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     Abstract 
 
Diverse, complex, and adaptive animal behaviors are achieved by organizing hierarchically 
structured controllers in motor systems. The levels of control progress from simple spinal 
reflexes and central pattern generators through to executive cognitive control in the frontal 
cortex.  Various types of hierarchical control structures have been introduced and shown to 
be effective in past artificial agent models, but few studies have shown how such structures 
can self-organize.  This study describes how such hierarchical control may evolve in a 
simple recurrent neural network model implemented in a mobile robot. Topological 
constraints on information flow are found to improve system performance by decreasing 
interference between different parts of the network.  One part becomes responsible for 
generating lower behavior primitives while another part evolves top-down sequencing of 
the primitives for achieving global goals.  Fast and slow neuronal response dynamics are 
automatically generated in specific neurons of the lower and the higher levels, respectively.  
A hierarchical neural network is shown to outperform a comparable single-level network in 
controlling a mobile robot. 
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1.  Introduction 

It is well known that diverse, complex, and adaptive animal behaviors are achieved by organizing 

hierarchically structured controllers in motor systems. The levels of control progress from simple 

spinal reflexes, central pattern generation in the spinal cord and brainstem, their elaborated 

coordination in sensory-motor cortex, through to executive cognitive control in the frontal cortex 

(Kelly, 1991).  In developing artificial agents such as autonomous robots, various types of multi-

level structures have been introduced and shown to be effective (Blynel & Floreano, 2002; Paine 

& Tani, 2004; Tani, 2003; Tani & Nolfi, 1999; Yamauchi & Beer, 1994; Ziemke & Thieme, 

2002).  However, few studies have shown how such effective hierarchical controllers can self-

organize through system adaptation without explicitly designing them. The current paper reports 

that multiple hierarchically structured controllers can self-organize through evolution of a simple 

artificial neural network implemented in an artificial sensory-motor system. It is shown that a 

simple constraint on information flow in the network reinforces stable self-organization of each 

level. 

Much research has been done in the field of  “machine learning” with numerous types of 

multi-level architectures in order to accelerate the search phase of reinforcement learning, 

increase the robustness of models to environmental uncertainty, increase solution transfer across 

problems, and to generate more complex goal-oriented movement sequences (Dietterich, 2000; 

Doya, Samejima, Katagiri, & Kawato, 2002; McGovern & Barto, 2001; Parr & Russell, 1998; 

Sutton, Precup, & Singh, 1999). However, in most of these studies, each level has to be learned 

separately by utilizing external cues, such as subgoals.   
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Figure 1  Maze environment. Shows trajectory for a Left-Right-Right sequence.  A simulated 

mobile robot learns to reach 8 different goals starting from a home position.  If the robot reached 

positions P1 or P2 as a function of  BN activities, left or right turns, respectively, were recorded 

for Figure 4. 

The current work explores the possibility that multiple levels of hierarchical control may 

self-organize through simple adaptation processes in artificial neural networks.. In our 

experiments, a mobile robot explores the maze environment as shown in Figure 1.  The task of 

the robot is to find navigation paths reaching as many different goals as possible from a start 

position, while synaptic connectivity weights of the network controlling the robot are evolved for 

better task performance using a standard genetic algorithm (GA) (Holland, 1975; Lipson & 

Pollack, 2000; Ruppin, 2002).  The robot must acquire different levels of behavioral skills in 

order to achieve the goal.  First, the robot should become able to perform collision-free 

maneuvering while safely turning left or right at corners. Second, the robot should become able to 

navigate to the goals by means of sequencing left or right turns at corners.  Our experiments will 

show how this sort of two-level hierarchical structure can self-organize. 
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The robot controller is implemented with a continuous time recurrent neural network 

(CTRNN) whose synaptic connectivity is evolved by a GA (Yamauchi, & Beer, 1994). We test 

two types of CTRNNs as shown in Figure 2.  Figure 2A is called a “bottleneck” network since 

there is a restriction of information flow between the upper and lower parts of the network.  The 

neural activations can propagate to the other level only through the bottleneck neurons (BNs). 

