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Abstract— Reliable predictability, which is tightly connected to
consistency of environmental changes, is one of the main factors
that determine human behaviors. As a constructive approach
to understanding this mechanism, the authors have developed a
method to generate autonomous object pushing motions based
on consistency of object motions using a humanoid robot. The
method consists of constructing a dynamics prediction model
using Recurrent Neural Network with Parametric Bias (RNNPB),
and motion searching based on an object consistency evaluation
function using Steepest Descent Method. First, RNNPB is trained
using the observed object dynamics and robot motion sequences,
acquired during active sensing with objects. Next, the Steepest
Descent Method is applied for searching the reliably predictable
motion through the constructed dynamics model. Finally, the
obtained motion is linked to the initial object image using a
hierarchical neural network. The model inputs the object image
outputting the reliably predictable robot motion which induces
consistent object motions. The model was analyzed through two
experiments, pushing cylindrical objects with a humanoid robot.
The analysis has shown the method’s effectivity and limitations
to generate consistent object motions.

I. I NTRODUCTION

Motion generation based on affordance [1] is one of the
key factors for providing environmental adaptability to robots.
Affordance is a feature of an object or environment that
implies how to interact with it. The two main streams of
affordance based robot motion generations researches are
conducted for mobility and manipulation.

Studies on affordance based mobility have progressed,
granting robots the ability to determine traversable motions
based on the current environmental state [2] [3]. These works
apply active sensing [4] experiences with the environment
to create a traversability knowledge of the environment. The
knowledge is applied to classify the current environment
(object) state into two groups, traversable or not traversable,
selecting the traversable motion as the afforded motion.

Compared to affordance based mobility, only few works
exist for affordance based manipulation. An example of such
work is tool manipulation for extending the reach of the
robot [5]. Extension of reach is one of the four factors that
Beck proposes for which most animals use tools [6]. The
work granted the robot the ability to autonomously select the
appropriate tool for conducting an object manipulation task
where the target object is out of reach.

Considering these backgrounds of affordance based motion
generation researches, the authors focus on a more fundamen-
tal criteria. Referred to asReliable Predictabilityby Hawkins
[7], the capability to generate motions that produce predictable
results is a prerequisite for robots to conduct a given task.
The ability for robots to generate motions based onReliable
Predictability acts as a basis for the previous studies on
affordance based mobility and manipulation to generate more
robust motions.

Reliable Predictabilityis tightly connected to consistency
of environmental changes. Humans are more capable of pre-
dicting consistent results than inconsistent ones. AsReliable
Predictability is difficult to evaluate quantitatively, the authors
evaluate consistency of environmental changes as a measure
for Reliable Predictability. Hawkins also proposes that humans
act to generate predictable, or consistent, results.

The aim of our work is to generate consistent object motion
results from the object image based on the robot’s active
sensing experiences. The work contains two issues:

1) Creation of a model linking the dynamics of the object
and robot.

2) Searching for robot motion that generates consistent
object motions.

The authors have dealt with the first issue by applying the
Recurrent Neural Network (RNN) model for learning object
and robot dynamics. RNN possesses the capability to adapt
to unknown environments with its generalization capability
from few training data. For dealing with the second issue,
the authors have applied the Steepest Descent Method for
searching the most consistent object dynamics. The searching
also yields theReliably Predictablerobot motion which gen-
erates consistent object dynamics, as the RNN links the robot
and object dynamics. The final step links the initial object
image to the acquired robot motion to create a model that
inputs the object image, and outputs theReliably Predictable
robot motion. In a previous paper [8], the method had been
proved to be capable of generating consistent rolling motions
for cylindrical objects. In this paper, we analyze the method
for two experimental setups, one presented in the previous
paper and a different experimental setup.

A related work by Fitzpatrick aimed to generate rolling
object motions, or to mimic an observed behavior [9]. In his
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work, the robot conducts active sensing with various objects
to learn the⟨object, action⟩ pair. The work applies motion
generation to trained objects, whereas the authors utilize
neural networks to apply to untrained objects. The objective
of our approach also differs. While Fitzpatrick’s approach
generates goal-oriented behaviors, our approach generates the
most predictable, or consistent, behavior.

