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Motor Primitive and Sequence Self-

Organization in a Hierarchical Recurrent 

Neural Network 

 

Abstract 

 

This study describes how complex goal-directed behavior can 

be obtained through adaptation processes in a 

hierarchically organized recurrent neural network using a 

genetic algorithm (GA).  Our experiments, using a simulated 

Khepera robot, showed that different types of dynamic 

structures self-organize in the lower and higher levels of 

the network for the purpose of achieving complex navigation 

tasks.  The parametric bifurcation structures that appear 

in the lower level explain the mechanism of how behavior 

primitives are switched in a top-down way.  In the higher 

level, a topologically ordered mapping of initial cell 

activation states to motor-primitive sequences self-

organizes by utilizing the initial sensitivity 

characteristics of nonlinear dynamical systems.  The 

biological plausibility of the model’s essential principles 

is discussed. 
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List of symbols 

 

A    Presynaptic neuron activity 

F    Total fitness awarded to robot 

FOA   Fitness awarded for obstacle avoidance, and fast,  

straight movements. 

Fgoal  Fitness awarded for goal finding  

γ     Internal activation state (cell potential)   

)0(taskγ    Initial task neuron activation states 

I    External sensory neuronal activation 

Pe    Encoded parameter value from 5 bit string  

Pa    Analog parameter value 

R   Reward for finding a single new goal 

Smax   Maximum robot sensor value, scaled to a range of  

0 to 1 

σ     Logistic function 

τ     Time constant of a neuron 

θ     Neuronal activation bias 

V   Wheel speed scaled to a range of 0 to 1.   

V     Average speed of the two wheels.  

V∆     Absolute value of the difference in speeds  

between the two wheels 

w    Synaptic weight 
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Wc    Control neuron interface synaptic weights 

Wl    Bottom level internal weights 

Wh    Higher level internal weights 
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1.  INTRODUCTION 

  

     It is widely believed that humans develop certain 

hierarchical or level structures for achieving goal-

directed complex behaviors, and that these structures 

should self-organize through interactions with the 

environment.  It is reasonable to assume that an abstract 

event sequence is represented in a higher level, while its 

detailed motor program is generated in a lower 

level.  Fikes et al. (1972) described “generalized robot 

plans” as a way of solving future problems by incorporating 

past experience.  Arbib (1981) proposed the idea of 

movement primitives (also referred to as perceptual-motor 

primitives, motor schemas, or motor programs), which are a 

compact representation of action sequences for generalized 

movements that accomplish a goal.  Evidence of such 

primitives in animals has been found (Giszter et al., 1993; 

Mussa-Ivaldi et al., 1994), and human studies also indicate 

their role in complex movement generation (Thoroughman & 

Shadmehr, 2000). 

     A movement primitive can be formalized as a "control 

policy", encoded using a few parameters in the form of a 

parameterized motor controller, for achieving a particular 

task (Schaal, 1999).  The motor primitives are routine 
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motor programs that repeatedly appear in the sequences of 

the motor patterns.  Once such motor primitives develop 

early in the life of an organism, diverse behaviors can 

emerge by learning to combine them in a multitude of 

complex sequences.   

     Mataric (2002) showed examples of behavior generation 

through primitive combination in the context of imitation 

learning using a virtual humanoid robot.  In her 

computational architecture, a cluster of motor primitives 

were organized in a lower level.  Then, a Hidden Markov 

model in the higher level learned how the primitives were 

combined into sequences in order to recognize and 

regenerate the human instructor’s behavior patterns.  In 

related work, Amit and Mataric (2002) used Self-Organizing 

Maps (SOMs) to hierarchically control postural and 

oscillatory movement primitives in a simulated robotic arm. 

     Hochreiter and Schmidhuber (1997) proposed a so-called 

long-term and short-term memory connectionist model for 

hierarchical sequence learning which focuses on the problem 

of sequence segmentation.  The essential idea in this study 

was to learn long and complex sequences by dividing them 

into chunks of sub-sequences.   

     Tani and Nolfi (1999) extended the idea of the Mixture 

of Experts (Jacobs et al., 1991; Jordan & Jacobs, 1994) by 
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introducing level structures.  In their experiments with a 

simulated mobile robot, the robot learned to perceive 

sensory-motor flow as hierarchically articulated. In 

contrast to this local representation scheme utilizing 

expert modules for representing primitives, Tani (2003) 

proposed a distributed representation scheme where multiple 

primitives can be embedded in a single recurrent neural 

network (RNN) in terms of a “forward model” (Kawato, 

1987).  Each primitive can be accessed by a control 

parameter called the “parametric bias” (PB). The higher 

level RNN combines the lower level primitives in sequences 

by learning and sending the corresponding PB sequences to 

the lower level RNN. 

    However, these neural network schemes seem to have some 

potential drawbacks.  One major problem is that the network 

cannot be adapted dynamically through trial and error.  

This is due to the fact that the above mentioned neural 

network approaches depend heavily on a supervised learning 

scheme using teaching signals.   In contrast, reinforcement 

learning schemes using “macro-actions”, analogous to 

sequences of primitives, can learn to effectively combine 

primitives to solve sequential tasks simply through 

environment-mediated rewards.  However, inappropriate use 

of macro-actions may retard learning.  Appropriate macro-
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actions must generally be tuned manually for specific 

environments, although work is being done to automate the 

process (McGovern et al, 1997, 2001).  The GA scheme used 

here could be considered a type of automated trial-and-

error controller optimization tool, although it must 

generally be run off-line.   

     Another problem is the setting of time constant 

parameters for the network dynamics at each level.  The time 

constant in the lower level has to be determined based on 

the shifting frequency of the lower primitives.  The higher 

level time constant must further be determined based on 

those of the lower level primitives.  Such parameter 

setting is usually done manually by experimenters, which 

requires certain a priori knowledge about the task 

environments.  In order to overcome these problems, this 

paper introduces a novel scheme using an evolutionary 

adaptation mechanism through a genetic algorithm (GA).  The 

evolutionary robotics community has shown that the GA 

scheme allows for the self-organization of dynamic adaptive 

behaviors in sensory-motor systems (Tucci et al., 2002; 

Nolfi & Floreano, 2000).   

     In this paper, we study the dynamic adaptation process 

of multiple levels of RNNs applied to a navigation task 

using a simulated robot.  Through the experiments, we will 
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demonstrate that a hierarchically organized network can 

perform well in adapting to complex tasks through 

combination with a GA.  We will focus on how motor 

primitives are self-organized in the lower level, and how 

they are manipulated in the higher level. The emphasis of 

the work is on the self-organization of control structures 

at each level. The parametric bifurcation mechanism that 

emerges in the lower level explains how behavior primitives 

are switched.  On the other hand, in the higher level, a 

topologically ordered mapping of initial cell activation 

states to motor-primitive sequences self-organizes by 

utilizing the initial sensitivity characteristics of 

nonlinear dynamical systems.  Self-organization is a 

crucial principle in the organization of biological 

systems.  There is much evidence that the brain uses this 

principle as well, which is the hypothesis in this article.   

Animal data (Tanji & Shima, 1994), discussed later, are 

suggestive that initial sensitivity to the activities of 

key neurons in SMA plays a role in sequence generation 

similar to that of the task neurons in the current model.  

However, the details of our model’s implementation remain 

in the neural networks/machine learning area of study. 

     Our goal is therefore both to “explain biology”, at 

least in terms of key general concepts, and to develop a 
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“better” robotic controller.  Several essential questions 

will be discussed in this paper.   

