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Abstract

Although many researchers have suggested that compositional concepts should be

sensorimotor grounded, the method to accomplish this remains unclear. This pa-

per introduces a second-order neural network with parametric biases (sNNPB) that

learns compositional structures based on sensorimotor time series data. The data

was produced by a simulated robot that executed distinct object interactions (move-

to and orient-toward). We show that various sNNPB setups can learn to composi-

tionally imitate object-interactions beyond the interactions that were specifically

trained, which was not possible with previous neural network (NN) architectures,

including recurrent neural networks (RNNs). We also show that these imitation ca-

pabilities are accomplished by developing a self-organized, geometrically-arranged

compositional concept structure in the PB values and task-oriented, Braitenberg-

like sensory encodings in hidden sensory layers. Since second-order connections

were necessary to accomplish the task, we hypothesize that such connections may

be essential to drive the learning of both sensorimotor-grounded compositional

structures and Braitenberg-like, behavior-oriented “pro-presentations”. From a

cognitive perspective, we show how sensorimotor time series of interactions may

be processed to generate the signals necessary to develop semantically composi-

tional structures.

Keywords: the origin of compositionality, Braitenberg codes, sensorimotor

similarity, constructivist approach, connectionist network, cognitive modelling



Introduction

Compositional concept structures enable the meaningful manipulation, combination, and re-

lation of concepts. For the involved processes to become meaningful, structured concept elements

need to be associated with (a) role-governed (Markman & Stilwell, 2001) or slot-filler categories

(Nelson, 1988) and (b) role-argument structures (Barsalou, 1999), which determine the possible

proper combinations of elemental concepts. To foster the development of such meaningful con-

cepts, Karmiloff-Smith (1992) proposed that the necessary element-category-argument structures

need to be derived from implicit, sensorimotor representations – unlike nativist models, which as-

sume innate compositional representations (Fodor & Lepore, 2002, cf. e.g. ). With her representa-

tional rewriting (RR) model, Karmiloff-Smith (1992) suggested that compositional concepts must

be acquired through the “re-writing” of pre-acquired holistic sensorimotor concepts. The underlying

computational processes, however, have not been clarified yet.

In the investigation of pre-linguistic concept structures, namely image schemas, Johnson

(1987) and Lakoff (1987) pointed out that semantic categories and analogies appear to be closely

related to principles of sensorimotor interactions and behavioral control. Most recently, Pastra and

Aloimonos (2011) even pointed out that the human cognitive apparatus contains a minimalist gram-

mar for action, which has many properties of the universal grammar of Noam Chomsky, and which

appears to be derived from our behavioral control system. However, also in this case, the compu-

tational processes that underlie the sensorimotor-based formation of image schemas have not been

determined, yet. It is particularly puzzling how image schemas may be derived from sensorimotor

experience but meanwhile may be a prerequisite for organizing these experiences (Clausner, 2005).

An attempt to implement an RR model based on image schemas (Mandler, 1992) suffers from es-

sentially this difficulty. Consequently, a principle to organize sensorimotor experiences may be

required if a compositional system is to be acquired based on sensorimotor experiences (Mandler,

1992, cf.).

We investigate how a neural network architecture may learn to relate holistic concepts to each

other, thus developing compositional concept structures. We hypothesize that the embodiment of

the agent with its continuous sensorimotor dynamics, including the involved learning mechanisms,

can derive a compositional system of concepts based on sensory and motor similarities. The idea

is based on the structural alignment hypothesis (Gentner & Markman, 1997), which proposes a

continuous developmental path from similarity-based to analogy-based transfer in problem solving.

While analogy-based transfer usually refers to knowledge transfer across domains, such as between

fluid dynamics and electromagnetics, it is also applicable to compositionality. Gentner and Mark-

man (1997) invented a common computational process underlying both types of transfer, but their

approach relies on pre-defined compositional representations. In our work, structural alignment is

reconsidered from a constructivist point of view, replacing analytical similarity with skill transfer-

based similarity, which is identified by our learning architecture in sensorimotor time series data.

To achieve this task, we introduce a second-order neural network with parametric biases

(sNNPB). The sNNPB is trained to imitate particular object interactions, which are generated with

a simulated robot platform. During training, no semantic, compositional indicators are provided.

We show that the sNNPB develops compositional, geometrically arranged structures based on the

sensorimotor time series data produced by the robot platform. The network develops these compo-

sitional codes solely due to the training setup, the modular sNNPB architecture, and the sensory-

and motor-capabilities of the simulated robot.
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The sNNPB is partitioned into a visually-driven sensory-to-motor sub-network (sem-net) and

a PB-driven sub-network (pb-net). The pb-net determines the mapping (thus second-order network)

from the sem-net to the motor output (cf. Fig.3). Due to this setup, the sem-net develops behavior-

oriented, distributed Braitenberg-like encodings (Braitenberg, 1984). The pb-net develops compo-

sitional structures that activate those sensory-to-motor mappings that result in the desired object

interaction. A detailed structural analysis of the resulting network structure reveals that the sNNPB

learned to embed semantically compositional structures in self-organized, geometric manifolds.

In contrast to previous multitask learning approaches (Thrun & O’Sullivan, 1996; Caruana,

1997), our sNNPB architecture learns to categorize time series data by concurrently self-organizing

both (a) a sensory input space for guiding dynamic sensorimotor flow and (b) a parametric bias space

for the compositional activation of particular interactions. Seeing that previous NN architectures

including RNNPBs (Tani, Ito, & Sugita, 2004) and other RNNs could not develop similar behavioral

generalization patterns, we conclude that multiplicative, second-order network architectures may be

essential to develop semantically compositional structures. In sum, this study devises a potential

continuous developmental path from similarity to compositionality. Meanwhile, the study provides

indicators that the separation of motor control in a dorsal, control-oriented and a ventral, decision-

oriented path may be a prerequisite to develop compositionality and, ultimately, language.

We now first introduce the simulated robot architecture, the neural network architecture, and

the different settings evaluated. We then provide a detailed performance and structural network

analysis, revealing how compositionality is represented and how the task is solved. Finally, we

conclude the paper with a general discussion.

Robot System Setup

Our robot setup is based on a psychological experiment conducted by Meltzoff (1988b), who

examined the conceptualization ability of pre-linguistic infants. The original study reported that

9-month-old infants could imitate previously unseen object-manipulating actions for 24 hours after

the presentation of the actions. This indicates that pre-linguistic infants memorize presented ac-

tions in an abstracted representation, which may provide a foundation for later language acquisition

(Meltzoff, 1988a).

In our experiment, the setup is modified in order to focus on the emergence of composition-

ality. Interactions are presented by steering a simulated robot by means of a teaching program. The

robot perceives its own visual input and motor output during such interaction episodes, omitting the

necessary translation between allocentric and egocentric views during imitation. However, the time

scale of the experiment is expanded because the robot needs to develop structured representations

for encoding the encountered interactions compactly in role-argument frames.

Robot and Environment

The simulated robot consisted of a simple two-wheeled robot platform equipped with visual

surround sensors. The body of the robot was a cylinder of 24cm diameter and 14cm height. The

visual sensors were located at the center of the body (in simulation) and partitioned the covered

120◦ view into nine uniform areas for which the sensors reported the dominant color and the size of

the sub-area that is colored.

