Cognitive Neurorobotics Research Unit 認知脳ロボティクス研究ユニット

Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural Network

Takazumi Matsumoto & Jun Tani*

*Corresponding author: tani1216jp@gmail.com

Motivation

How can agents achieve goals given only partial knowledge of the world? It is generally assumed that agents can never have complete knowledge of their environment because the experience that can be gained in a finite amount of time is limited. However, some agents such as humans are able to generalize from experience to form action plans that accomplish unfamiliar tasks.

In our proposed model, generalization is achieved by learning probabilistic patterns from well habituated sensory-motor trajectories. These prior distributions are stored in a low dimensional latent state space. Goal-directed planning is accomplished by inferring latent variables which maximizes the estimated lower bound, following the principle of Free Energy Minimization [1].

Method

Our proposed model (GLean) uses the frameworks of predictive coding (PC) [2] and active inference (AIF) [3], and leverages the PV-RNN architecture [4] to learn probabilistic patterns as a prior distribution z^p . For plan generation, given z^p , a known initial condition and desired goal, we use an estimate of the evidence based lower bound to infer a posterior distribution z^q that leads to generation of a plausible action plan and sensory prediction.

In comparison, the forward model (FM) [5] is a conventional approach for sensory-motor systems and uses the current state and motor command to predict the next state and associated sensory state. In theory it is possible to infer a sequence of optimal motor commands to reach a desired goal state, however in practice it is impractical to learn such a combination with limited training.

Experimental Results

Our model (GLean) was evaluated with simulated robot tasks in probabilistic settings and demonstrated generalization with limited training data by setting an appropriate regularization coefficient.

GLean also outperformed both a conventional forward model (FM), and a model with stochasticity only in the initial state (SI) [6] in goaldirected planning, due to the learned prior directing the search of motor plans within the range of habituated trajectories.

Model	Success rate	Avg. error at goal
GLean	86.0%	1.52±0.07cm
Stochastic initial state (SI)	68.0%	2.02 cm ± 0.14 cm
Forward model (FM)	0.0%	-

 $\begin{aligned} &Accuracy \, at \, t=1 \, (start) \, and \, t=T \, (goal) \\ &L_e(\theta, \phi) = E_{q_\phi(z_1|e_1, e_T)} \left[p_{\theta_x}(x_1|z_1) \right] + E_{q_\phi(z_T|e_T)} \left[p_{\theta_x}(x_T|z_{1:T}) \right] \\ &- \left(D_{KL} \left[q_\phi(z_1|e_1) || p_{\theta_z}(z_1) \right] + \sum_{t=2}^T D_{KL} \left[q_\phi(z_t|e_T) || p_{\theta_z}(z_t|z_{1:t-1}) \right] \right) \\ &Complexity \, at \, t=1 \, (start) \, and \, t=T \, (goal) \end{aligned}$

Estimated lower bound

Conclusion & Ongoing Work

This work demonstrates our approach to generating action plans and sensory predictions for a robot to achieve untrained goals by generalizing from limited experience.

We are currently working on real time planning using physical robot hardware, with the robot able to dynamically alter its plan in response to changes in its environment.

Success rate and error for GLean and two alternative methods

 Image: head right
 Image: head right

 Image: head right
 Image: head right

Simulated robot arm grasping a block and moving it to the goal

Sensory state predictions (solid) compared to ground truth (dotted)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY 沖縄科学技術大学院大学

1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan Phone. +81-98-966-8711 〒904-0495 沖縄県国頭郡恩納村字谷茶 1919-1 Phone. 098-966-8711 http://www.oist.jp [1] K. Friston, J. Kilner, and L. Harrison. A free energy principle for the brain. Journal of Physiology, 100(1–3):70–87, 2006
 [2] K. Friston. Does predictive coding have a future? Nature Neuroscience, 21:1019–1021, 2018

[3] G. Oliver, P. Lanillos, and G. Cheng. Active inference body perception and action for humanoid robots. arXiv:1906.03022, 2019
[4] A. Ahmadi and J. Tani. A novel predictive-coding-inspired variational RNN model for online prediction and recognition. Neural Computation, 31(11):2025–2074, 2019

[5] M. Kawato. Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6):718–727, 1999
 [6] M. Jung, T. Matsumoto, and J. Tani. Goal-directed behavior under variational predictive coding: Dynamic organization of visual attention and working memory. IROS 2019, 1040–1047