     One interesting question is how motor primitives can 

be utilized not as fixed functions, but as ones that can 

flexibly develop and adapt to changes in many different 

environments.  Another focus will be on the dynamic 

interactions between the levels.  Sun et al. (2001) modeled 

bottom-up skill learning in a two level hybrid 

connectionist/reinforcement/symbolic learning system in 

which procedural knowledge was acquired in the lower level 

before or simultaneously with the acquisition of 

declarative knowledge in the top level.  If the higher 

level is to encode abstract event sequences and the lower 

level is to encode detailed sensory-motor patterns, how can 

these top-down and bottom-up processes be reconciled if 

certain conflicts take place between them?  Further, how 

can the higher level self-organize to make the best use of 

the lower-level primitives for different tasks?  The 

proposed scheme is introduced in the next section. 
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2.  Methods 

 

2.1.  General Model 

 

     The neural network model utilized in the current paper 

consists of two levels of fully connected continuous time 

recurrent neural networks (CTRNN)(Yamauchi & Beer, 1994; 

Blynel & Floreano, 2002).  The lower level network, as 

shown in Figure 1, receives sensory inputs and generates 

motor commands as outputs.  This network is supposed to 

encode multiple sensory-motor primitives, such as moving 

straight down a corridor, and turning left or right at 

intersections or to avoid obstacles in the navigation task 

adopted in this study. 

     A set of external neural units, called the “control 

neurons”, are bidirectionally connected to all neurons in 

the lower level network.  The control neurons influence 

lower level network functions and favor the generation of 

particular motor primitives.  Through evolution of both the 

lower level internal synaptic weights (Wl) and the interface 

weights (Wc) between the control neurons and the lower level 

neurons, a mapping between the control neurons’ activities 

and the sensory-motor primitives stored in the lower level 

network is self-organized.  Modulation of the control 
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neurons’ activities causes shifts between generating one 

primitive and another.  The scheme is analogous to the idea 

of the parametric bias in Tani (2003) and the command 

neuron concept (Aharonov-Barki et al., 1999; Edwards et 

al., 1999; Teyke et al., 1990).  How might more complex 

tasks, such as navigation in an environment, be generated?  

Such tasks require generating sequences of motor 

primitives.  We propose that a higher level network may 

modulate the activities of the control neurons through time 

to generate sequences of lower level movement primitives 

(Figure 1b).  The higher level network evolves to encode 

abstract behavior sequences utilizing the control neurons. 

     It is assumed that the desired sequences will be 

generated if adequate nonlinear dynamics can be self-

organized in the higher level network.  As will be 

described in detail later, the robot becomes able to 

navigate to multiple goal positions when starting from the 

same initial position in the maze environment.  Therefore, 

the higher level network has to encode multiple sequence 

patterns which have to be retrieved for the specified goal. 

     We utilize the initial sensitivity characteristics of 

nonlinear dynamic systems in order to initiate different 

sequences.  When the robot is placed at the initial 

position in the environment, the internal values of all the 
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higher level neurons are set to 0.0, except for two neurons 

called the task neurons (Figure 1b).  The initial activity 

values of the task neurons determine the subsequent turn 

sequence, and the goal which is found.  These goal-specific 

initial task neuron activities were evolved through the 

same genetic algorithm that yielded the network’s synaptic 

weights. 

     We assume that an appropriate sequence pattern that 

enables the robot to navigate to the kth goal can be 

generated by setting adequate initial activities ( kγ ) for 

the task neurons when the higher level internal connective 

weights (Wh) are adequately generated through evolution. 

This idea of utilizing the initial sensitivity of the 

network dynamics is analogous to the studies shown by 

Nishimoto & Tani (2003) and Blynel (2003).  Further, Tanji 

& Shima (1994) showed in the monkey that the pre-

Supplementary Motor Area neuronal activities during the 

motor preparation period might encode abstract behavior 

sequences through the initial state values of the network 

dynamics.  Nishimoto & Tani (2003) showed that an RNN 

learns to generate various action sequences by setting 

different initial context unit activities using the back-

propagation learning method.  Blynel (2003) found that goal 

positions can be “remembered” through the activations of 
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hidden neurons in a reinforcement learning task when GA 

evolution is applied to a single level CTRNN. 

     Evolution of the two level network used here goes 

through two phases.  In the first phase (Experiment 1), the 

network shown in Figure 1a evolves to perform collision-

free left and right turns in a T maze environment.  Both 

the lower level internal synaptic weights (Wl) and the 

control neuron interface synaptic weights (Wc) are evolved 

while adequate activation values of the control neurons are 

determined for the left-turn and the right-turn.  At this 

stage, there is no higher level network with task neurons.  

Instead, the neuronal activation bias ( θ , Equation 2) of 

the two control neurons is free to evolve differently for 

the left and right tasks.  The synaptic weights are 

identical for the two turn directions. 

     In the second phase (Experiment 2), the evolved lower 

level network is extended by adding and evolving the higher 

level network (Figure 1b).  The task of the robot is to 

find ways to reach multiple goals from the same starting 

position.  In this phase, only the higher level internal 

connective weights (Wh) and goal-specific task neuron 

initial activities ( 0γ ) are evolved.  The bottom level 

internal weights and control neuron interface synaptic 

weights (Wc) are kept constant from the first phase’s T maze 
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task.  Thus, collision free left or right turning does not 

need to be re-evolved.  Instead, the second learning phase 

focuses solely on goal finding through the appropriate turn 

sequence generation. 

 

2.2.  Continuous-Time Recurrent Neural Networks 

 

     All neurons in the simulations presented here used the 

following equations and parameters for a continuous-time 

recurrent neural network (CTRNN), based on those of Blynel 

& Floreano (2002).  In Equation 1, iγ  is the internal 

activation state (cell potential) of the ith neuron.  τ  is 

the time constant of the neuron. It affects the rate of 

neuronal activation in response to the kth external sensory 

neuronal activation, Ik, and signals from the jth 

presynaptic neuron with activity Aj.  The signal from the 

presynaptic neuron is weighted by weights wij, and the 

sensory input is weighted by wik.  N is the number of 

neurons in the network, and S is the number of sensory 

receptors which send input signals to the network. 
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The presynaptic neuronal activity (Aj) is defined in 

Equations 2 and 3. θ  is a bias term and σ  is the standard 

logistic function, defined in Equation 3. 

)( jjjA θγσ −=         (2) 

 

)1/(1)( xex −+=σ         (3) 

 

Numerical integration was carried out using the Forward 

Euler method.  The update rule of the neuronal activation 

state iγ  for each integration time step is given by Equation 

4. n is the iteration step number and t∆  is the time step 

interval, defined as 0.2. 
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Except for the previously mentioned task neurons, whose 

initial activation is dependent on the movement goal, the 

neuronal activation, iγ , is initialized to 0 at the start of 

integration, 0)0( =iγ .   

 

2.3.  Genetic Encoding 

 

     The following parameters are genetically encoded 

within the following ranges.  τ  is the time constant 
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(Equation 1).  θ  is the activation bias (Equation 2).  w is 

the synaptic weight, and )0(taskγ  is the initial activation of 

the task-dependent neurons of the higher level network. 

]70,1[∈τ , ]1,1[−∈θ , , ]5,5[−∈w ]10,10[)0( −∈taskγ  

 

     Each parameter is encoded using 5 bits and the 

following encoding rule to generate analog parameter 

values.  Thus, each parameter value is generated by a 

linear scaling of the analog value within a given range to 

the range of 0 to 31 in binary code.  The encoded parameter 

value (Pe) from the 5 bit string is given in Equation 5.  