In each interaction episode, the robot interacted with one of six colored cylinders (blue,

cyan, green, yellow, orange, or magenta) that were 13cm in diameter and 25cm in height. Ei-
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Figure 1. The robot starts with a fixed starting position. A target and an optional colored dummy object are

placed randomly within the shaded area (W120cm × D134cm) shown in (a). The robot takes a visual input

as shown in (b) in this environmental situation.

ther one or two randomly placed objects were present. Fig. 1 shows a possible situation and the

corresponding sensory information. The interactions I are classified into 36 categories: two inter-

actions: moveto (move to) or orientto (orient toward) one of the six targets, where the orientto

interaction was further modified with five possible angular offsets: (-30, -18, 0, +18, and +30).

In the moveto interactions, the robot moves toward the target and stops just before touching it. In

the orientto interaction, the robot orients itself toward the target with a certain offset by rotating

its body. In the following sections, an interaction is denoted by a concatenation of labels of one

of the two types, one of the six targets, and, optionally, one of the five offset angles; for exam-

ple, orientto-blue+18. It should be noted that the labels are used for convenience only – the

robot is never provided with any information about the semantic structure or compositionality of

the interactions.

Four independent blocks of learning experiments were conducted with supervised data of

different sparseness, as shown in Fig. 2. The subset of interactions on which the system is trained is

denoted by I′. We trained the sNNPB on these six particular subsets of interactions in independent

experiments to illustrate the conceptualization capabilities, including similarity and compositional-

ity biases. Each experimental epoch consisted of three phases: creation of training data, learning,

and evaluating the imitation performance on all possible interaction types in a random subset of the

possible scenarios.

Generation of Training Data

To gather sensorimotor time series data, the robot was controlled by a training program.

For each goal-oriented behavioral interaction, 120 training sequences were generated in different

environmental settings. In 20 out of the 120 cases only a target object was present, while in the

remaining 100 cases a dummy object and a target object were located in the environment. The

dummy object was chosen from the five objects (colors) other than the target, and 20 examples were

recorded for each object.

The training program generated wheel speeds (vL[cm/step], vR[cm/step]) appropriate for ex-

ecuting a particular interaction, taking as input the distance r[cm] to and the direction θ[rad] to the

target object. Formally, the program taught moveto interactions by moving the robot center to a
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Figure 2. Four particular distributions of trained sets of interactions (blocks) are used to illustrate the sNNPB

capabilities.

distance of about 35.0cm from the target object center as follows:

vR = max(−1.0,min(vθ + vr, 1.0)) (1)

vL = max(−1.0,min(−vθ + vr, 1.0)) (2)

vθ =

{

0.25θ if r ≥ 36.0,

0.75θ otherwise,
(3)

vr =

{

0.0045r + 0.158 if r ≥ 36.0,

0.0045(r − 35.0) otherwise.
(4)

The program moves the robot forward with decreasing speed (by modifying vr), at the same time

orienting the robot towards the target object by modifying vθ. It stops once it reaches a distance of

less than 36.0cm to the target object. A typical moveto interaction episode consequently consisted

of about 70 time steps on average.

Similarly, the program taught orientto interactions with offset angle φ as follows:

vR = max(−1.0,min(0.5(θ − φ), 1.0)), (5)

vL = −vR, (6)

turning the wheels with opposite speeds to rotate the robot without forward movement. A typical

oriento interaction episode consisted of about 20 time steps on average.

While the teaching program used precise state information, the sNNPB architecture received

only the simulated visual information specified above and the generated wheel speeds. Note that

both, the orientto and the moveto interactions translate the target angle into according positive

and negative wheel speeds to realize a rotation towards the target object. However, the orientto

command uses a different factor for this transition (0.5 versus 0.25) and the moveto command is

folded into the forward movement. We will see, nonetheless, that the sNNPB is able to detect this

time series compositionality, yielding (asymmetric) generalization capabilities.
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Second-Order NN with Parametric Biases

We report experiments with three sNNPB setups below. We first specify the network archi-

tecture common to all three setups and then specify the distinctions between the different setups.

Network Architecture

The architecture of the implemented sNNPB is shown in Fig. 3. The network consists of

two interacting sub-networks: a feed-forward sensor-to-motor network (sem-net) and a pb-based

network (pb-net).

The sem-net is depicted on the left side of the figure. It takes as input the visual information

at the vision input (VI) layer. Next, it transforms this information via a hidden layer (H) to the

processed visual representation layer (VR) in the conventional feed-forward NN way:

VRi(t) = fVR



















NH
∑

j=0

wVR(i)←H( j) ·H j(t)



















, Hi(t) = fH



















NVI
∑

j=0

wH(i)←VI( j) · VI j(t)



















, (7)

where Xi (X ∈ {MO,VR,H,VI}) denotes the activity of a node, wXi←Y j
the connection weights, t the

time stamp, and fX the transformation function (a hyperbolic tangent or a linear function).

Finally, the information contained in VR is transferred to the motor output layer (MO) by:

MOi(t) =

NVR
∑

j=0

sCi, j · VR j(t), (8)

where sCi, j refers to the weights generated by the pb-net as specified below. The sem-net is thus

a conventional layered feed-forward neural network, except that it has second-order connections

(Pollack, 1990) between the VR and MO layers, meaning that the weights between VR and MO

are flexibly set to particular values. This enables the sem-net to generate different sensorimotor

interactions, dependent on the currently activated weights from VR to MO.

The weights of the second-order connections are determined by the pb-net, shown in gray

on the right side of Fig. 3. The pb-net itself is also a conventional feed-forward neural network. It

takes as input a concept vector of parametric biases (PB) and generates the weights of the second-

order connections by means of the activity in the second-order connectivity (sC) layer, depicted as

consisting of two sub-layers, which determine the weights for the two output nodes, respectively.

sCi, j = fsC

















NPB
∑

k=0

wsC(i, j)←PB(k) · PBk

















, (9)

where sCi j is the output of a node in the sC layer, which corresponds to a connectivity from the j-th

VR node to the i-th MO node.

The generation of action outputs works as follows. First, a concept vector ui needs to be

available, which is used to set the PB node activities. This vector determines the values of the sC

connection weights according to (9). These weights are set once at the beginning of an interaction

episode and are kept fixed while a particular interaction unfolds. To generate actual motor outputs,

sensory activities are transferred into motor output activities according to (7 and 8). Note that the

time scale of the pb-net is thus different from the sem-net. The ‘normal’ connection weights W =

{wH←VI,wVR←H,wsC←PB} capture the common characteristics among all of the trained interactions

I′, whereas each concept vector ui determines particular second order connections sC to realize

particular object interactions i ∈ I′.
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Figure 3. The sNNPB architecture: Each rectangle represents a layer, which contains multiple nodes. The

number of nodes and the utilized output function are indicated in each rectangle. The pb-net, which consists

of the gray layers, controls the connectivity from the VR to the MO layer. The second order connection layer

sC specifies two subsets of weights, which connect the VR layer with the two motor output nodes of the MO

layer.

Learning

Unlike a standard layered neural network, both connection weights W and interaction-

respective concept vectors ui (i ∈ I′) are optimized in the sNNPB, where the vectors are stored

in U = {ui | i ∈ I′}. Both sets of parameters are optimized simultaneously by means of the

conventional steepest descent method with respect to the output error defined as follows:

E(WT ,UT ) =
∑

i∈I′

Ei(W
T , uT

i ) (10)

Ei(W
T , uT

i ) =

Ni
∑

j=0

li j
∑

t=0

Ei j(t; WT , uT
i ) (11)

Ei j(t; WT , uT
i ) = ‖M̂Oi, j(t) − MO(t; WT , uT

i )‖2, (12)

where T denotes the current learning iteration, WT the current connection weights, UT the set

of interaction concept vectors, uT
i

(∈ U) a particular interaction concept vector to be optimized,

Ni(= 120) the number of pre-recorded training examples of the i-th interaction concept, li j the

length of the j-th time series example of the i-th interaction, M̂Oi, j(t) the desired motor activity of

the time series with respect to its corresponding visual input V̂ Ii, j(t), and MO(t; WT , uT
i

) the actual

output of the network at that time.