There are sensory inputs and wheel-motor outputs in the lower part of the network.  Figure 2B is 

a standard fully connected CTRNN.  

 

Figure 2  CTRNN.  Bottleneck network in (A) and a standard, fully connected CTRNN in (B). 

There are special neurons called “task” neurons (TNs) in both types of networks.  The idea 

here is that different initial internal activity states (γ  in Equation 1, analogous to cell membrane 

potentials or firing frequencies in biological neural networks) set in the TNs would lead the robot 

to reach different goal positions, acting as action programs by utilizing the initial sensitivity 

characteristics of the global neural network dynamics (Nishimoto & Tani, 2004).  Blynel (2003) 

found a similar initial-state coding in an evolved network that allowed a simulated robot to 

“remember” the location of a single goal that had been found through exploration of the two arms 

of a T maze.  It was shown that the initial activity state of a single neuron in the network 
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determined whether the robot turned left or right at the intersection.  There is therefore some 

similarity between the goal-determining neuron in Blynel’s network and the TNs in the current 

model.  The current model expands on the use of goal-determining initial neural states to 

represent multiple turn sequences. 

Sets of the two TN’s initial states at time t=0, given by the 2×M matrix , are 

evolved along with the connective weights and neuron parameters of the network.  The fitness 

function maximizes the number of different goals achieved within M=12 sessions of robot travel.  

The robot starts each session from the  home position, while set with one of 12 differently 

evolved TN initial states. The initial states of all other neurons are set to zero.  Thus, a single 

network with a single set of parameters (synaptic weights, time constants, activation biases) can 

encode multiple movement sequences through different TN initial states.   

)0(
2,

task
Mγ

The simulation experiments consist of 20 runs of evolution for each type of network.  Each 

run has 200 generations with an 80 robot population per generation.  The bottleneck network has 

11 neurons, and the fully connected CTRNN consists of 9 neurons, with a total of 81 synaptic 

weights in each network.  The same number of synaptic weights are chosen in each network to 

equalize the search space of the GA.  Thus, any performance differences that might arise should 

be due to differences in network structure, and not to the learning algorithm employed.  

Experiments with an 11 neuron fully connected network yielded similar results.  The simulated 

robot controllers are then tested in a real Khepera II robot.    

2.  Methods 

2.1  Simulations of Hierarchical “Bottleneck” versus Fully Connected Controllers 
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Robot simulations were carried out using Webots 4 software (Cyberbotics Ltd., 

www.cyberbotics.com) to simulate a Khepera II robot (built by K-Team, www.k-team.com).  All 

neurons in the simulations presented here use the following equations and parameters for a 

Continuous Time Recurrent Neural Network (CTRNN) (Yamauchi & Beer, 1994).  In Equation 1, 

iγ  is the internal activity state (cell potential) of the i th neuron.  τ  is the time constant of the 

neuron. It affects the rate of neuronal activation in response to the kth external sensory neuronal 

activation, Ik, and signals from the jth presynaptic neuron with activity Aj.  The signal from the 

presynaptic neuron is weighted by weights wp
ij, and the sensory input is weighted by ws

jk.  N is the 

number of neurons in the network, and R is the number of sensory receptors which send input 

signals to the network. 
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The presynaptic neuronal activity (Aj) is defined in Equations 2 and 3.  θ  is a bias term and 

σ  is the standard logistic function, defined in Equation 3. 

)( jjjA θγσ −=       (2) 

)1/(1)( xex −+=σ  (3) 

The numerical integration is carried out using the Forward Euler method.  Except for the 

task neurons, whose initial activity states, , are obtained through evolution, the neuronal 

activation, 

)0(
2,

task
Mγ

iγ , is initialized to 0 at the start of integration. 