The analog parameter value (Pa) is given by Equation 6 for 

an analog parameter value in the range max][min,∈aP . 

 

∑
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     In the T maze experiment, the network consists of 

eight inputs, five bottom level units, and two control 

neurons, for a total of 515 bits encoding τ , θ  , and w.  In 

the Eight-Goal-Maze experiment, the network is as above, 
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except that it also includes 4 higher level neurons.  The 

task neurons’ initial activity ( )0(taskγ ) is also encoded, 

yielding a genome length of 715 bits.  

 

2.4.  Genetic Algorithm 

 

     A standard genetic algorithm (GA) with mutation but 

without crossover was employed to evolve the weights and 

parameters ( τ , θ , w, )0(taskγ ) of the network (Mitchell, 

1998; Goldberg, 2002).  The mutation rate per bit was set 

at 2% for all simulations reported here.  (Higher mutation 

rates of up to 10% were tried, but the fitness of the 

resulting populations became progressively more unstable 

without improvements in the robot performance).  The 

population consisted of 80 robots.  The twenty robots with 

the best fitness reproduced each generation.  Each of the 

reproducing robots made 4 copies of itself with mutation.  

Of the best robot’s offspring, one was an exact copy of the 

parent without mutation.  Simulations were generally run 

for 50 to 200 generations, and the performance of the best 

robots was analyzed. Average population performance was 

lower (e.g., 3 goals found) but the sheer performance of 

the GA in searching the network parameter space is not the 

main point of this article.  Rather, it is the performance 
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and capabilities of the network, exemplified in the “best” 

controller, which is of interest.   

    

  

2.5.  Network Architecture 

 

     In Experiment 1, the network depicted in Figure 1a 

consists of 8 sensory inputs, scaled to a range of 0 to 1, 

which are sent to the bottom level of 5 neurons. The bottom 

network receives from and sends signals to the two control 

neurons.  In Experiment 2, the control neurons are further 

connected to the higher level of 4 neurons (Figure 1b).  

Two of the higher level neurons are the “task neurons”, 

whose initial activities determine the particular turn 

sequence which will be generated to reach a goal.  

     The outputs of the first two bottom level neurons are 

taken as motor command signals to the simulated robot 

wheels.    The actual neuronal outputs are analog signals, 

but the robot controller can use only integer speed 

commands.  The analog signals are therefore rounded to the 

nearest integer.  The simulated wheel speed is in the range 

of 0 to 4, corresponding to speeds of 0 to 0.32cm per 

second.  Note that the wheels are allowed to turn only in a 

forward direction in these experiments for simplicity. 
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3.  Experiments 

 

     All experiments reported here were executed using a 

simulated Khepera II robot in the Webots 3 robot simulator 

available from www.cyberbotics.com.  Simulations were run 

on a Plathome computer with a 2.0 GHz processor.  

Simulations ran at about 40 times real Khepera speed.  Data 

were analyzed using Matlab Release 13. 

     Inputs to the neural network consisted of the signals 

from seven infra-red proximity sensors (2 left, 2 front, 2 

right, and 1 rear) and one downward facing ground sensor 

(illustrated by rays protruding from robot in Figure 2).  

The input was modified by randomly adding or subtracting 5% 

of its value as noise.  All sensor inputs to the network 

were scaled to a range of 0 to 1.  In all experiments, the 

robot was repositioned to the starting point and the trial 

was ended if the robot either collided with a wall or 

reached a goal area.  Goal areas were defined by 

differently colored floors.  The floor sensor was used by 

the controller to detect when the robot found a goal, 

triggering the appropriate fitness reward, ending of the 

trial, and repositioning of the robot. 
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3.1.  Experiment 1: T-Maze Task 

 

     Experiment 1 is designed to evolve a bottom level 

network which contains movement primitives of left and 

right turning behavior at intersections as well as 

collision-free straight movement in corridors.  The same 

lower level and control neuron weights are used for both 

right and left turns.  The only difference between the left 

and right turn controllers is in the bias values (θ ) of the 

two control neurons.  Intuitively, this might correspond to 

different sets of cortical “control” neurons becoming 

associated with each of the lower level movement 

primitives.  Parallel connections from the bottom level to 

the control neurons might develop, yielding the same 

weights to both sets of control neurons.  Intrinsic 

differences in the control neurons’ responses (as through 

the different θ  bias values used here) to the lower level 

signals would determine with which motor primitives each 

set of control neurons became associated. 

     The simulated robot environment is depicted in Figure 

2.  The evolutionary runs consisted of up to 200 

generations with 2 epochs and 3 trials per robot of the 80 

robot population.  Each trial was run for 500 time steps, 

starting at the same position at the bottom of the T maze.   
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Different bias values (θ ) evolved in the control nodes for 

the left and right turning tasks in epochs 1 and 2, 

respectively.  All other parameters were identical in the 

left and right turning tasks.  In epoch 1, fitness was 

awarded to robots that turned to the left at the 

intersection based on the following fitness rule.  In epoch 

2, fitness was awarded to robots that turned to the right.  

Each robot ran 3 trials per epoch.   

     Experiment 1 uses a two-component fitness rule 

(Equation 7).  The first component (FOA) consists of a 

reward for straight, fast movements with obstacle 

avoidance.  The fitness rule of Floreano & Mondada (1994) 

was adopted for this purpose and is shown in Equation 8.  V 

is the wheel speed scaled to a range of 0 to 1.  V is the 

average speed of the two wheels. V∆  is the absolute value 

of the difference in speeds between the two wheels, and is 

used to reward straight movements.  Smax is the maximum 

robot sensor value, scaled to a range of 0 to 1, and is 

used to reward obstacle avoidance. 

goalOA FFF +=         (7) 

 

)1()1( maxSVVFOA −⋅∆−⋅=       (8) 

         



                                      Motor Primitives and Sequences 25

     The second component of the fitness rule, Fgoal, rewards 

the robot for finding a goal.  The goal is located to the 

left of the intersection for epoch 1, and to the right for 

epoch 2. The robot is linearly rewarded, based on its 

position, for approaching and reaching the goal, as shown 

at the top of Figure 2.  Greater reward per time step is 

received linearly as the robot approaches the goal, 

starting at the middle of the top of the T maze.

     At the start of each trial, the robot was placed at 

the same starting position at the bottom of the T maze.  

Three different starting orientations (facing 135o, 90o, and 

45o; that is, left, straight, and right, respectively) were 

employed, one for each of the three trials per epoch.  

Further, motor noise was added to the wheel speed commands 

sent to the robot.  The integer speed command was increased 

or decreased by one with a probability of 20% on each 

simulation time step.  The varying starting orientations 

and motor noise were used to ensure that the robot would 

experience wall collisions early during evolution, so that 

controllers with obstacle avoidance would be more likely to 

evolve.  Both the bottom level and control neurons were 

free to evolve in this experiment. 
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3.2.  Experiment 2: Eight-Goal Task 

 

     The Eight-Goal maze depicted in Figure 8 is a 

combination of T maze-like environments with eight 

different goals at the ends of each T maze component.  

Thus, combinations of the same turn primitives evolved in 

experiment 1 should allow the robot to reach the different 

goals.  In experiment 1, different sets of control neurons 

with differing internal dynamics (due to differing θ  bias 

values) became associated with particular motor primitives, 

as will be described later.  In experiment 2, it is shown 

how the activity of a single set of control neurons can be 

modulated over time to generate a sequence of motor 

primitives.  Further, it is shown how varying only the 

initial activation of the task neurons in the higher level 

network can lead to the generation of different network 

activation time courses by which multiple primitive 

sequences are generated.  Thus, the routes to multiple 

goals can effectively be stored in a single network, with a 

single set of synaptic weights and corresponding initial 

activation values of the task neurons.  