The rest of the paper is composed as follows. Section II
describes the proposed model. Section III briefly describes
the setup and results of the experiments in the previous paper.
Section IV describes the experiemental setup and results of
the additional experiment. Section V presents some discus-
sions considering the two experiments. Conclusions and future
works are presented in Section VI.

II. PROPOSEDMODEL

This section describes the overview of the proposed model.
The model is composed of two neural networks, and three
training phases. In the first phase, a robot-object dynamics
model is created by training Recurrent Neural Network with
Parametric Bias (RNNPB) [10]. A description on RNNPB is
given in the following subsection. RNNPB is trained using
robot motion and object sequences obtained during active sens-
ing with training objects. In the second phase, the technique
searches through RNNPB based on an object dynamics consis-
tency evaluation function to acquire theReliably Predictable
robot motion. In the third phase, a neural network which links
the initial object image with the acquired robot motion (PB)
is trained. The construction of the model is shown in Fig. 1.

A. RNNPB Model

The authors utilize RNNPB, shown in the upper half of Fig.
1, as a model for learning and linking robot dynamics with
object dynamics. RNNPB is an extension of the Jordan-type
RNN [11], with Parametric Bias (PB) nodes in the input layer.
It is set as a predictor calculating the next stateS(t+1) from
the current stateS(t).

Current Robot/Object 

X(t+1)

Context Loop
X(t)

Static Initial Object Image

RNNPB

Feature State S(t) 

Next Robot/Object 
Feature State S(t+1) 

Hierarchical Neural Network

PB

Input 

Output 

Fig. 1. Construction of Model

In comparison with the Jordan-type RNN, the PB nodes
extend the ability of RNNPB to learn multiple sequential data
in a single model. While RNN calculates a unique output
from the input and context values, RNNPB is capable of
altering its output by changing the values of the PB nodes
(PB values). This provides RNNPB the capability to learn
and generate multiple sequences. Therefore, RNNPB is often
called a distributed representation of multiple RNNs.

The training process of RNNPB is conducted in a similar
process as the Jordan-type RNN. Using teaching signals, the
training optimizes the weights and self-organizes the PB val-
ues. The Back Propagation Through Time (BPTT) algorithm
[12] is used for training. For updating PB values, the back-
propagated errors of the weights are accumulated along the
sequences. Denoting the step length of a sequence asT , the
update equations for PB during the training phase are

∆ρ = ε ·
T∑

t=1

δbp
t

p = sigmoid(ρ). (2)

First, the delta force∆ρ is calculated by (1). The delta error
δbp
t is obtained by back propagating the output errors from

the output nodes to the PB nodes. The new PB valuep is
calculated by (2) applying the sigmoid function to the internal
value ρ updated by the delta force∆ρ. ε is the learning
constant.

During the training process of RNNPB, each training se-
quence is encoded into PB values based on their mutual
similarities, forming the PB space which creates clusters of
similar sequences. As the update equations for the PB values
are conducted for each pattern sequences, a larger number of
similar sequences creates a relatively wider cluster in the PB
space. The sequences can also be reconstructed from the PB
values by recursively inputting the outputS(t + 1) back into
the inputS(t). This process, calledassociation, calculates the
whole sequence from an initial stateS(0), initial context value
X(0), and a PB value.

B. Motion Searching based on Reliable Predictability

After training RNNPB with training sequences, the tech-
nique searches through the PB space for the most consistent
object dynamics. The evaluation function is set as

E(p) =
δO2

δp
, (3)

where O is the associatedobject dynamics andp is the
PB value. Equation (3) evaluates the fluctuation of object
dynamics relative to fluctuation of PB, which represents the
robot motion. The local minimum of (3) indicates the PB
encoding object dynamics with little deviation when the robot
motion changes. In other words, the PB values of the local
minimum encodes the most consistent object dynamics in its
vicinity in the PB space. In this paper, the Steepest Descent
Method is applied for calculating the local minimum.
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For calculating (3), we discretize the function for numerical
calculation, as it is difficult to be solved analythically. The
function in (3) is equivalent to

E =
1
µ

∑
i,j,t

(O(p1, p2, t) − O(p1 + iµ, p2 + jµ, t))2

(i, j = −1, 0, 1) (i · j = 0), (4)

where t is the step number of the sequence andµ is the
discretization width. Equation (4) is expressed in two PB
nodes, but a similar equation can be derived for larger number
of PB nodes.