The bottleneck CTRNN has 5 neurons in the lower part, 2 BNs, and 4 neurons in the upper 

part, including 2 TNs.  The standard CTRNN has 9 neurons, including 2 TNs.  Both networks 

http://www.cyberbotics.com/
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receive inputs from the Khepera robot’s 8 infra-red proximity sensors and generate motor outputs 

to the two wheels, determining left and right wheel speeds.  The sensory inputs are sent to the 5 

neurons in the lower part of the bottleneck network, and to 5 arbitrarily chosen neurons in the 

fully connected network (including output but not task neurons).  The input is modified by 

randomly adding or subtracting up to 5% of its value as noise.  Further, motor noise is added to 

the wheel speed commands sent to the robot.  The integer speed command is increased or 

decreased by one with a probability of 20% on each simulation time step.  The motor noise helps 

ensure that the robot experiences wall collisions early during evolution, so that controllers with 

obstacle avoidance are more likely to evolve quickly. 

A standard genetic algorithm (GA) with mutation, but without crossover, is employed to 

evolve the weights and parameters (τ , θ , w, ) of the network (Goldberg, 2002; Mitchell, 

1998). The ranges of the parameters are set as follows. 

)0(
2,

task
Mγ

]70,1[∈τ ; ]1,1[−∈θ ; ;  ]5,5[−∈w ]10,10[)0(
2, −∈task

Mγ

Each parameter is encoded using 5 bits .The mutation rate per bit is set at 2% for all 

simulations. The population consists of 80 robots. The twenty robots with the best fitness 

reproduce each generation (elitism). Each parent makes 4 copies of itself with mutation. Of the 

best robot’s offspring, one is an exact copy of the parent without mutation.  

Each session consists of 2 trials to examine the ability to repeatedly reach the same goal 

despite sensory noise on different trials.  Robots which find the same goal on both trials are 

rewarded more than those which find two different goals or only one goal.  Once goal-finding 

ability evolves, motor noise is set to 0 to better allow evaluation of the controller’s ability to find 

the same goal on repeated trials.  A trial is ended when the robot either finds a goal, collides with 
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a wall, or uses up the 2000 time steps allocated per trial.  The robot is then repositioned to the 

same starting point.     

After 12 sessions, each robot is evaluated based on how many different goals it can reach 

repeatedly.  A two-component fitness rule is used to evaluate each robot (Equation 4).  The first 

component (FOA) consists of a reward for straight, fast movements and obstacle avoidance.  A 

fitness rule (Floreano & Mondada, 1994) is adopted for this purpose and is shown in Equation 5.  

V is the wheel speed scaled to a range of 0 to 1.  V is the average speed of the two wheels. V∆  is 

the absolute value of the difference in speeds between the two wheels, and is used to reward 

straight movements.  Smax is the maximum robot sensor value, a measure of the distance to the 

nearest obstacle.  It is scaled to a range of 0 to 1, and is used to reward obstacle avoidance.   

goalOA FFF +=                     (4) 

 

)1()1( maxSVVFOA −⋅∆−⋅=                      (5) 

  

The second component of the fitness rule, Fgoal, rewards the robot for reaching goals 

consistently (Equation 6).   

)(max
1

21:1∑
=

=
+=

Ngoals

g
ggNsessionsigoal RRF       (6) 

Here, a fixed reward (R) per new goal (g) reached repeatedly on two trials is given to the robot.  

Ngoals = 8, and Nsessions = M = 12.  When g2=g1, Rg2=Rg1=10.  When g2 ≠  g1, Rg2=0.  In other 

words, a greater reward is given for finding the same goal on both trials than for finding two 
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different goals or only one goal for a particular pair of TN initial states.  Total fitness is averaged 

over the robot’s run time.  FOA is scaled to a range of 0:1 while R=10 to ensure that goal-finding, 

once it emerges, is the dominant force in evolution.   

3.  Results 

          The following sections present the results of simulations (sections 3.1-3.2) and real robot 

performance (section 3.3).   Section 3.1 statistically compares the performance of the bottleneck 

and fully connected networks.  Sections 3.2-3.2.2 analyze the bottleneck network and the effect of 

its topological constraints on the evolved localization of specific functions to the separate levels 

of its architecture.  Section 3.2.3 examines the evolved neuronal time constants of bottleneck and 

fully connected networks and how their common features contribute to task execution.  The 

insights gained from these sections help explain the functional differences between the bottleneck 

and fully connected networks, as described in 3.2.4.  Finally, transfer to the real robot is briefly 

discussed in section 3.3. 