     The bottom level genome, including the weights for the 

connections to the control neurons, from experiment 1 was 

used in this experiment and held constant.  Only a single 
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set of synaptic weights and parameters in the higher level 

network, and multiple sets of the initial task neuron 

activities, were free to evolve.  The experiment consisted 

of up to 200 generations, with 12 epochs per generation and 

2 trials per epoch.  Each of the 12 epochs evaluated a 

different set of higher level task neuron initial 

activities, using the fitness rule described below.  

Further, each task neuron set was run for two trials, in 

order to evaluate the stability of the robot’s goal-finding 

ability.  Robots which found multiple goals repeatedly were 

rewarded more than those which found them only 

intermittently.  Further, robots which found some stable 

goals tended to be rewarded more than robots that found 

more goals haphazardly. As in experiment 1, a trial was 

ended when the robot either found a goal or collided with a 

wall.  The robot was then repositioned to the same starting 

point.  Since the bottom level genome from experiment 1 was 

used here, obstacle avoidance and turn primitives were 

present in the first generation.  Therefore, only one 

starting orientation was used (90o, i.e., straight up) and 

no motor noise was added to the speed commands sent to the 

robot wheels (but sensor noise was still present).   

     In experiment 2, the fitness rule (F) consists solely 

of a reward for finding goals consistently (Equation 9).   
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=

       (9) 

Here, a fixed reward (R) per new goal (g) found is given to 

the robot.  In experiment 2, Ngoals = 8, and Ntasks = 12.  

Each robot has 12 sets of task neuron initial activities 

(i) which are evaluated.  Each set has two trials in which 

to find a goal.  A robot which finds a goal on both trials 

receives twice the reward of finding the goal on only one 

trial.  If a different set of task neuron initial 

activities leads to the same goal, then the reward is the 

maximum of the reward given to the two different task 

neuron sets. Thus, a robot with multiple task neuron sets 

that find a goal on only one of the two trials will receive 

less reward than a robot with one task neuron set that 

finds the goal on both trials.   

 

 

3.3.  Experiment 3:  Adaptation to a Novel Environment 

 

     One question that arises from the previous experiment 

is how the higher level network may adapt to use the lower 

level’s motor primitives in different environments.  For 

example, one might ask if the left turning behavior at T 



                                      Motor Primitives and Sequences 29

intersections is dependent on the particular wall 

configuration of the environment.  Would the right turn 

primitive continue to function for turns significantly 

greater than 90o?  In order to evaluate the ability of the 

higher level network and control neurons to adapt to use 

the lower level primitives evolved in experiment 1 in a 

different environment, the following experiment was 

conducted.  While keeping the bottom level genome evolved 

in experiment 1 constant, the control and higher level 

neurons’ genomes were free to evolve to direct the robot to 

a goal in a novel environment.  The wall configuration at 

the first intersection was changed to include a right wall, 

and the angle of the second right turn was increased to 

130o. 

     The fitness function was the same as in experiment 2, 

except that Ngoals = 1, and Ntasks = 1.  Since only one 

goal was present, only one set of task neuron initial 

activities was evolved.  The experiment was allowed to run 

for 200 generations, with 1 trial per generation.  As in 

the prior experiments, each trial ended either when the 

goal was reached or when a wall collision occurred, 

triggering repositioning of the robot at the starting point 

for the next trial (Figure 11). 
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3.4.  Experiment 4:  Sequence Retention in an Enlarged 

Environment 

 

     An interesting question is whether travel time or 

distance is intrinsically represented in the dynamics of 

the evolved neural network, or whether the turn sequence 

can be generated over any arbitrary distance and time.  In 

order to answer this question, the following experiment was 

conducted.   

     The size of the eight-goal environment from experiment 

2 (Figure 8) was doubled.  More specifically, the corridor 

distances were doubled, while the corridor widths remained 

the same.  The evolved controller from experiment 2 was 

then used to control the robot in this larger environment.  

The initial task neuron values which led to the six stable 

goals in experiment 2 were then loaded into the controller, 

and the resulting movement sequences were observed.  

  

4.  Results/Analysis 

 

4.1.  Experiment 1: T-Maze Task 

 

     Collision avoidance and left and right turning 

behavior emerged within 63 generations.  Left turns were 
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generated for one set of control neuron bias values (e.g., 

0.74, -0.87), and right turns were generated for another 

set (e.g., -1, 0.23) (Figures 2-4). Although both left and 

right turns could be generated, the robot exhibited 

oscillatory movements after collision avoidance.  That is, 

it turned away from one wall too much and headed towards 

the opposite wall instead of straightening its path through 

the lower part of the T maze.  (As mentioned previously, 

the robot started from three different orientations, 

leftward, straight up, and rightward, requiring it to avoid 

wall collisions early during each trial.)  The controller 

was therefore allowed to evolve further.  By generation 

189, fewer fluctuations occurred after collision avoidance 

and the lower level genome was used for experiments 2 

through 4. 

     As seen in Figures 3 and 4, control neuron 0 appears 

to be critical in determining whether a left or right turn 

is generated.  Turns occur at approximately time step = 

200, at which time the control neuron activity is 0.2 for 

the left turn and 0.6 for the right turn.  The relation 

between turn behavior and the activities of control neurons 

0 and 1 is further quantified in the phase plot of Figure 

5.  441 trials with different sets of the two control 

neurons’ activities, held constant for each trial, 
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(A=[0:1], step size = 0.05) were run and the resulting turn 

directions recorded.  Note that this figure also applies to 

the activity of the control neurons evolved in experiment 

2, since the same bottom level genome, including the 

synaptic weights between the bottom level and control 

neurons, was used in both experiments 1 and 2.  The turn 

phase plot of Figure 5 shows a clear bifurcation, or 

appearance of new movement behavior with the control neuron 

activity change, with two distinct regions of stability for 

left (black) and right (white) turns, for the corresponding 

combinations of control neuron 0 and neuron 1 activities.  

The gray squares indicate unstable regions in which wall 

collisions occur.  In both experiments 1 and 2, the evolved 

control neuron weights tend to suppress the activity of 

control neuron 1.  The phase plot shows that the smallest 

region of instability between left and right turns occurs 

for such small control neuron 1 activities.  Further, the 

weights from control neuron 0 to the two motor output nodes 

(wjk= 5.0, -3.4) of the bottom level have a greater 

magnitude than the weights from control neuron 1 (wjk=-1.1, 

2.0).  Thus, control neuron 0 has the dominant effect on 

the turn direction of the lower level’s output neurons.  It 

therefore appears that the lower level, which receives and 

processes all sensory inputs, has a dominant role in 
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collision avoidance.  The control neurons can exert 

parametric control of the primitives.  For example, a 

successively smaller or larger control neuron activity may 

lead to turns that are progressively closer to the wall.  

The unstable regions of Figure 5 indicate that the turns 

got too close to the wall, leading to collisions.  

Collision avoidance competes with the control neurons’ 

“turn” signals.  In the unstable regions of the phase plot 

(Figure 5), the control neurons’ “turn” commands 

inappropriately override the lower level’s collision 

avoidance, triggering collisions when the robot turns 

toward and collides with a wall. 

 

4.2.  Experiment 2: Eight-Goal Task 

 

     The best robot became able to reach up to 7 different 

goals stably within 24 generations (~ 2 days of run time) 

by evolving the higher level network and control neurons.  

The turn sequence for each goal was determined by a 

particular set of initial task neuron activities ( )0(taskγ ).  