The learning procedure is implemented by using the conventional back-propagation al-

gorithm. All connection weights W0 are initialized with uniformly distributed random values

∈ [−0.1, 0.1] and all entries in each u0
i
∈ U0 are initially set to zero. Each learning example

indicates its particular interaction concept correspondence i, which leads to the re-application of

the corresponding current concept vector uT
i

and the according adjustment of that vector. Learning

errors are back-propagated to their corresponding concept vectors ui, which are maintained and pro-

gressively adjusted throughout learning. In each of the reported experiments below, we conducted

30, 000 learning iterations. Alg. 1 specifies the precise learning procedure.
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Algorithm 1 Learning procedure in sNNPB.

for all interactions i in I′ do

Load the stored uT
i

to the PB layer.

for all pre-recorded examples j of the interaction i do

Calculate the delta errors of connection weights −∂Ei j/∂W and of PB vector −∂Ei j/∂ui by

using the back-propagation algorithm

end for

Sum up the delta errors over all time steps t of all time series (i, j) to obtain δuT+1
i

.

(

∵ δuT+1
i = −

∂E

∂ui

(WT ,UT ) = −
∂Ei

∂ui

(WT , uT
i )

)

.

Update ui as follows:

∆uT+1
i = (1 − ηu) · ∆uT

i + ηu · δu
T+1
i , (13)

uT+1
i = uT

i + αu · ∆uT+1
i , (14)

where αu and ηu are learning coefficient and momentum, respectively.

end for

Sum up the delta errors of W for all time steps t of all the time series j of all trained interaction

i ∈ I′ to obtain δWT+1.
(

∵ δWT+1 = −
∂E

∂W
(WT ,UT )

)

.

Update W as follows

∆WT+1 = (1 − ηw) · ∆WT + ηw · δW
T+1, (15)

WT+1 = WT + αw · ∆WT+1, (16)

where αw and ηw are learning coefficient and momentum, respectively.

Testing Recognition and Imitation

The goal of the sNNPB is to re-produce – or imitate – particular object interactions including

unfamiliar ones. To test this capability, we simulate a recognition and an imitation process for all

the 36 possible interactions i ∈ I, including unfamiliar ones. In a recognition phase, the sNNPB is

presented with 12 randomly generated examples of a particular sensorimotor interaction i. These are

conceptualized into a corresponding concept vector ui by means of error back-propagation, as used

during learning (Alg. 1), where the averaged error determines the recognition vector. Connection

weights W are not updated in this phase. Essentially this method induces the re-usage of existing

behavioral (sub-)routines rather than the modification of them.

The recognition vector ui is then applied in 280 randomly chosen robot-object interaction

scenarios, testing its capability to imitate the specific object interaction i. The success rates of all

interactions were recorded for later analysis. The successful imitation is judged in terms of the

final relative distance and direction to a given target. The robot is required to keep the designated

conditions for 100 consecutive time steps within 250 time steps. In order to accomplish the moveto

interactions, the robot had to stay within 40.0 cm from the target without touching it. For the
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orientto interactions, the robot was required to orient itself toward the designated direction within

an error of ±6◦.

Three Network Training Setups

We examine three different variations of the sNNPB. For the basic network, the visual input

is encoded in a 27-dimension vector. The visual field is vertically segmented into nine regions. Each

region is represented by the fraction of the region covered by colored patches and the dominant hue

of the patches in the region. The hue H is encoded by the position (cos H, sin H) in the color circle

shown in Fig. 4. Motor output is encoded as a two-dimensional vector representing the velocity of

the left and right wheels, each of which is a real value ranging from -1.0 to 1.0. A negative value

indicates reverse rotation.

cosH

sinH

H

Orange

Yellow
Green

Cyan

Blue

Magenta

Figure 4. Colors of the objects

The two networks other than the basic one have a modified VI layer and MO layer, respec-

tively. The VI-modified network has 36 VI nodes rather than 27, because the dominant color of each

region is represented in RGB format. The MO-modified network has 10 MO nodes, instead of 2,

encoding the velocity of each wheel by a 5-dimensional vector. This vector represents the velocity

v in the form of:

G(v) = [ f (−0.6; v), f (−0.3; v), f (0.0; v), f (0.3; v), f (0.6; v)],

where f (x; v) is a Gaussian distribution N(x; µ = v, σ2 = 0.32).

In both modified cases, the sensorimotor encoding is different from the basic case but local

similarity is preserved. Motor similarity as defined by the Gaussian and linear encodings are locally

identical, since Euclidean distance between Gaussian-encoded velocities ‖G(v2) −G(v1)‖ is almost

proportional to ‖v1−v2‖, given ‖v1−v2‖ is sufficiently small. For the same reason, sensory similarity

defined by hue and RGB encodings are locally identical.

Behavioral Generalizations

This section presents results regarding the obtained behavioral imitation performance. We

focus on the generalized imitation capabilities achieved, depending on the distribution of trained
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interactions (cf. Fig. 2) and given sensory and motor encodings (see Sec.). We also analyze the

generated behavioral mappings over the possible sensory input ranges.

Skill Generalization and Recombination

In the following section we progressively increase the number of trained interactions and an-

alyze the compositionality of the behavioral generalizations achieved. For each block (cf. Fig. 2),

three sNNPBs were trained with different network connectivity initializations. Untrained inter-

actions were then tested by first deriving a maximally suitable PB activity by means of back-

propagation and then testing that PB activity on 280 other object setups, as detailed in Sec. .

Learning from one interaction only

In Block 1 (cf. Fig. 2), the robot was trained only on orientto-cyan+0 interaction ex-

amples. Figure 5 shows that the acquired skill is, to some extent, transferred across offsets and

targets for all three setups. However, no transfer across interaction types (that is, from orientto to

moveto) is realized. The closer the color of the target and the offset of the interaction are, the higher

the imitation success rate. The strength of the transfer, however, depends on the given setup. In the

RGB-based color encoding case, the transfer across targets is slightly weaker, but it extends a bit

further to other color encodings, somewhat reflecting the neighborhood relations of the RGB color

space (Fig. 5(a) versus Fig. 5(b)). Similarly, transfer across offsets is more limited in the Gaussian

motor encoding case (Fig. 5(a) versus Fig. 5(c)). It appears that the non-linearity induced by the

Gaussian motor encoding makes it harder to identify common skills, such as convergent dynamics,

among the orientto interactions with respect to different offsets.

Note that in almost all of the results the generalization patterns are not perfectly symmetrical.

This is mainly due to the randomness induced in the recognition stage, where 12 scenarios are

selected randomly independently for each of the 36 interaction types. Thus, while the results point-

out obvious tendencies, inevitably a significant amount of noise is inherent.

In Block 2, the moveto-cyan interaction was taught. In the linear motor encoding cases

shown in Figs. 6(a) and (b), transfer across types of interactions, from moveto to orientto, is

observed, as well as additional offset transfer and color transfer. Thus, convergent dynamics, which

are acquired by learning moveto-cyan, are reused to generate orientto-cyan and neighboring

orientto behaviors. However, the successful transfer depends on the chosen motor encoding, as

no systematic transfer is observable in the Gaussian motor encoding case (c.f. Fig. 6(c)). This

shows that while the Gaussian encoding does not diminish learning success, skill-transfer across

types is disrupted. Essentially, a successful transfer requires the separation of wheel rotations and

forward movement signals, which are linearly combined in the moveto interactions (cf. Sec. ). This

separation is hard to realize in a linear way given the Gaussian motor encoding.