Obtaining theReliably Predictablerobot motion involves
calculation of the most consistent object dynamics. As Steepest
Descent Method is an initial value dependent method pos-
sessing many local minimums, we introduce another criteria
for obtaining the robot motion. We evaluate the wideness of
the PB space to determine a unique local minimum as the
Reliably Predictablemotion. As described in the previous
subsection, a wider cluster is formed in the PB space for a
larger number of similar patterns. As with humans, a larger
number of experience provides better predictability of the
environmental change. Therefore, the PB to be sought is the
one with the largest number of points to converge from equally
divided initial points. We divide the PB space defined in [0,
1] into lattice points, and use each lattice point as initial
points to converge into a local minimum. The local minimum
(PB) with the largest number of initial points to converge is
the PB (p∗) encoding the robot motion which generates the
most consistent object dynamics. The overview of the motion
searching technique is shown in Fig. 2.

PB1

PB2

1. Divide PB Space

into Lattice Points

2. Converge Each Lattice

Point to Local Minimum

PB1

PB2

Steepest Descent Method

3. Select Point with Largest Number of Converging Points
PB1

PB2

p*

PB1

PB2

Fig. 2. Overview of Consistency Evaluation

C. Linking and Generating Motion from Object Image

The third phase consists of linking theReliably Predictable
robot motion (PB) acquired in the second phase, to the initial
object image. We utilize a hierarchical neural network for
linking the two. For motion generation, the object image is
input into the hierarchical neural network to calculate the PB.
The PB is then used toassociateand generate the robot motion
that induces a consistent object motion based on the robot’s
experience.

III. M OTION GENERATION EXPERIMENT WITH SAME

AFFORDANCES

In this section, we describe the experiment conducted in
the previous paper [8]. The authors have used the humanoid
robot Robovie-IIs [13], shown in Fig. 3 for evaluation of the
method. Robovie-IIs has three DOF (degrees of freedom) on
the neck and four DOF on each arm. It also has two CCD
cameras on the head for processing visual information, one of
which was used in the experiment.

The actual experimental procedure was conducted as fol-
lows.

1) Acquire motion sequences of object features (center
position and inclination of the principal axis of inertia
of the object) from sequential images acquired while the
robot pushes training objects.

2) Train RNNPB using motion sequences.
3) Search for consistent object dynamics using Steepest

Descent Method.

The objects used for the experiment are shown in Fig. 4.

A. Training Data Acquisition and Model Training

In the previous paper, the model was evaluated with the
pushing motion of Robovie II-s with cylindrical objects placed
in the same initial position with different laid postures. As
this experiment considers cylinders only in laid postures, every
posture possesses the affordance to be rolled. The robot altered
its shoulder pitch angle and elbow pitch angle to generate
planar pushing motions with its left arm. The snack container
and pen case, used for training, were laid in five postures. The
robot pushed the objects with five motions acquiring a total
of 50 motion sequences. During the training phase, a total

Fig. 3. Humanoid Robot Robovie-IIs
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of 33 rolling motions were exhibited which were consistently
generated when the robot pushed the cylinder along the shorter
principal axis of inertia. No consistent motions were seen for
other motions.

The configuration of the neural networks are shown in Table
I and Table II. The input of RNNPB consists of the two
robot joint angles, center point (2 DOF), and inclination of the
principal axis of inertia (1 DOF) acquired at 2.5 frames/sec.
For object dynamics consistency evaluation, the PB space was
divided into10×10 lattice points, converging each lattice point
into a local minimum. The discretization widthµ was set to
0.001. The input of the hierarchical neural network consists of
a reducted grayscale image of the object with the resolution
of 23× 22. The inputs of the neural networks are normalized
to [0, 1].