Since 12 different sets of )0(taskγ  were evaluated per robot, 

multiple sets would sometimes lead to the same goal.  Each 

)0(taskγ  set was evaluated for the stability of its goal.  
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Some values of )0(taskγ  led to repeatable goal-finding 

performance, while others were unstable, leading to 

different goals on different trials, or even to wall 

collision.  Although evolution led to controllers which 

could find all 8 goals, the best controller could only find 

7 goals stably.  The definition of stability used here is 

reaching a particular goal, with the corresponding evolved 

)0(taskγ  values, on at least 70% of trials. 

     The progress of evolution is depicted in Figure 7, 

where the dashed line indicates the average population 

fitness, and the solid line indicates the fitness of the 

best robot of each generation.   

     Different )0(taskγ  activities led to differently 

fluctuating patterns in the control neuron activities 

(Figures 9 and 10).  As in the results of experiment 1 

reported above, control neuron 0 had the greatest influence 

on turn direction, and exhibited the greatest fluctuations 

during various turn sequences.  Left turns were generated 

when its activity was below a threshold of approximately 

0.35, and right turns were generated when the activity was 

above the threshold.  The activity of control neuron 1 

tended to be suppressed, leading to a smaller region of 

instability at the transition from left to right turns in 
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the phase plot of Figure 5.  Figures 8 and 9 show the 

trajectory and neuronal activities, respectively, for a 

left-right-right turn sequence.  Figure 10 shows the 

control and task neuronal activities for five additional 

turn sequences.  The results shown here are for a 

controller which learned to reach six goals stably (>=70% 

of the time) in 25 generations.  As stated earlier, another 

controller evolved to reach 7 goals stably.  The results of 

the 6-stable-goal controller are shown here because they 

demonstrate greater amplitude fluctuations of the control 

neurons, due to a smaller evolved value of the time 

constant τ  in Equation 1.  

     The amplitude of the control neurons’ fluctuations is 

also significant because larger amplitude fluctuations may 

render the controller more robust to noise.  Although 5% 

sensor noise was used throughout these experiments, motor 

noise (increasing or decreasing the wheel speed command by 

1 unit with 20% probability) was used only in experiment 1 

in order to facilitate the development of obstacle 

avoidance.  Motor noise was also tested during separate 

evolutionary runs in experiment 2, and found to decrease 

the number of stable goals found from a maximum of 7 

(without motor noise) to 5 (with motor noise).  Setting the 

initial conditions of top level neurons (while keeping the 



                                      Motor Primitives and Sequences 36

task neuron initial activities constant) to random values 

in the activity parameter range (-10:10) also led to 

sequence instability.  Note that the total number of goals 

found was eight, with or without motor noise.  Thus, 

additional noise added to the wheel motor commands 

increases the instability of the turn sequences.   

     With or without motor noise, goal instability was most 

often seen in the final turn direction of the three-turn 

sequences learned.  This final turn instability can be 

appreciated by noting the decrease in the amplitude of 

control neuron fluctuations over time (Figures 10c and d).  

As the fluctuation amplitude decreases, the control neuron 

activity tends to hover around the turn threshold.  As seen 

in the phase plot of Figure 5, this region is unstable.  

     Figure 6a shows an analysis of the movement sequences 

generated for the range of task neuron initial activities, 

]10,10[)0( −∈taskγ , in the evolved controller of experiment 2.  

441 sets of initial task neuron activities were tested and 

the resulting turn sequences recorded. The numbers in the 

figure correspond to movement sequences as described in 

Table 1.  The sequences are labeled in the figure, e.g., 

LRL for left, right, and left turns. It is observed that 

the sequence patterns are arranged in well-defined, 

topologically ordered clusters in the )0(taskγ  space. First, 
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the )0(taskγ  space is grossly clustered based on the first 

turn direction, left or right, of the movement sequence, as 

shown by a thick solid line in Figure 6a.  Each of these 

two clusters is then further divided into sub-clusters, 

depending on the second turn direction of the movement 

sequence, as shown by a solid line.  These sub-clusters are 

still further divided into smaller clusters, depending on 

the third turn as shown by the dashed lines. 

     The hierarchical ordering of turn sequences into 

progressively smaller regions of the initial task neuron 

activity space, as additional turns are added, is 

represented in Figure 6b.  In other words, as the 

complexity of the movement sequence increases, so too does 

the initial sensitivity to the task neuron activities. 

 This mapping of initial task neuron activity to 

particular sequences is an emergent property of the evolved 

controller.  Different evolutionary runs yield different 

cluster patterns, but the general trend of distinct, 

topologically ordered sequence regions remains. This self-

organized, topologically ordered mapping of sequences, with 

increasing initial sensitivity to task node activities as 

movement sequence complexity increases, is notable in such 

a small network, and is reminiscent of the fractal 

distribution of sequences mapped in the parameter space of 
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Nishimoto & Tani (2003).  Indeed, it would be interesting 

to see if fractal structure could be found in controllers 

branching out to larger numbers of goals.   

 

 

4.3.  Experiment 3: Adaptation to a Novel Environment 

 

     In contrast to the larger number (24) of generations 

required to evolve multiple goal-directed movement 

sequences, a controller with the ability to navigate to the 

single goal in the novel environment of experiment 3 

emerged quickly, within only four generations (Figure 13).  

Note that the two principal differences between the 

environments of experiments 2 and 3 are the presence of a 

right side wall at the first intersection and a greater 

turn angle (130o versus 90o previously) at the second 

intersection.  The ability of the controller to 

successfully adapt to this novel environment is not 

surprising when one examines the behavior of the robot. A 

strategy of following a left/right wall prior to turning 

left/right at an intersection emerges.  For the initial 

left turn, the robot immediately veers left and follows the 

left wall until reaching the intersection where the left 

sensors no longer detect the wall.  The competition between 



                                      Motor Primitives and Sequences 39

obstacle avoidance and the leftward influence of the 

control neurons then shifts in favor of the left turn.  The 

activity of control neuron 0 then increases above the right 

turn threshold of 0.4 (Figure 12) and right wall following 

occurs until the next intersection.  The robot then turns 

right, and continues to turn right until the right-facing 

sensors detect the wall and obstacle avoidance again 

balances the right-turn influence of the control neurons.      

     This wall-following strategy contrasts with the 

turning strategy observed in experiment 2, in which the 

robot tended to remain in the center of a corridor and to 

turn only after running nearly straight into a wall at the 

next intersection (Figure 8). 

     As was done in experiment 1, Figure 5, the relation 

between movement behavior and the activities of control 

neurons 0 and 1 is quantified in the phase plot of Figure 

14.  441 trials, each starting at the same place (bottom 

right corner, as shown by the robot picture in Figure 11), 

were run.  The robot had a choice of either turning left at 

the first intersection (time step 200 in Figure 11), or 

else proceeding straight “up” the corridor.  A barrier was 

placed to prevent the robot from reaching the second 

intersection (at time step 450 in Figure 11), for 

simplicity of analysis. In each trial, a different set of 
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the two control neurons’ activities, held constant 

throughout the trial, (A=[0:1], step size = 0.05) was 

tested and the resulting movement behavior was recorded.  