Note that these results indicate that the system detected an asymmetric, compositional sim-

ilarity, since skill-transfer was possible from moveto to orientto interactions but not vice versa.

This asymmetry is due to the behavioral asymmetry between moveto and orientto interactions:

moveto requires additional approaching skills, which are not necessary for orientto. Both, how-

ever, require a pivoting skill, which is blended into the approaching skill in moveto interactions.

Back-propagation identifies the PB components that control the approaching behavior and thus can

inhibit those selectively to realize the untrained orientto behaviors.

From a cognitive perspective, this result replicates empirical asymmetry of similarity com-

parisons (Tversky, 1984) without providing explicit, innate compositional representations. For ex-
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Figure 5. Imitation performance obtained in Block 1: Local offset and color generalizations within

the orientto interaction space. Success rates of imitation are co-encoded by number and color. Taught

interactions are surrounded by a black frame.

ample, we prefer “a scanner is like a copy machine” to “a copy machine is like a scanner.” This

observation elucidates that similarity in cognition is not always like a typical symmetric distance

defined between (pre-defined) representation. Rather, similarity should be defined in terms of how

much knowledge, or skill, can be transferred between two things, or tasks.

Compositionality when learning from multiple interactions

Recombinations of interactions are obtained in Block 3, where the moveto-blue interac-

tion is trained and all orientto-0 interactions: the robot can imitate the unfamiliar color-specific

moveto interactions (Fig. 7(a)). This transfer was not obtained in the Gaussian motor encoding case

(Fig. 7(b)), due to the stronger locality of the motor encoding. Nonetheless, it needs to be noted that

the color-sensitive orientation component can be diverted from the orientto skill into the moveto

skill, although the orientto skill cannot produce the moveto skill itself.

This skill transfer can only be explained by a recombination of interactions. It suggests that

a sub-symbolic equivalence of the following symbolic compositional system was acquired:

〈Interaction〉 ::= ⊕(〈Type〉, 〈Target〉), (17)

〈Type〉 ::= moveto | orientto, (18)

〈Target〉 ::= blue | cyan | green, (19)

where 〈Interaction〉 is a set of concepts representing possible interactions, and 〈Type〉 and 〈Target〉

are a set of elemental concepts representing types of interactions and targets, respectively. A com-

position rule, which combines a type and a target into a whole interaction, is denoted by ⊕.

Acquisition of all interaction skills

Finally, the robot could imitate all the possible interactions well when it learned 21 out of the

36 interactions according to Block 4, as shown in Fig. 8. The generalization capabilities suggest
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Figure 6. Imitation performance obtained in Block 2: Generalizations from moveto to orientto inter-

actions.
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Figure 7. Imitation performance obtained in Block 3: Color-respective generalizations from orientto

to moveto interactions.

that the network developed the following fully compositional system of concepts:

〈Interaction〉 ::= ⊕1(moveto, 〈Target〉)

| ⊕2 (orientto, 〈Target〉, 〈O f f set〉),

〈Target〉 ::= blue | cyan | green | yellow | orange | magenta, (20)

〈O f f set〉 ::= −30 | −18 | 0 | +18 | +30,

where 〈Interaction〉 is the set of available interaction concepts, and 〈Target〉 and 〈O f f set〉 are

sets of elemental concepts representing target and offset, respectively. Composition rules for the

two types of interactions, moveto and orientto, are denoted by ⊕1 and ⊕2, respectively. The

sub-symbolic implementation of this concept system in the sNNPB is analyzed in detail in Section .

Generalized Behavioral Patterns

While the previous section showed that the network is able to generalize its interaction skills

in a functionally compositional way, we now focus on how the necessary interaction behavior is

generated and how even untrained interactions could be generated. We are interested in the extent to



EMERGING BRAITENBERG CODES AND COMPOSITIONALITY 12

 blue cyan green yellow orange magenta
moveto

orient+0

orient-18

orient+18

orient-30

orient+30

98 8590979897

78 7680807677

76 7586768681

74 7488879288

89 8974898876

73 8975858375

 blue cyan green yellow orange magenta
moveto

orient+0

orient-18

orient+18

orient-30

orient+30

95 8887939596

91 9189858283

92 8993849493

89 9395969796

96 9587959594

82 9381939193

(a) Hue + Linear (b) Hue + Gaussian

Figure 8. Imitation performance obtained in Block 4: Both encodings yield a generalization performance

in all untrained cells above 73%.

which the sNNPB generalizes the sensorimotor mappings beyond the cases on which it was trained.

Therefore, we focus on the replication of and generalization over the object interactions generated

by the training program. The presented data in this section were generated based on Block 4 by

using an sNNPB with the hue-based, linear encoding setup.
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Figure 9. Task-specific direction and distance to velocity mappings.

Figures 9(a,b) show the acquired mappings between the relative direction and distance of

a target object and the velocity of the right wheel for moveto-cyan and orientto-cyan, re-

spectively. The motor output is determined in environments where only one cyan object was lo-

cated. The figures show that the robot can reconstruct the position-velocity mapping for both the

moveto-cyan and the orientto-cyan interactions. An interesting generalization can be observed

for the moveto-cyan case when the robot is located close to the object (r = 35). In this case, the

robot was only trained on cases where the object was within 15◦ relative directional range due to

the environmental setup. While the desired output is well-approximated within that range, outside

of that range the system extrapolates to the cases where the object is at a further distance. The ac-

tual velocity then follows a line labeled “extrapolation” in Fig. 9(a), which is obtained by applying

r = 35 to the equations for r ≥ 36 (cf. (3) and (4)).

In addition to this generalization to visual input ranges that were not seen during training,

Fig. 10 shows that sNNPB also learned to avoid currently undesirable objects. Figure 10(a) shows

the hue dependency of motor output vR for the orientto-cyan interaction concept1. The output

1The motor output vL was generally mirrored to the one of vR in this case (not shown).
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was recorded by presenting 40 different colored objects at 19 different positions, all 90cm from the

robot. At the hue corresponding to the cyan object (hue ≈ 180◦), it can be seen that the robot’s right

wheel rotates forward when a cyan object is located to the right of the robot but backwards when

the object is located to the left, thus replicating the trained sensorimotor interactions. However, if

a different colored object is observed given the orientto-cyan instruction, this pattern is increas-

ingly reversed. The robot increasingly avoids other objects the stronger the color differs from cyan.

These results show that the robot generalized over the color space.
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Figure 10. Hue-direction to wheel velocity mappings for specific orientto interactions.

Similar patterns can also be observed for other target colors (figures 10(b,c)). It should be

noted, however, that orientto-blue was never taught during the learning phase. Further anal-

yses revealed that all six orientto-τ interactions share a highly similar mapping with different

displacements corresponding to the color of the target object τ. This indicates that some common

internal mechanisms are reused among all the orientto-τ interactions and are modified based on

the currently desired target τ, as specified in the PB layer.