B. Results of the Experiment

Figure 5 shows the self-organized PB acquired during
training and the PB values searched using Steepest Descent
Method. The blue triangles and red squares each represent the
PB values of rolling motions and other motions of training
data, respectively. The black rhombuses represent the PB val-
ues calculated from the Steepest Descent Method in the second
phase. As shown, it is notable that most of the rhombuses
reside in the clusters of the PB values of rolling sequences,
with a few deviations due to effects of the robot motion to
the self-organization of PB. Using the trained model, object
pushing experiments were conducted for the objects in Fig.
4, placing each object in five different postures. The pushing
results of the experiments are shown in Fig. 6, generating a
consistent rolling motion for every experiment.

snack container

pen case

steel can

coin box

Fig. 4. Objects used for Experiment, Training Objects (Left) and Target
Objects (Right)

TABLE I

CONFIGURATION OF RNNPB (PREVIOUS EXPERIMENT)

No. of Input/Output Nodes 5
No. of Middle Nodes 15
No. of Context Nodes 15
No. of PB Nodes 2
Learning Constantε 0.03

O

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
PB

P
B

2

PB from Actual Training Data
Calculated PBRolling Motion

Others (Steepest Descent Method)

1

Fig. 5. Generated PB Space

IV. M OTION GENERATION EXPERIMENT WITH DIFFERENT

AFFORDANCES

As an additional experiment, the authors have set up a
different experimental environment from that described in the
previous section. In the experiment described in the previous
section, training data were acquired with the pushing motion
of cylinders in laid postures. Therefore, every posture in the
experiment contained only the affordance (motion possibility)
of rolling the object. In the additional experiment, the authors
evaluate the training process for objects with two different
affordances. This experiment presents the limitations of the
current method.

A. Experimental Setup

In this experiment, the snack container, pen case, and the
steel can (Fig. 4) were used to acquire training data. The
money box was neglected since it does not form a complete
cylinder. As the setup for the experiment, the three objects
were also put upright to generate falling over motions, in addi-
tion to the five postures considered in the previous experiment.
The robot generated pushing motions by altering the shoulder
roll angle, shoulder pitch angle, and the elbow yaw angle.
Therefore, the robot pushed the objects from different angles
at different heights.

From the data acquired during the robot’s active sensing
with objects, we use only those that generated the rolling
motions and falling motions. When the object is put upright,
the robot pushed the objects to generate falling motions. When
the object is laid, the robot pushed the objects to generate
rolling motions. Therefore, an upright object possesses the

TABLE II

CONFIGURATION OF HIERARCHICAL NEURAL NETWORK (PREVIOUS

EXPERIMENT)

No. of Input Nodes 23 × 22
No. of Middle Nodes 10
No. of Output Nodes 2
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Snack Container Steel Can

Pen Case Money Box

Fig. 6. Results of Object Pushing Experiments

affordance of falling over, while a laid object possesses the
affordance of rolling. A characteristic of this experiment is
that we consider two object states which have different motion
possibilities, where the previous experiment considered one
object state possessing two motion possibilities.

A total of 61 motion sequences were acquired, 52 for rolling
and 9 for falling over. The total number of falling over motions
are smaller compared to rolling motions since sequences with
occlusions of the object are not used in the experiment. In this
experiment, we used two cameras, each calculating the center
position and principal axis of inertia of the object.

The configuration of RNNPB is shown in Table III. The
input consists of three nodes for robot motor values and six
nodes for object feature values. The rest of the configurations
for the experiment are same as the previous experiment.
In this experiment, we omitted the third phase training the
hierarchical neural network, since the searched motions were
scattered throughout the PB space.

B. Experimental Results

Figure 7 shows the PB acquired during training and the
PB searched using Steepest Descent Method. For the PB of
training sequences, the red rhombuses represent the PB of
falling over sequences, while the blue squares represent the
PB of rolling sequences. For the PB acquired using Steepest
Descent Method, the green triangles represent those acquired

TABLE III

CONFIGURATION OFRNNPB

No. of Input/Output Nodes 9
No. of Middle Nodes 20
No. of Context Nodes 15
No. of PB Nodes 2
Learning Constantε 0.01

O

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

PB of Rolled Training Data
Searched PB of Standing Objects
Searched PB of Lying Objects

PB of Fallen Over Training Data

Self-Organized PB during Phase 1 Calculated PB during Phase 2

PB 1

P
B

2

Fig. 7. Generated PB Space and Searched PB

from initially standing objects, while the black “X”s represent
those acquired from initially laid objects.