As in Figure 5, a clear bifurcation of movement behavior 

relative to control neuron activity can be seen in Figure 

14.  In Figure 14, however, the two movement behaviors are 

either a left turn or straight movement at the first 

intersection (Figure 11).  Note the smaller region of 

instability between left turns and straight movement in 

Figure 14 compared to the instability region between left 

and right turns of Figure 5.  The smaller instability 

region in Figure 14 is likely due to the simpler nature of 

the task (differentiating left turns and straight 

movements, versus left and right turns in Figure 5).  Also 

note the large amplitude fluctuation of control neuron 0’s 

activity in the adaptation task’s left-right turn sequence 

(Figure 12) compared to that in the left-right-right 

sequence of Figure 9.  As mentioned previously for 

experiment 2, larger amplitude fluctuations should make the 

transition between movement behaviors less sensitive to 

noise.  Collisions are less likely since the control neuron 

activity quickly moves away from potentially unstable 

threshold regions.   
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4.4.  Experiment 4:  Sequence Retention in an Enlarged 

Environment 

 

     When six sets of task neuron initial activities 

( )0(taskγ ), corresponding to the six stable goals found in 

experiment 2, were loaded into the controller of the robot 

when placed in an enlarged environment, only two out of the 

six )0(taskγ  sets led to the robot reaching the same goal as 

in the smaller environment of experiment 2 (Table 2).  In 

Table 2, the movement sequences in the original environment 

of experiment 2 are shown in the left column, and sequences 

in the enlarged environment of experiment 4 are in the 

right column.  These results indicate that the internal 

dynamics of the higher level neurons appear to proceed at 

their own rate, relatively independent of external inputs.  

For example, the Right-Right-Left (RRL) sequence turned 

into an RLL sequence after doubling the maze size since the 

second right turn was missed due to the longer corridor.  

The control neurons' outputs then passed the turn 

threshold, leading to a premature left turn when the robot 

finally arrived at the intersection (Figures 15 and 10d).   

     This result is not surprising, since no direct sensory 

input reaches the higher level network.  It would be 

interesting to explore in future research the capability of 
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the control neurons, which are connected more closely to 

sensory signals via their connections with the bottom level 

network, to modify the higher level activity based on 

environmental changes.   

 

5.  Discussion 

 

     The work presented here describes a hierarchical model 

of behavioral sequence memory and generation in a single 

distributed network. It recalls in general terms the 

hierarchical organization of movements in the primate 

spinal cord, brainstem, and cortical regions.  Different 

types of dynamic structures self-organize in the lower and 

higher levels of the network.  A parametric bifurcation in 

the control neurons’ interaction with the lower level 

allows top-down behavioral switching of the primitives 

embedded in the lower level. Utilizing the initial 

sensitivity characteristics of nonlinear dynamic systems 

(Fan et al., 1996), a topologically ordered mapping of 

initial task neuron activity to particular behavior 

sequences self-organizes throughout the development of the 

network.  The interplay of task-specific top-down and 

bottom-up processes allows the execution of complex 

navigation tasks.  
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     One important feature of the current model is the 

hierarchical organization of the network and its training.  

The bottom level network represents movement primitives, 

such as collision avoidance and turning at intersections.  

The primitives used here are intentionally simple compared 

to those in multi-dimensional tasks such as arm movements.  

Superposition of more complex primitives and tasks could be 

used as well.  However, the simpler model described here is 

sufficient to describe the concept of a distributed neural 

network controller that uses initial sensitivity of its 

dynamics for sequence representation.  Since the bottom 

level must directly deal with quickly changing 

environmental stimuli, its time constants have become small 

through adaptation so that the neuronal activity of the 

output neurons ( τ 0 = 1, τ 1 = 1 in Equation 1) can change 

rapidly to drive the robot’s movement in real time.  In 

contrast, the higher level represents sequences of the 

lower level primitives over longer time spans.  

Accordingly, the task neuron time constants have adapted to 

be large ( τ task0 = 70, τ task1 = 52 in Equation 1) so that 

neuronal activity changes much more gradually and is less 

affected by short-term sensory changes.  These emergent 

multi-time-scale dynamics are a common feature of 

biological memory systems.  The role of different time 



                                      Motor Primitives and Sequences 44

scales in the synchronization and bifurcation of coupled 

systems, similar to the bifurcations of control and task 

neuron activities of figures 5 and 6a, was studied by 

Fujimoto and Kaneko (2003).  The need for the neural 

integration of information over multiple time scales in 

order to take advantage of various-duration events and 

environmental regularities was also demonstrated in 

evolutionary robotics by Nolfi (2002) and by Precup and 

Sutton (1997) in the area of reinforcement learning.      

     The neurons of the higher level receive no direct 

sensory inputs, but are gradually influenced by them 

through the control neurons, which are fully connected to 

the input-receiving bottom level.  This system is 

reminiscent of the organization of sequence generation in 

primates, as is elucidated by the studies of Tanji & Shima 

(1994) and Ninokura et al. (2003).  In the former study, 

cellular activity in monkeys’ supplementary motor area 

(SMA) was found to be selective for the sequential order of 

forthcoming movements, much as the task neurons’ initial 

activities determine future movement order in the current 

model.  In the latter study, distinct groups of cells in 

the lateral prefrontal cortices (LPFC) of monkeys were 

found to integrate the physical and temporal properties of 

sequentially reached objects, in a manner analogous to 
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integration of higher level sequential information and 

lower level sensory input by the control neurons in the 

present model.    

     Although other models of sequence generation have been 

trained in a modular fashion because it was felt necessary 

to achieve the task (Yamauchi & Beer, 1994), the current 

work begins by explicitly evolving simple movement 

primitives, such as straight movements, collision 

avoidance, and turning at corners.  The next level of the 

hierarchy subsequently develops to utilize the lower level 

primitives in complex movement sequences.  One can envision 

further levels of complexity, with higher levels 

representing sequences of sequences for different sets of 

tasks, in a manner analogous to the “chunking” phenomenon 

observed in human memory of data sequences (Sakai et al., 

2003). The beauty of this system is that the synaptic 

connections need not grow without bound as the number and 

complexity of sequences increases.  As shown here, a single 

network can represent multiple complex movements through 

modulation of the activities of a small number of “task” 

neurons.  

     One may argue that hierarchical structure has been 

imposed on our system, and that no such structure is 

absolutely needed to complete the task.  Indeed, Tucci et 
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al. (2002) showed that the sequence generation task, which 

Yamauchi & Beer (1994) felt required a modular approach, 

could indeed be generated with a single, non-modular, 

network.  Further, Siegelmann & Sonntag (1995) showed that 

first and higher order recursive networks are 

computationally equivalent.  However, the theoretical 

possibility that one giant first order network can carry 

out the same tasks as modular, hierarchically structured 

systems implies nothing about the relative ease with which 

either system can be generated artificially or 

biologically.  

     A total of 11 neurons were used in the current network.  

Although an arbitrarily large network could theoretically 

generate similar performance, the search space of network 

parameters (weights, time constants, etc.) would increase 

and yield ever slower performance of the GA.  Imposing 

left-right symmetry on the lower network might increase the 

GA search speed by decreasing the search space.  However, 

such a network symmetry constraint might adversely affect 

performance for more complex and asymmetric primitives, 

sequences, and environments.  A network of too few neurons 

would not contain any solutions in its parameter space that 

would allow a given number of goals/sequences to be found.  

For example, when only 4 neurons were used in the top level 
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during model development, task neuron activity was 

unimodal, such that certain turn combinations were never 

found. 

     Two task neurons were used to encode primitive 

sequences since two primitives were encoded in the bottom 

level.  It is not necessarily the case that the number of 

task neurons must always equal the number of primitives, 

but such a relationship was not investigated here.  