3.1  Performance of the Hierarchical “Bottleneck” and Fully Connected Controllers 

It was found that the best performance was obtained in the bottleneck network.  In twenty 

evolutionary runs, the mean number of different goals reached was 5.1 for the bottleneck CTRNN, 

and 2.3 for the standard CTRNN (p=0.015, two-tailed Student’s paired t-Test indicating 

significantly different means).  The bottleneck CTRNN found five or more goals on 14 of 20 runs, 

whereas the standard CTRNN found them on only 6 runs.  



11 

 

Figure 3  Neuronal activity for a Right-Left-Right turn sequence in the bottleneck network.  

Turns occur at the times shown by the arrows.  Top: Neuronal activity of bottleneck and task 

neurons with slower evolved time constants to encode turns and sequences, respectively; Middle: 

Activities of motor output nodes that evolved faster neuronal time constants to respond to 

immediate task demands relative to sensor inputs (Bottom). 
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3.2  Analysis 

The temporal neuronal activation profiles for an evolved bottleneck network, which 

found 6 different goals, are shown in Figure 3.  The profiles correspond to a Right-Left-

Right turn sequence, starting from the home position, that reaches goal 6 of Figure 1.  

The top row shows the activation profiles of two TNs and two bottleneck neurons (BNs, 

Figure 2A).  The bottom row shows the profiles of the two motor output neurons in the 

lower part of the network.  Observe that the time constants for the motor neurons are 

much faster than those of the TNs and BNs.  The activation profiles of the BNs correlate 

with right and left turns, denoted by arrows in the top figure.  For the right turn, both BNs 

have high activation values, while BN-2 takes a low value and BN-1 slightly decreases 

for the left turn.  TN-2 shows a similar type of activation profile as the BNs, while the 

profile of TN-1 seems more complex, with medium activity levels correlated with left 

turns and both low and high levels with right turns. 

3.2.1  Lower Level network and Bottleneck Neurons 

We conducted further analysis of the functions of BNs in the same network.  A phase space 

analysis for the BNs, focusing on the cornering behavior at corridor intersections, can be seen in 

Figure 4.  It shows how the cornering behavior varies when the activations of two BNs are 

externally clamped to various values.  Specifically, an evolved controller was tested by fixing 441 

sets of BN states (21x21 combinations of the two BN activities (γ  in equation 1) ranging from    

-10 to 10, at 1-unit intervals).  For each pair of BN activities, the robot began a trial in the same 

home position as in Figure 1.  If the robot reached position P1 or P2 in Figure 1, then a left or 

right turn was recorded, respectively.  In other words, the upper level of the bottleneck controller 
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was cut off, allowing a direct test of the BNs’ effect on robot movement and demonstrating that 

obstacle avoidance and turning behavior are controlled by the lower level.  One may observe that 

the BNs’ activation space is divided into three regions, white, black and grey, which correspond 

to right turns, left turns and collisions with the walls, respectively.   

These left and right turns, encoded in the lower level of the network, act as reusable motor 

patterns or “primitives” (Arbib, 1981; Fikes, Hart, & Nilsson., 1972; Giszter Mussa-Ivaldi, & 

Bizzi, 1993; Thoroughman & Shadmehr, 2000).   As demonstrated in Figure 4, the bottleneck 

neurons’ activities bias the robot to turn in a particular direction, in a manner analogous to 

command neurons (Ruppin, 2002) and the “parametric bias” of Tani (2003).   

Analysis of the robot’s behavior during the generation of Figure 4 yields some insights into 

the role of the BNs.  Obstacle avoidance must be balanced with the tendency to veer in a 

particular direction due to the BNs’ influence.   For example, when the BN activities are set in the 

“Left” region of the figure, the robot starts veering left while near the Home position of Figure 1.  