Another repetitive motor pattern should be found with respect to the directional offset φ,

which modified the object-respective turning behavior according to (5) and (6). In Fig. 11, the five

lines show the velocity profiles computed from (5) with the trained offsets. The actual direction-

velocity mappings for orientto-cyan with offsets confirm the existence of the common mecha-

nism. The mappings are obtained under the condition that the cyan object is placed 90cm away from

the robot. Note that the two interaction concepts orientto-cyan-30 and orientto-cyan+18

were never taught during the learning phase. Each of the mappings follows its desired profile. Sys-

tematic error patterns can also be observed from the profiles, again suggesting common mechanisms

that realize the offset-respective mappings.

In sum, we were able to show (a) behavioral generalizations over the hue space, (b) emergent

avoidance behavior that was only indirectly taught, and (c) behavioral generalizations in terms of
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Figure 11. Target direction to wheel velocity map for different offset angles

offset value inter and extrapolations.

Network Structure Analysis

While the behavioral analyses in the last section confirmed that the sNNPB structured its

sensorimotor interaction skills in a compositional way, it remained unclear how it accomplished

this. It also remained unclear how the network generated the sensorimotor interaction patterns in

the first place. To explain this, we now analyze the sNNPB encodings in detail. First, we analyze the

structure of the PB layer and show that a sub-symbolic equivalence of compositional role-argument

structures emerged. Next, we reveal how these compositional structures in the PB layer realize the

selective invocation of those sensory-to-motor mappings that realize a particular interaction.

Functional Compositionality in Concept Space

Seeing that the sNNPB can yield behavioral recombination, we first turn to the PB layer and

investigate how the interactions are represented in a “compositional” manner. Thus, we structurally

analyze the PB space, as defined by the interaction-respective concept vectors ui for all the 36

possible interactions i ∈ I. The presented structures were generated by an sNNPB in the hue-based,

linear encoding setup. Comparable structures were obtained by using the other encoding setups.

Figure 12 shows concept structures obtained in Block 1. The 15 concept vectors shown repre-

sent orientto interactions toward either blue, cyan, or green objects with five different possible

offsets. The vectors are projected into a surface spanned by the first two principal components of the

30 concept vectors for the orientto-τ-φ interactions. The six moveto-τ concept vectors were re-

moved from this principal component analysis because they took aberrant values. The accumulated

contribution rate of the two principal components was 0.77. With regard to the presented 15 inter-

actions, similar interactions are arranged nearby in the concept space and a rudimentary continuum

of interactions by offset is observed in a horseshoe shape. However, no regular sub-arrangements

are observed, suggesting that the information of target color and offset angle was not clearly sep-
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Figure 12. Concept structure obtained in Block 1: Mainly sensorimotor similarities are observable.

arated by the sNNPB. This implies that every orientto interaction with different offsets employs

its proprietary target representation. This is consistent with the observed behavioral performance in

the last section: no recombination of interactions was observed.
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Figure 13. Concept structure obtained in Block 4: Full semantic compositionality is observable.

In contrast, in Block 4 a systematic geometric arrangement self-organized among all 36 con-

cept vectors, as shown in Fig. 13. The top four principal components of all 36 concept vectors

are presented in the figure, arranged by means of an affine transformation for visualization conve-

nience. The accumulated contribution rate of the first four principle components was 0.78. The

arrangement consists of three sub-arrangements, which correspond to the three roles constituting

the interactions: 〈Type〉, 〈Target〉, and 〈O f f set〉 (cf. Equation 20). In Fig. 13(a), the interactions

are clustered with respect to its type, with moveto or orientto along the y-axis. In the orientto
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cluster, five sub-clusters can be found for each of the offsets, although they overlap to some extent.

These five sub-clusters constitute a linear continuum of orientto interactions by offset along the x-

axis. In Fig. 13(b), six clusters correspond to each of the target colors. Furthermore, the clusters are

arranged in a circle comparable to the circular continuum of color in hue space (see Fig. 4). Further

analyses have shown that intermediate arrangements can be found when training other subsets of

interactions. Thus, a continuous process underlies the transition from similarity to compositionality,

realized by progressively more self-organized geometric arrangements of the concept vectors.

Since the three role-relevant sub-spaces are orthogonal to each other, elemental concepts

are reusable in all possible combinations. We discovered the analog mechanism that realizes the

role-argument structure estimated in Sec. and specified in (20), considering the following corre-

spondences:

1. Roles 〈Type〉, 〈Target〉, and 〈O f f set〉 correspond to respective sub-manifolds.

2. Elemental concepts for each role, for example, orientto, blue, and -30, are vectors

pointing to the center of gravity of the corresponding clusters;

3. The argument structure, which combines the elemental concepts, is implemented by the

disjoint union of the corresponding vectors.

Thus, roles are sub-manifolds that are embedded in a self-organized, higher-dimensional compo-

sitional interaction manifold. Elemental concepts for each role are particular vectors in the cor-

responding sub-manifold. Compositionality is enabled by activating particular role combinations

in the form of disjoint unions, where the orthogonality of the role sub-spaces enables the flexible

recombination of actual elemental concepts, which play particular roles in a concrete interaction.

Compositional Sensorimotor Mapping

We have shown that the PB space expresses compositional interaction concepts by repre-

senting 〈Type〉, 〈Target〉, and 〈O f f set〉 in role-specific subspaces. Since the interaction concept

vector determines the mapping from VR to MO (cf. Fig. 3), we now investigate how these compo-

sitional vectors may activate the appropriate sensorimotor mapping. The crucial questions are: (a)

how can the connection weights sCi, j suitably select the appropriate sensory-to-motor mappings and

(b) how is the sensory information transformed in layer VR to enable the weight-driven selection

mechanism.

We will show that the compositional behavioral flexibility is realized by the multiplicative

re-combination of color-selective sinusoidals stemming from the sem-net and the pb-net. Activity

of the sem-net is determined by the currently observed objects and their relative positions. Activity

of the pb-net is determined by the implicitly given target, interaction type, and angular offset value,

which specify a particular interaction. To be more precise in the following mathematical formula-

tion, we denote particular interaction concept weights by sC
µτφ

i, j
with µτφ ∈ I and interaction type

µ ∈ {orientto, moveto}, target τ ∈ {orange, yellow, green, cyan, blue, magenta}, and offset

φ ∈ {−30,−18, 0, 18, 30}.

As indicated by the behavioral generalization capabilities and exemplary goal-specific sensor-

to-motor mappings depicted in Fig. 10, the sNNPB developed a selectivity to a specific target object

τ by rotating a common visuomotor profile along the hue axis, dependent on the hue of the target

object ψτ. Mathematically, such a rotation can be realized by a sinusoidal function that depends on

the target color ψτ (in angular hue space) and on the currently observed color ψω (also in angular

hue space). This sinusoidal pattern decreases to zero the closer the respective target is situated to

the interaction offset angle φ. Because turning in opposite directions requires wheel speeds with
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opposite signs, a linear dependency on the target angle suffices. Color selectivity and offset angle

dependency of the rotation behavior can thus be realized by approximating the following idealized

equation:

fµ,τ,φ(ψω, ρω) = φ + ρω · cos(ψτ − ψω), (21)

where ρω is the angle to an observed object. The cosine part realizes the attraction to a target color

and the repulsion to the opposite color. A linear mapping of the color-respective sinusoidal activity

to the two wheel motors (with opposite signs) cause the orientation behavior. The offset φ can be

added to this mapping, effectively shifting the target direction where turning ceases.