      Although the initial sensitivity of the movement 

sequences generated to task neuron activations (Figures 6, 

9, and 10) was an emergent feature of the system found by 

self-organization of network parameters through a genetic 

algorithm, the model architecture was predetermined, and 

the details of the network training influenced the specific 

functions that were assumed by different components of the 

architecture.  Given that the current network architecture 

is loosely based upon the primate motor system’s 

hierarchical design, one might expect it to perform better 

than a less biologically plausible giant first-order 

network that encompasses both simple movement primitives as 

well as their combination into complex sequences.  This 

assumption will be tested in future work.     

     One may further question the need for hierarchical 

training of the current architecture, i.e., separate 
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training of the bottom and top levels.  This task 

separation was done in analogy to the presumed sequential 

development of motor primitives in young humans, which are 

combined into sequences only later, presumably when the 

cortex has further developed.  In another analogy, one 

could compare it to the evolutionary development of lower 

brain stem structures for “primitive” movements, with later 

evolution of cortical structures (the “top level”) allowing 

for complex combinations of the primitives.  Nevertheless, 

it would be interesting to learn/evolve both levels 

simultaneously and see what types of primitive and sequence 

organization emerge. Given that humans show a clear 

progression of movement learning, from simple to complex 

movement patterns as they develop (Needlman, 2003), one 

might assume that there is an advantage, either in learning 

rate or the final skill level attained, to such an 

incremental, hierarchical learning organization.       

Future work will test whether such complex movements can be 

learned “from scratch”, without an externally imposed 

succession of increasingly difficult tasks.  Further, it 

will be of great interest to see whether a similarly 

intricate dynamic structure self-organizes in the task-

dependent neuronal activity of a network without such 

hierarchical movement learning.        
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     Although other examples of evolved robot controllers 

can generate multiple sequences of movements to reach 

various goals, they generally require dynamic synaptic 

weight changes (Ziemke & Thieme, 2002), sustained neural 

activity between tasks (Blynel, 2003), and/or a change in 

sensory-motor mappings between different tasks (Ziemke & 

Thieme, 2002).   

     Different sensory-motor mappings for different complex 

tasks are often reasonable assumptions, as in the different 

mappings between sensation and hand movements in piano-

playing versus communicating in sign-language.  However, 

assuming different sensory-motor mappings, and hence 

different neuronal network modules and synaptic weights, 

for sequential tasks that require only different 

combinations of a set of movement primitives would quickly 

exhaust the supply of neurons in the brain.  Further, 

simply switching among completely separate motor-primitive 

modules (Tani & Nolfi, 1999) for different tasks would 

greatly limit the diversity of possible movements, again 

requiring a proliferation of slightly different modules to 

accomplish similar tasks. 

     Wolpert and Kawato (1998) propose that an explosion in 

the number of motor primitive modules needed for arbitrary 

movements could be avoided through a linearly weighted 
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combination of a given set of modular outputs.  However, 

one question with their model is how generalization can be 

achieved simply through linear interpolation among the 

modules.  It is proposed that certain kernel modules have 

to be self-organized through their mutually interactive 

computations for the purpose of attaining the generalized 

internal representation. 

     Although a modular system can avoid the stability-

plasticity dilemma (Grossberg, 1982), or the catastrophic 

forgetting (French, 1991; McCloskey & Cohen, 1989) of old 

primitives when new ones are learned, its abilities to 

generalize to novel environments, create sufficiently 

diverse combinations of primitives, decide when to create 

new modules, and select the appropriate module combinations 

for different tasks and environments are questionable. 

     Requiring fast, dynamic changes of synaptic weights 

during different parts of a movement sequence is also not a 

biologically plausible means of movement sequence 

representation and generation.  As a purely artificial 

mechanism in the context of delayed response tasks, it is 

an effective solution, although it requires significantly 

more training (1000 vs. 200 generations) than the current 

model (Ziemke & Thieme, 2002).   
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     Blynel (2003) described a novel, evolved network that 

allowed a simulated robot to “remember” the location of a 

goal that had been found through exploration of the two 

arms of a T maze.  The goal location was represented by the 

continuous, dynamic activity of the network’s neurons.  

Further, it was shown that the initial activity of a single 

neuron in the network determined whether the robot turned 

left or right at the intersection.  There is therefore some 

similarity between the direction-determining neuron in 

Blynel’s network and the control neurons in the current 

model.  The key difference lies in the need to maintain the 

pattern of neural activity between trials in order to find 

a goal in Blynel’s model.  If different, “distractor” tasks 

were to be interposed between successive trials, the robot 

would forget the turn direction that it had previously 

learned.  Thus, although both the Blynel model and the 

current one represent different turn directions through the 

dynamic activity of their networks, only the current model 

proposes a means whereby sequences of turns can be both 

generated and then regenerated at arbitrary later times 

through the modulation of task neuron activities without 

the need for synaptic weight change.  

     Despite the theoretical limitations of strictly 

modular systems outlined above, they remain a useful tool 
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in designing robot controllers.  The reinforcement learning 

(RL) community has made successful use of learning modules 

for specific simple tasks, which can then be combined in a 

variety of ways to generate more complex tasks and 

sequences of tasks.  For example,  McGovern et al. (1997), 

use macro-actions, groups of simpler primitive movements, 

to accelerate the search for rewarding sequences of finite 

state movements while showing that inappropriate use the 

macros can also slow it.  Unfortunately, most macros must 

be hand-designed, and it is hard to predict whether 

particular macros will enhance or worsen task performance.  

However, without them the search for rewarding movement 

sequences in greatly lengthened.  Indeed, much research has 

been done on accelerating the search phase of reinforcement 

learning, increasing robustness of models to environmental 

uncertainty, and increasing solution transfer across 

problems through numerous types of modular and hierarchical 

architectures, (Subgoals: Sutton et al., 1999, McGovern and 

Barto, 2001; Hierarchical Abstract Machines: Parr and 

Russell, 1997; MAXQ: Dietterich, T., 2000), and enabling 

more complex goal-oriented movement sequences to be 

generated.  Genetic algorithms have also been used to help 

optimize RL parameters (Mesot et al., 2002).  Most of this 

work has focused on artificial discrete time, finite state 
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environments, or “grid-worlds”, with minimal non-

linearities and non-stationarity.  Doya et al. 2002, have 

addressed non-linear and non-stationary continuous control 

of a pendulum through their “multiple model-based” RL, 

which shares use of a softmax function for module selection 

and combination with the “multiple paired forward-inverse 

models” of Wolpert and Kawato (1998) mentioned previously.     

 

5.1.  Limitations and Directions for Future Research 

 

    The present model does not address the development of 

synaptic connections through error-driven learning in 

biological systems, but instead uses a genetic algorithm to 

find a single synaptic weight pattern that is effective in 

completing multiple tasks.  Although error-driven learning 

algorithms, such as backpropagation through time (Haykin, 

1994; Werbos, 1990), have been successfully used to train 

recurrent neural networks, the manual selection of 

appropriate parameter values is a daunting task.  Until 

more effective and/or biologically plausible training 

methods are developed, genetic algorithms remain one of the 

most powerful tools in training neural network robot 

controllers for complex movement tasks. 
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     As seen in the results of experiment 4, one limitation 

of the current model is its inability to respond 

effectively to environmental changes without further weight 

modification.  When the length of the corridors was 

doubled, the robot usually failed to reproduce the turn 

sequence which had been learned in the smaller environment.  

