gate opening dynamics taking place during
the prediction learning of these two levels.

time

4.2 Results \

We recorded gate opening dynamics both in the
lower and the higher levels during the entire
learning process. Figure 3 shows the time
development of each gate opening and of the
motor input in the lower level for three different
periods.

Figure 2: (a) Simulation workspace consisting of two
rooms connected by a door. (b) the time development of
the simulated range image while the robot traveled.

For our simulations, we adopted two different
rooms, namely Room A and Room B connected by
a door, as shown in Fig. 2 (a).

Fig. 2(b) shows an example of the sensory-motor
flow which corresponds to the robot travel
indicated by the dotted line in Fig. 2(a). In this
workspace, the robot travels around one room
three times, then enters the other room going
through the opened door and again travels around
the room three times. The on-line learning
experiment was conducted while the robot moved
between rooms for a total of 5 room encounters.
The entire travel of the robot in this simulation
took about 2100 A t steps. The lower level
network, which consists of 5 RNN modules each of
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Fig. 3(a) shows the profiles for the period from
step 130 to step 300 while the robot traveled
around Room A for the first time. It can be seen
that gate4 and gate3 open in turn as the profile of
the motor command changes. It was found that

the opening of gate4 corresponds to following a
straight wall, while the opening of gate3
corresponds to both a left turn at a corner and
passing a T-junction. Fig. 3(b) shows the profiles
for the period from step 380 to step 550, when the
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Figure 3: Time development of the opening of 5 gates and of a motor input in the lower level network for
three different periods. The number near the data denotes the current winning gate.
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robot experienced Room B for the first time. One
can see that gate4, gate2 and gate3 open in turn.
The opening events corresponded to following a
straight wall, making a right turn at a cornerand
making a left turn at a corner, respectively. Fig.
3(c) shows the profiles for the period from step 820
to step 990, when the robot traveled around Room
A for the second time. A remarkable finding is
that the gate opening dynamics for this period
differ from those observed during the first
encounter with Room A. One can see that the
opening of gate3, which corresponded to both
making a left turn at a corner and passing a T-
_junction in the previous encounter, now
corresponds only to making a left turn at a corner,
and that the opening of gatel now corresponds to
passing a T-junction. After this period, the
learning processes in the network appear to have
stabilized and no further dramatic changesin the
correspondence of the gate opening were found. By
the end of the simulation, four types of meaningful
concepts were generated using 4 RNN modules
out of the 5 modules available in the lower level
network. An important observation is that the
process of generating concepts is totally dynamic
in the sense that the correspondence between the
RNN modules and their associated behavior is
_not static during the on-line learning process.

Next, we describe the gate opening dynamics in

opening of the 5 gates and the mean square
prediction error for the whole period of on-line
learning. (The step numberin this graph denotes
the sensory-motor step number of the lower level,
for clarivy.) '

One can see that the error in the initial period is
relatively high. The error becomes smaller on
average after step 800. During this period the
stable switching of the gate opening between
gate4 and gatel 1s observed. This switching
actually corresponds to the movement between
rooms during the travel, where the open state of
gated and gatel correspond to travel in Room A
and in Room B, respectively. We observe that
gate0 opened only in the beginning while the robot
traveled in Room A for the first time. The dynamic
replacement of module0 by module4, for
representing Room A took place because the
module representation in the lower level network
also changed, as we have seen. It is readily
understood that the dynamics in higher level
network can be stabilized only after stabilization
occurs in the lower level network.

From these results, we conclude that the
proposed MRE architecture was successful in
learning about the environment in a hierarchical
way through the sensory-motor interactions of the
robot. The lower level network learned to predict
the row profile of the sensory-motor flow by
organizing the modular representation of specific

the higher level network. Figure 4 shows the
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Figure 4:Gate opening dynamics and mean square prediction error in the higher level network during
the whole process of learning.
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behavior. The higher level network did likewise
for the sequences of segmented behavior by
creating the higher concept of a room. Therefore, it
can be said that the robot is not just perceiving

- the cwrrent sensory-motor flow but it is also
recogmzing its background context of its behavior
and situation. ‘

We repeated this learning experiment for five
times with varyinginitial conditions including the
starting- position of the robot in Room A and Room
B and randomly set initial connective weights of
the networks. First, by looking at structures
self-organized in the higherlevel network in these
five experiments, equivalent module structures to
that in the previous results, representing Room A
and Room B, were found in three cases out of five.
Then, we observed the lower level structures for
these three cases and found that the equivalent
module structures to the previous result appeared
in'two cases and different ones did in one case. In
the two cases where we could not see clear module
structure corresponding to two separated rooms
in the higher level, it was observed the lower level
structures continued to change gradually by which
the higher level structures could not be stabilized
globally by the end of the simulations. The
stability in the higher level substantially depends
on that in the lower level. These results revealed
that the self-organization processes are not
always promised to reach one optimal solution.
They could generate unstable and non-optimal
structures with diversity by chances. We will
analyze further this “stability and diversity"
problems in this hierarchical learning scheme in
future.