To separate the observation-based parts from the task-dependent parts, (21) can be decom-

posed into two sinusoidals – one of which being 90◦ phase-shifted from the other. The following for-

mula yields the same result as the one above due to fact that cos(x−y) = cos(x) cos(y)+sin(x)sin(y):

φ + cos(ψτ) · ρω · cos(ψω) + sin(ψτ) · ρω · sin(ψω). (22)

Now, the static, goal-oriented PB-based selection signals (ψτ and φ) are separated from the dynamic

sensory-based signals, which are underlined in the above equation. The constant orientation offset

suggests that the PB-layer may induce an offset-dependent constant activation modulation. The

formula also suggests that a directional signal ρω needs to be supplied by the VR nodes, which

needs to be blended into the sinusoidal, vision-based activities. This necessitates a directional,

color-selective sensor activity, which can result in a Braitenberg-like, but selective, approaching

behavior.

Taking a hue-velocity mapping for orientto-cyan (Fig. 10a) and its 90◦ phase shifted

mapping as basis mappings, any mappings for orientto-τ can be generated based on (22). Note

that hue-velocity mappings for orientto-cyan draw a sinusoidal curve with respect to ψω for

any object direction other than the targeted direction. This sinusoidal pattern does not depend on

a particular visual format, since similar results were obtained both for hue and RGB formats. The

sinusoidal-determined basis mappings are finally combined with the ψτ and φ components of the

second-order connections, yielding the color-specific wheel velocity mappings depicted in Fig. 10.

In the following two sections we verify that the weights generated by the pb-net in layer sC

and the processed visual activity generated by the sem-net in layer VR exhibit the expected structure

for orientto behaviors. Signals and further weight biases that are responsible for the approaching

component in the moveto interactions are also identified.

Selecting and Modifying Interaction Patterns in sC

Equation (22) suggests that the connection weights sCi, j realize the target selectivity by a

sinusoidal distribution pattern over the target color space plus an additive component that specifies

the required offset. Additional weight biases for the approaching behavior in moveto interactions

are to be expected.

Considering the color-respective hue values as input, we approximate the six color-specific

weight values along the hue axis with a sinusoidal equation. That is, given a particular interaction

type µ, we fit the weight values sC
µτφ

i, j
by the following function:

sCi, j = ai j · sin(ψτ − bi j) + ci j with ci j = Ai jφ + Bi j, (23)

where ψτ denotes the hue of the potential targets τ. Amplitude ai j and phase offset bi j determine

the extent and the position of the full sinusoidal period in the hue input space. The fitting curves are

obtained by using the conventional Levenberg-Marquardt method.
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Figure 14 shows the fitted amplitudes ai j, phase offsets bi j, and function offsets ci j respective

the six interaction concepts for all 12 nodes ( j = {0, 1, · · · , 11}) of the VR layer connecting to

the right-wheel neuron (i = 1) of the MO layer. In the case of the orientto interaction, the

corresponding weight values for the left-wheel neuron exhibited highly similar patterns and are

not shown. However, in the case of the moveto interaction the fits differed significantly for the

right- and left-wheel motor neurons, as shown. In addition, Figure 15 shows exemplar sinusoidal

mappings as well as the node-respective multiple correlation values of the respective mappings.

From the following weight connection analysis we derive node responsibilities in the VR layer.

The weights connecting nodes #1 and #8 with the MO layer show low correlation values and

consistently very low amplitude values. Due to these values, these two nodes do not fit into the

proposed scheme. We show below that these nodes indeed provide nearly target-color-independent

object distance signals. Nodes #3 and #7 show almost equally low correlation values and low

amplitudes, which however, do strongly differ with respect to the different offsets. The other eight

nodes exhibit high amplitudes and correlation values. Moreover, the phase offset values b are very

similar in these nodes over all five modifications of the orientto action.

The moveto actions also employ somewhat similar sinusoidal patterns. The phase offsets

b are generally similar to the ones for the orientto interactions, suggesting a similar approach

to combining VR activities for the motor output generation. The amplitude values are generally

smaller than the values for the orientto interactions due to the less aggressive rotation in the

moveto interaction. However, forward movements need to be superimposed. Only Node #3 shows

a higher amplitude compared to the moveto interaction values, suggesting a special relevance for

moveto interactions. The function offsets (Fig. 14(c)) indicate the strong general relevance of nodes

#1, #3, and #8 for the moveto interactions, compared to the orientto interactions. Also note that

for these three nodes only, the offset is similar for the mapping to the right wheel and the left wheel,

corroborating evidence that these three nodes control the forward motion.

At the same time, the VR nodes are categorized differently in terms of their relevance to the

determination of final angular offsets. Strong correlation is observed between the above-mentioned

fitting parameter c and a given offset angle φ for six VR nodes. Figures 16(a – c) show linear regres-

sion results of c in terms of the fitting function Aφ+ B where A and B are fitting parameters defined

in (23). Examples of fitting curves are presented in Fig. 16(a) for two offset-relevant nodes #2 and

#9 and an offset-irrelevant node #10. The categorization is obtained in terms of the proportional

constant A and multiple correlation values, as shown in Figs. 16(b) and (c), respectively. The five

strongly offset-relevant nodes are fitted with proportional constant (|A| > 0.002) and with multiple

correlation values higher than 0.98. The offset values of the sinusoidal equation also illustrate this

correlation (cf. Fig. 14(c)). It may come as a surprise that the gradients stemming from nodes #2

and #7 are positive while the gradients of nodes #6, #9, and #11 are negative. This suggests that

inverted visual information should be contained in the respective VR nodes.

Reusable Components for the Sensorimotor Mapping in VR

The above analysis has shown that the sNNPB utilizes a sinusoidal selection mechanism that

determines the relevance of particular VR nodes for particular color-object interactions. An addi-

tional value offsets the sinusoidal curves to scale their mapping influence dependent on the desired

interaction offset. According to (22), a similar sinusoidal pattern should also be observable in the

VR nodes to realize the unrolling of the desired sensorimotor interaction patterns given the sensory

input. Originally, we expected that this layer would provide visually-processed factual information
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Figure 15. (a) Connectivity from VR nodes to the motor output nodes that generates the velocity of the right

wheel; (b) multiple correlation values between actual and approximated connectivity.

about the surrounding environment, such as “orange-object at 45◦ and blue-object at −30◦.” How-

ever, this layer provides behavior-oriented information about the surrounding objects in the form of

processed, Braitenberg-like sensory encodings. These encodings provide the information necessary

to realize the underlined parts of Equation (22): sinusoidal patterns along the hue axis are linearly

modified dependent on the direction to the object. Distance encodings can also be found that allow

the online control of the approaching and stopping behavior necessary for the moveto interaction.

We first analyze nodes #1 and #8, which were identified as moveto-relevant nodes in the

above connectivity analysis. The activation level of #1 decreases gradually as an object comes

closer, as shown in Fig. 17. In contrast, the activation of #8 changes suddenly when any object

comes just in front of the robot as shown in Fig. 18. This confirms that these two nodes provide

suitable distance codes, which can be recruited by the moveto interactions. The more negative the

activity in these two nodes, the lower the speed of the two wheels. Due to the strong non-linear sen-

sitivity of node #8 around 35cm with a switch from positive to negative values, the sNNPB realizes

the stopping-behavior. Essentially, the nodes encode Braitenberg-like distance signals, which allow

a direct mapping of object distances onto wheel speeds.

When combining the VR activities of the remaining ten nodes, it can be shown that the

sensorimotor mappings for orientto interactions are composed of three components. A common

component is shared by all the orientto interactions with any offset angle. An offset-relevant

component shifts the common component offset-respective. A target-relevant component adds the

color-dependent sinusoidal tuning. The common component is obtained based on the term B of

the sinusoidal function (23). Figure 19(a) shows a sensorimotor mapping that consists of the ten

VR nodes with an activity ratio of each node given by the respective Bs. This component is fairly

insensitive to hue, but contributes slightly to convergence to any object with no offset.