The dynamics of the higher level network were essentially 

independent of the external environment. The current model 

is effectively an open-loop, top-down controller that 

executes sequences by rote at a fixed speed.  The work of 

Smith et al. (2002) is relevant to this time/speed scaling, 

or “temporal adaptivity” dilemma.  They found that Gas 

Nets, using internal neuron dynamics modeled on biological 

gaseous neuromodulators, are better able to adapt to 

environmental and movement speed changes than traditional 

neural networks that rely solely on the movement between 

fixed equilibrium points to switch speeds, or turns as in 

our model’s top level.  When environmental changes 

prevented the robot from turning at the usual time, the top 

network activity continued to progress toward the next turn 

(top level equilibrium point) in the sequence, skipping a 

turn instead of merely delaying it until the next 

intersection.  Also of relevance to this problem is the 

work of Ijspeert et al. (2003), which describes a novel 
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form of on-line environmentally mediated modification of 

previously learned attractor dynamics in response to 

environmental changes. 

     The higher level network’s influence on the outputs of 

the lower level is disproportionately large compared to the 

lower level’s influence on it.  The higher level’s relative 

isolation from the “real world’s” sensory input is in stark 

contrast to the rich flow of both physical and temporal 

sensory information which is integrated in the primate 

lateral prefrontal cortex during the learning of movement 

sequences (Ninokura et al., 2003).  Although both the 

model’s control neurons and primate LPFC neurons integrate 

both temporal sequence and physical sensory information, 

the monkey can modulate the speed of its sequence 

generation, whereas the current model cannot.  Future work 

will therefore explore the possibility of better modulating 

the activity of the higher level through bottom-up 

connections in a way which reflects environmental changes.   

 

 

6.  Conclusion 

 

     This work has demonstrated an approach to adaptive, 

goal-directed, behavioral sequence representation in a 
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self-organized, hierarchical, recurrent neural network 

controlling a simulated mobile robot.  Different types of 

dynamic structures self-organize in the lower and higher 

levels of the network for the purpose of achieving complex 

navigation tasks.  Top-down behavioral switching emerges 

through parametric bifurcation of lower level activity via 

control neurons.  In the higher level, a topologically 

ordered mapping of initial cell activation states to motor-

primitive sequences self-organizes by utilizing the initial 

sensitivity characteristics of nonlinear dynamic systems.   

Task-neuron modulation could be effected by even higher 

level networks which could represent sequences of sequences 

for different sets of ever more complex tasks.  This 

research serves as an example of how complex dynamic 

structures with initial sensitivity and task-dependent 

temporal activity may self-organize to control simpler 

structures that encode movement primitives.  Such 

structures may be analogous to those which encode movement 

sequences in biological neural networks, and may be a 

promising direction for research into mobile robot 

navigation.   
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Figure and Table Captions 

 

Figure 1:  Conceptual diagram of network architecture.  The 

bottom level receives sensory inputs, interacts with 

control neurons, and sends motor commands to the robot 

wheels.  The top level modulates the control neurons’ 

activities over time to generate movement sequences, 

sensitive to the initial activities of the task neurons.  
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wl=lower level weights, wc=control neuron weights, wh=higher 

level weights.  (a) Initially, the bottom level and control 

neurons evolve in a T-maze environment.  (b) The top level 

is then added in an 8-goal-maze environment and evolves 

while the bottom level parameters remain constant. 

 

Figure 2:  T maze environment with left and right turn 

trajectories.  Turns occurred at integration step=200, 

corresponding to the neuronal activity traces in figures 3 

and 4.  The graph at the top of the environment illustrates 

the linear fitness function dependent on the robot’s 

position at the top of the environment.  Fitness increases 

as the robot approaches the left or right ends of the T. 

 

Figure 3:  T maze left turn.  Top: Neuronal activity of 

control neurons; Middle: Lower level motor output node 

activity; Bottom: Left and right sensor activities.  

 

Figure 4:  T maze right turn.  Top: Neuronal activity of 

control neurons; Middle: Lower level motor output node 

activity; Bottom: Left and right sensor activities.  

 

Figure 5:  Experiments 1 and 2.  Phase analysis of turn 

direction as a function of control neuron activation.  X 
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and Y axes: neuronal activities of control neurons 1 and 0, 

respectively.  441 trials with different sets of the two 

control neurons’ activities, held constant for each trial, 

(A=[0:1], step size = 0.05) were run and the resulting turn 

directions plotted.  Black = Left turn, White = Right turn, 

Grey = Collision with wall. 

 

Figure 6:  (a) Phase analysis of three-turn sequence 

generation as a function of task neuron initial activity, 

)0(taskγ .  X and Y axes: Initial activities of task neurons 1 

and 2, respectively.  Plotted numbers correspond to 

sequences as in Table 1.  Sequences also indicated by 

L=Left, R=Right.  Note the emergent topological ordering, 

such that adjacent sequence regions differ by one bit, or 

one turn. Sequence regions differing only in the third turn 

(right-most letter) are separated by a dashed line, while 

those differing in the second turn are separated by a solid 

line.  Right- and Left-beginning sequences cluster together 

on right and left sides of the figure, respectively, and 

are separated by a thicker solid line.  (b) Hierarchical 

tree-structure of sequence organization in (a).  Top: first 

turn; Middle: second turn; Bottom: third turn.   
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Figure 7:  Population (bottom curve) and Best Robot (top 

curve) fitness vs. generation of evolution.  The maximum 

fitness at generations 25 and 26 corresponds to the finding 

of six stable goals by the best robot. 

 

Figure 8:  Eight-Goal Maze environment, showing trajectory 

for a Left, Right, Right sequence.  G= Goal location.  

Turns occur at steps 200 and 500 in the neuronal activity 

traces for this sequence in Figure 9. 

 

Figure 9:  Left-Right-Right turn sequence.  Top: Neuronal 

activity of control and task (initial node) neurons; 

Middle: Lower level motor output node activity; Bottom: 

Left and right sensor activities. 

 

Figure 10:  Control and Task neuron (initial node) 

activities for the following turn sequences.  L=Left, 

R=Right.  a) LLL; b) LLR; c) RLL; d) RRL; e) RRR 

 

Figure 11:  Environment and trajectory for experiment 3.  

G=Goal.  Turns occur at steps 200 and 450, corresponding to 

the neuronal activity in figure 12.  
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Figure 12:  Experiment 3.  Top: Neuronal activity of 

control and task (initial node) neurons; Middle: Lower 

level motor output node activity; Bottom: Left and right 

sensor activities. 

 

Figure 13:  Experiment 3. Population (bottom curve) and 

Best Robot (top curve) fitness vs. generation of evolution.  

The goal was found in generation 4.    

 

Figure 14:  Experiment 3.  Phase analysis of movement 

behavior as a function of control neuron activation.  Black 

= Left turn, White = Straight movement, Grey = Collision 

with wall.  Note the smaller region of instability between 

left turn and straight movement regions compared with the 

instability between left and right turns of Figure 5. 

 

Figure 15:  Experiment 4.  Control and Task neuron (initial 

node) activities when the distance to the goal is doubled. 

In the original smaller environment of Experiment 2, this 

set of initial task neuron activities led to a Right-Right-

Left turn sequence.  When the distance to the goal was 

doubled, a Right-Left-Left sequence occurred since the 

activities of control neurons 0 and 1 passed the turn 

threshold prior to reaching the second intersection. The 
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second turn occurred at step 450 in the original 

environment of figure 10d, and at step 1000 in the double-

length environment. 

 

Table 1:  Movement Sequence representation used in Figure 

6.  L=Left Turn; R=Right Turn; 0=Left Turn; 1=Right Turn.  

 

Table 2:  Movement sequences in the original environment of 

experiment 2 (left column) and in the enlarged environment 

of experiment 4 (right column).  L=Left turn; R=Right turn.  

Note that only 2 of 6 sequences were preserved after 

enlarging the environment. 

  

 

 

 