From the results, it is notable that the method has not always
succeeded in searching the reliably predictable motion. The
green triangles and “X”s are inconsistently scattered through-
out the PB space. This is due to the following two issues. First,
training RNNPB creates two attractors (falling and rolling)
with an discontinuous area between the two attractors. The
neighborhood searching method proposed in this paper was
unable to deal with the discontinuity of the PB space. Second,
the model was unable to discriminate the two object states
from the object features used in the experiment. This is due to
insufficiency of object features to describe the object shapes.
Therefore, the searching produced inconsistent results varying
to small changes of the initial object feature. In order to adapt
to different object states, the model requires extraction of
appropriate object features that describe the object states.

V. D ISCUSSIONS

In this section, we discuss the results of the experiments.

A. Predefined Object Features

In the experiments, the authors have used the center position
and principal axis of inertia as object features for training
RNNPB. As the principal axis of inertia is defined[0, π], the
value inverts when it reaches the limit. Figure 5 shows that
the PB of rolling motions are divided into two clusters. This is
due to the inversion of the principal axis of inertia. The motion
searching algorithm also limits the variety of objects for
the current model. Since the algorithm evaluates consistency
from the initial object features (as the object dynamics are
associatedfrom the initial RNNPB input), it is necessary to
select the appropriate object features that represent the object
shape. In order to deal with these issues, an autonomous object
feature extraction algorithm, which extracts object features that
describe object dynamics, should be implemented to apply to
different object shapes and dynamics.
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B. Motion Searching with Different Affordances

In the first experiment, the robot was capable of generating
consistent rolling motions of cylindrical objects. Although the
self-organized PB values were not completely clustered (the
rolling cluster was segregated into two parts due to insuffi-
ciency of object features), the PB values calculated by Steepest
Descent Method in the second phase were obtained near the
rolling motion clusters. However, in the second experiment,
the method was incapable of searching for consistent object
dynamics. This resulted from the following issues.

1) Limitation of the searching method to adapt to discon-
tinuities in PB space.

2) Insufficiency of object features to discriminate object
shape.

In order to resolve these issues, the model requires extrac-
tion of appropriate object features that describe the object
dynamics. As described in the previous subsection, an au-
tonomous object feature extraction algorithm is required to
solve these issues. This would provide the model to adapt to
a larger variety of objects.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the authors described the analysis results
of pushing motion generation with cylindrical objects using
RNNPB. Training of the model consists of three phases. In the
first phase, RNNPB is used to self-organize the robot-object
dynamics data acquired during acitve sensing with objects.
The second phase searches through RNNPB for theReliably
Predictablerobot motion based on consistency of object dy-
namics. The third phase links the object image with the robot
motion acquired in the second phase. The model therefore,
inputs the object image and outputs theReliably Predictable
robot motion that generates consistent object motions.

Two experiments were conducted for analyzing the model.
In the first experiment, the cylindrical objects were laid
down during acquisition of training data altering its posture.
Every object posture contained the affordance to generate the
rolling motion in this experiment. The model was capable of
generating consistent rolling motions adapting to the posture of
the object. In the second experiment, the cylindrical objects
were put in an upright posture, in addition to laid postures,
to generate the falling over motion. In this experiment, the
object contained the affordance to generate rolling motions or
the falling over motions based on the posture of the object.
This resulted in an inappropriate search of robot motion, as
the model was incapable of distinguishing the difference of
object states from the object features.

As future works, the authors plan to expand the model to
a larger variety of objects. As the first step towards this goal,
an autonomous dynamic object feature extraction based on
active sensing experiences is necessary. This would provide the
model the capability to deal with objects with different shapes.
Then, we would consider extending the model to a hierarchical
architecture. Thus, the model would be able to apply to a
larger variety of objects and robot motions. Further on, the

work could be integrated with previous studies on affordance
based motion generation would improve the robustness of
motion generation. The authors conclude this paper with a
large expectation for affordance to be functionalized in the
near future.
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