5 Discussion -

We have seen that building blocks for
representing specific sensory-motor structures are
self-organized in the lower level; then the building
blocks in the higher level do as combining those in
the lower level. The results may be interpreted as
being the emergence of internal “symbols".
However, the definition of our “symbols" is quite
different to that used in traditional Al studies.
The “symbols"” in our scheme are articulated not
by the external designer's views but by the view
intrinsic to the robot through its own experiences.
In fact, the articulation emerges through the
interactions between the system and its
environment. Here, the mechanism for this

B KRAGEERED > X 7 4 9% News Letter Vol.2 Number 4

articulation is best explained by dynamical
systems language. In our previous work [Tani96],
we have studied how the RNN prediction process
can be situated in the environment through its
sensory-motor experiences. Our analysis showed
that the prediction process goes well when a
coherence is achieved between the internal RNN
dynamics and the environmental dynamics. The
entrainment [Endo78] of the RNN dynamics by
the sensory-motor flow can take places when the
RNN learns to share the same dynamical
structure with that of the environment. The same
mechanism can explain the autonomous
selections of modules shown in the current study;
one module is activated in a mutually inhibitory
manner by achieving its coherence with a specific
dynamical structure hidden in sensory-motor flow.
When the essential dynamical structure in the
sensory-motor flow changes, the current activated
module loses its coherence with the flow while
another module is activated gaining its coherence
with the one. This activation switching takes
places in a rather quick move by means of the
winner-take-all dynamics defined on the gate
opening dynamics. This quick state changes in
terms of phase transitions actually result in the
articulation which the system internally perceives
for the structural changes in the sensory-motor
flow.

Another important aspect which should be
discussed is the relationship between state and
function in the hierarchical learning. The direct
observation of the sensory-motor state provides
only non-robust information about its present
process since the state can evolve in many ways.
What should be focussed on is rather the spatio-
temporal structure hidden in the time
development of the state, since such structures -
could be consistent in many cases even when the
state changes quantitatively. The RNN, which is
basically an adaptive type dynamical function, is
used for capturing such consistent structure from
the observed time development of the state. This
time development of the state is, eventually,
represented by one of the RNN functions. The

‘higher level observes that which RNN function is

currently activated in the lower level in terms of
its gate opening state. This gate opening state
can vary as the result of structural change in the
lower level. The resultant time development of the
gate opening state is again captured by the RNN
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functions in the higher level. Here, we see that the
aim of the hierarchical learning is to organize such
recursive chains from the state to the function,
and from the function to the state, through the
level of abstraction.

Some previous researches are related to ourstudy.
Gomi and Kawato [Gomi93] showed that
modular representation are self-organized for
manipulated objects in the mixture of expert
networks with a gating network through the
\s'ensory-motor interactions. The study, however,
was not extended further to the problems of
articulation and hierarchy in our ways. Jordan
and Jacobs [Jordan94] developed further the
original architecture of the mixture of experts in
order to cope with some hierarchical structures.
The hierarchy in this study refersto the structure
of recursive function approximation in multiple
layers, of which formations are not directly related
to our problems that how articulation along time
take places across multiple levels.

The proposed approach can be developed in many
ways in the future. Our example shown in this
paper was limited in the prediction learning of the
sensory-motor flow. One missing point is that the
scheme does not include motor or action-learning
mechanisms. The scheme should be extended to
cover both prediction-learning and reinforcement-
learning to ensure that “concepts" can also be
self-organized for the purpose of action generation.
Another missing point is that all the interactive
processes were undertaken only through the
bottom-up pathway in this architecture. More
plausible model is that the top-down processes
interact with the bottom-up ones such that a

module is activated by manas of bi-directional

interactive dynamics between the top-down
prediction from the higher level network and the
bottom-up signals from the lower one. In future
research, we will study how goal-directed
behavior can be generated in the extention of the
proposed scheme by investigating these missing
points.
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