The offset-relevant component is obtained as a combination of the offset-relevant VR nodes

(#2, #6, #7, #9, and #11) with the ratio given by Aφ in (23) and illustrated in Fig. 16. This com-

ponent is almost flat and contributes to changing the convergent direction by leveling the velocity

uniformly as shown in Fig. 19(b) and as was hypothesized in (22). Thus, for each offset-value,

the sensorimotor mapping is uniformly shifted to the position where the transfer from positive to
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Figure 17. Activation of VR node #1: Sensitivity of VR node #1 to the distance to an object is shown as

differences of two outputs for the object placed at 90cm and 120cm, 60cm and 90cm away from the robot.

negative wheel speeds and vice versa should take place. This encoding suggests the invention of a

necessary constant offset value, which can produce constant offsets over the entire sensory space2.

Finally, the target-relevant component is obtained as a combination of the eight hue-relevant

VR nodes (#0, #2, #4, #5, #6, #9, #10, #11) with the ratio given by averaged a and b values over all

offset angles. This component produces a suitable linear gradient from positive to negative values.

Figures 19(c1 – c3) show that the zero activity hits the spot at the zero offset almost perfectly for the

respective target objects. In addition, the pattern increasingly reverses for colors that increasingly

differ from the target color. This confirms that the shifting of the sensorimotor mappings observed

in Fig. 10 is realized by the multiplicative combination of processed sinusoidal visual information

and sinusoidal target selectivity, as formulated in (22). The visual representation encoding can be

regarded as the provision of perfectly task-suited, color-sensitive Braitenberg-like sensors: for each

target color there are two sensors whose activity is maximal given the target color and decreases

2Surprisingly, experiments with bias nodes in the VR layer showed that back-propagation fails to recruit those nodes

for the offset control but still “invents” its own offset encoding as explained above.
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Figure 18. Activation of VR node #8: the output of VR node #8 is recorded when an object is placed at

35cm and 40cm away from the robot.
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Figure 19. Reusable Components of sensor-motor maps for orientto interactions: A common com-

ponent shared by all orientto interactions (a), an offset-relevant component (b), and a target-relevant com-

ponent (c1, c2, c3) are presented.

toward negative values with increasingly different hue-encoded colors. Positioning these sensors

with a sufficient perceptual radius to the front-left and -right of the robot can approximately yield

the gradient map shown in Figs. 19(c1 – c3).

To see how the visual information is combined to achieve these mappings, we show the output

patterns of the other ten nodes of the VR layer in Fig. 20. The output of the VR nodes was recorded

by presenting 40 different colored objects at 19 different positions 90cm from the robot. Further

analysis reveals that the activation of all ten nodes is approximated by a sinusoidal function of the

hue of a presented object ω for particular directions (that is, sinusoidal patterns along the x-Axis for

particular target directions). These sinusoidal patterns were observed irrespective of color encodings

of the visual input nodes, using either (sinψω, cosψω) (cf. Fig. 20) or (r, g, b) (not shown). Thus, the

offset-respective sinusoidal patterns of VR nodes along the hue axis, in conjunction with sinusoidal

patterns generated in the sCi, j connections, enable the color selectivity and the observed behavioral

generalization over the color space, as mathematically modeled in (22) above.

The linear gradient in (22) comes into being by the PB-controlled combinations of local,

color-offset specific linear gradients. These can be observed for given color encodings along the

y-Axis in the nodes of Fig. 20, where the observable single non-linearities (switch from positive to

negative gradient or vice versa) must be blended to generate an approximate overall linear wheel-
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speed mapping (cf. Figs. 19(c1-c3)). Thus, the color-relevant VR nodes provide a mixture of

color- and direction-sensitive sensors that do not encode object locations explicitly, but rather en-

code object directions color-respectively. This encoding allows the necessary selective mapping of

directional and distance information onto motor activities, resulting in the observed compositional

behavioral competence.
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Figure 20. Activation patterns of VR nodes

Developing Compositionality

The previous sections have confirmed that the sNNPB developed compositional concept

structures. We now turn to related work to emphasize the novelty of our approach. We focus on the

challenges of discovering role-argument structures and symbol-like structures form sensorimotor

data alone. Moreover, we discuss the question why the architecture was successful in this endeavor

and derive several implications.

Discovering Role-Argument Structures

Previous work has attempted to bridge the gap between analog sensorimotor experiences and

a compositional system of discrete concepts. Karmiloff-Smith (1992) proposed implicit Level-I rep-

resentations, which are characterized as implicit, bracketed procedural knowledge. Specific Level-I

representations may be acquired by rote-learning from particular sensorimotor events and are thus
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analogous to specific experiences. Karmiloff-Smith (1992) then proposes a representational rewrit-

ing (RR) model, which converts Level-I representations into increasingly explicit, discrete ones.

Because Level-I representations are unstructured, however, they do not provide any mechanism to

rewrite themselves into compositional concepts and it remains unclear, how this should be accom-

plished.

Johnson (1987) and Lakoff (1987) have proposed image schemas, which are “derived from

our bodily experience” (Johnson, 1987, p.XX). They from compositional concept structures ex-

plicitly, because they consist of mutually related concepts derived from those bodily experiences,

such as compulsion, containment, or part-whole relations. While they are thus supposed to capture

recurring structural patterns of our sensorimotor experiences, how such concepts are developed au-

tonomously remains unsolved. Clausner (2005) pointed out that a chicken-and-egg problem needs

to be solved in this respect: how may image schemas be derived from sensorimotor experiences,

while being a prerequisite for organizing these experiences in the first place?

In our experiments, the sNNPB was able to discover role-argument structures by developing

role-specific geometric regularities in the form of orthogonal manifold sub-spaces. For example, as

abstractly illustrated in Fig. 21, the sub-symbolic equivalence of the orientto interaction concept

is a cylindrical manifold structure that is particularized by specific target and offset arguments. The

target, color-selective role is realized by a ring structure, whereas the offset, orientation-specific

role is realized by a perpendicular axis. The perpendicularity enables the independent selection

and combination of target and offset. In our experiments, the interaction type formed an additional

perpendicular axis, additionally enabling the selective activation of moveto or oriento interactions

(cf. Fig. 13).

These compositional concept structures developed solely based on sensorimotor time series

data without a priori schema biases. Sensory and motor similarities were gradually transformed into

compositional concept structures, which enabled the combinatorial transfer of skills. With respect

to the problem raised in Clausner (2005), we believe that it was actually helpful to refrain from

inducing an explicit task decomposition, because this preserved the natural interdependence among

semantic roles.

orientto+30

orientto-18

orientto+0

orientto+18

orientto-30
blue

cyan

green

yellow

orange

magenta

Offset Subspace

x-axis of Fig.13(b)
y-axis of Fig.13(b)

x-axis of Fig.13(a)

Figure 21. An idealized concept space: Three of the four dimensions of concept structure acquired in

Block 4 are illustrated.

Structural Emergence in Sub-symbolic Models

Sub-symbolic models that acquire embodied compositional concepts have also been proposed

by Cangelosi and Riga (2006) and Tuci, Ferrauto, Massera, and Nolfi (2010). Both models employ
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symbolic input layers, which specify interaction concepts that are to be acquired or generated. Each

symbolic node corresponds to a particular predefined elemental concept. The actual interaction con-

cept is specified by the combination of two or more active nodes. Thus, their models find internal

configurations that plug sensorimotor experiences of a robotic agent into predefined concept struc-

tures. While our model succeeded without any predefined concept structures, its combination with

symbol-oriented representations is pending – potentially contributing another piece to the solution

of the symbol grounding problem on a behavioral level (Harnad, 1990; Steels, 2008; Sugita & Butz,

2011).

The previous model in (Sugita & Tani, 2005) actually did utilize linguistic structures to gen-

erate a more detailed behavioral conceptualization. In this case, an RNNPB was employed to learn

several distinct interactions. The provided linguistic pressure introduced geometric regularities into

the behavioral concept space, which made the holistic interaction concepts accessible from the lin-

guistic side. However, no behavioral skill transfer was observed, which was accomplished in the

present work.

In the current sNNPB architecture, compositional goal-oriented interaction encodings are fos-

tered because the correlations between target positions and motor outputs form interaction-specific

equivalence classes. The sensorimotor similarity alone, however, could not bootstrap the catego-

rization of the interactions, because the sNNPB architecture has no innate mechanism to focus on

the target. Neither the visual nor the motor time series data provide similarity signals that may fos-

ter the generation of compositional concept structures. Only the provided distinctness information

about the trained interactions enabled the network to learn to focus on the target, using the discussed

sinusoidal encoding approach.

Pathway Separation and Interaction

Due to the different time scales and the second order connections, the pb-net developed goal-

oriented interaction selection encodings, while the sem-net developed encodings that allowed the

activation of any suitable interaction. The second-order weight influence of the pb-net onto the

sensory-to-motor mapping enforced a multiplicative information combination. In consequence,

a compositional encoding developed in the pb-net, while directional, goal-differentiating compo-

nents developed in the sem-net. We were not able to achieve similar compositional patterns or

behavioral generalizations with previously used RNNPB architectures (Sugita & Tani, 2005). Even

continuous-time RNNs (CTRNNs) have not succeeded in discovering similar compositional struc-

tures (Yamashita & Tani, 2008; Arie et al., 2010). On the other hand, related work with second-

order connections (Nishide et al., 2009) succeeded in generating compositional structures – albeit

to a more limited extent. These observations and investigations suggest to us that (a) separating

task-specific, goal-oriented encodings from sensory-to-motor encodings and (b) establishing a mul-

tiplicative interaction with e.g. second-order connections for the selective activation of goal-suitable

sensory-to-motor mappings may be crucial for the development of compositional, cognitive struc-

tures.

Interestingly, this separation may be related to encodings that can be found in the dorsal and

the ventral sensory processing pathways of the brain (Milner & Goodale, 2008). While the dor-

sal pathway is characterized as encoding vision-for-action, the ventral pathway is characterized as

providing vision-for-representation. In our experiments, re-presentation per se was absolutely irrel-

evant, but the internal PB structures developed “pro-presentations” for interaction selection. There-

fore, we believe that the sem-net exhibits properties of the dorsal “perception-for-action” pathway,
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whereas the pb-net exhibits properties of the (deep) ventral “perception-for-selection of interaction”

pathway.

Body-relative, multi-sensory stimulus encodings can be found in the parietal and premotor

cortex (Holmes & Spence, 2004; Rizzolatti, Fadiga, Fogassi, & Gallese, 1997), which are trans-

ferred into goal-oriented, partially ethologically relevant motor encodings (Graziano, 2006) along

the dorsal processing pathway. Along this pathway (but also elsewhere) gain fields were identified,

which realize behavior-oriented coordinate transformations (Andersen, Snyder, Bradley, & Xing,

1997; Chang, Papadimitriou, & Snyder, 2009; Salinas & Sejnowski, 2001). Gain fields are assumed

to multiply receptive field activities from one domain with a monotonic function stemming from an-

other domain (Chang et al., 2009). The sem-net in our sNNPB appears to develop similar encodings.

In particular, the VR layer developed several neurons that exhibited sinusoidal, receptive-field-like

object color activities that were multiplicatively modified by object directions. To accomplish this,

the sNNPB converted the provided “retinotopic” sensory inputs into direction signals – encodings

found along the dorsal pathway in the primary visual cortex and various parts of the posterior pari-

etal cortex, respectively.

The ventral pathway, on the other hand, is assumed to encode object identities (Riesenhuber

& Poggio, 2000) and leads to the selection of currently desired environmental interactions. While

we do not implement the object identification part, the pb-net mimics the selective activation of a

particular, currently desired interaction. While very little is known about the systematicity of the

encodings found in the deep ventral pathway, flexible, compositional representations are necessary

to effectively coordinate motor interactions. The sNNPB architecture developed such compositional

representations in its PB neurons. This suggests that learning biases towards semantically compo-

sitional structures may be inherent when separating the processing of sensory information for the

control of potential behavioral interactions from representations suitable for the selection of a par-

ticular interaction. Consequently, the (deep ventral) action selection pathway may be especially

predestined to develop compositional structures.

Summary and Conclusion

In this paper we have shown that a second-order neural network with parametric biases

(sNNPB) can develop compositional concept structures for the selective, compositional invocation

and control of environmental interactions. This was achieved by training the sNNPB on exemplary

sensorimotor time series data using the general back-propagation learning algorithm and providing

distinctness (but not compositional) information for each type of trained interaction. The composi-

tional behavioral competence was realized by two multiplicatively interacting modules: the pb-net

self-organized the neural PB space into a geometrically-structured, compositional concept space,

determining the task-relevant sensory-to-motor mapping. The sem-net learned to transfer raw sen-

sory information into task-oriented Braitenberg-like pro-motor encodings, providing suitable sen-

sory information for compositional environmental interactions. The multiplicative combination of

the two sources of information resulted in the capability of imitating even untrained behavioral in-

teractions, generalizing the learned capabilities in a compositional manner. Since experiments with

other neural networks including RNNPBs Sugita and Tani (2005) and CTRNNs (Yamashita & Tani,

2008; Arie et al., 2010) did not succeed in exhibiting similar compositional encodings or behavioral

generalizations, but another second-order multiple time-scales RNN did to some extent (Nishide

et al., 2009), it appears that multiplicative, second-order connections are indeed necessary to learn

compositional structures from sensorimotor interaction patterns.
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Future work will need to refine the current approach in several respects. First, it is unsatis-

factory that the distinctness information is provided by a teacher. We believe that distinctness infor-

mation may come either from internal motivation and reward signals or from linguistic signals. The

self-organized behavioral PB structure may then serve as a pre-linguistic concept structure, which

may facilitate later syntax acquisition (Dominey, 2006, cf.) and behavior-based symbol grounding

Harnad (1990).

Second, the model should be extended to acquire recursively structured interaction concepts.

In this way, the same target concept may, for example, play the role of subject or object. The

recursive structure may be represented as a fractal geometric arrangement, as shown in Nishimoto

and Tani (2004) and Sugita and Butz (2010). A learning model in which such a fractal structure

self-organizes through the learning of sensorimotor time series involving behaviors of an agent still

needs to be developed.

Finally, to foster the scalability of the system to more diverse and complex interactions, it will

be necessary to further modularize the learning architecture and to introduce more explicit mecha-

nisms of focus, goal-directedness, and attention. To be able to identify the interaction-crucial bits

of information, redundant sensory, motor, and sensorimotor encodings will be necessary. Clearly,

a major challenge for future research is to learn compositional structures in more general environ-

mental setups and with a more capable robotic system. The insights gained by the current work

suggest that the task-dependent, second-order control of mappings from suitably processed, pro-

motor encoded sensory information to motor activity encodings may play a crucial role in achieving

this endeavor.
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