When it gets “too close” to the wall, obstacle avoidance takes over causing it to turn away from 

the wall.  A balance between obstacle avoidance and the BNs’ leftward bias yields a wall 

following strategy on the left side of the corridor, leading the robot to make a left turn at the 

intersection.  However, when the BN activities are set in the black collision region on the left of 

Figure 4, the robot again starts veering to the left, but collides with the wall because the BN bias 

is too strong, overriding obstacle avoidance.  Further, collisions can occur at the transition 

between left and right BN activity regions due to a balance between the BN turn biases, leading 

the robot to head straight “up” from the home position to collide with the facing wall at the first 

intersection.  In effect, it can’t “decide” which direction to turn and hits the wall in front of it.  

Finally, a last cluster of collisions occurs in the lower right region of Figure 4 where the 
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rightward BN bias on turning direction is too strong, again overriding obstacle avoidance.  

Collisions do not occur during the evolved controller’s movements since BN activities stay out of 

the collision region of Figure 4.  These collisions were induced by artificially clamping BN 

activities as described previously to generate the figure.  

3.2.2  Higher Level network with Task Neurons 

As the lower level’s role in encoding turns and obstacle avoidance was demonstrated by 

cutting off the upper level, the upper level’s role in organizing the sequence is demonstrated first 

by cutting off the lower level, and then by mapping TN initial states to the resulting turn sequence.  

Figure 5, when compared to the top of Figure 3, shows that the TN and BN activity profiles are 

largely unaffected by disconnecting the upper from the lower level (setting all weights between 

the BNs and the lower level to zero).  In other words, the upper level essentially exerts open-loop 

top-down control of the turn primitives in the lower level.  Although this strategy is successful in 

the static environment used here, greater bottom-up modulation would be needed to preserve 

sequences in more realistic and variable environments (see Figure 15 of Paine & Tani, 2004). 

A phase space analysis of the task neuron initial states is depicted in Figure 6, where the 

regions represent the initial states which result in the robot reaching different goals.  These 

regions are labeled by the corresponding turn sequence, e.g., LRR for a Left-Right-Right turn 

sequence.  The different numbers in the figure correspond to different turn sequences, as 

described in the legend of Figure 6.   

In some runs in which a given number of goals were found by evolution, additional goals 

were found in the TN phase space analysis.  Although the genetic algorithm searched only 12 

different sets of TN states per robot of an 80 robot population in each generation, Figure 6 was 
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generated by testing an evolved controller with 441 sets of TN initial states (21x21 combinations 

of two TN initial states ranging from -10 to 10, at 1-unit intervals).   For the particular controller 

shown here, these 441 TN states yielded the same six sequences as had been found in the 12 TN 

states during evolution. 

It is observed that the sequence patterns are arranged in clusters in the TN initial state 

space.  First, the space is grossly clustered based on the first turn direction, left or right, of the 

movement sequence, as shown by a thick solid line in Figure 6.  Each of these two clusters is then 

further divided into topologically ordered sub-clusters, depending on the second turn direction of 

the movement sequence, as shown by a solid line.  These sub-clusters are still further divided into 

smaller clusters, depending on the third turn as shown by the dashed lines.  These smallest 

clusters neighbor each other and share the first two turns of their sequences in common.  In other 

words, the turn sequences are hierarchically ordered into progressively smaller regions of the 

initial TN activity space as additional turns are added.  As the complexity of the movement 

sequence increases, so too does the initial sensitivity to the TN activities. 

 This hierarchically ordered mapping of initial task neuron activity to particular sequences 

is an emergent property of the evolved controller.  Different evolutionary runs yield different 

cluster patterns, but the general trend of distinct, ordered sequence regions remains. This trend 

was also found in Paine & Tani (2004), and is reminiscent of the fractal distribution of sequences 

mapped in the initial state space of Nishimoto & Tani (2004).  Indeed, it would be interesting to 

see if fractal structure could be found in controllers branching out to larger numbers of goals. 
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Figure 4  Phase space analysis of turn direction as a function of bottleneck neuron activities.  BN 

activities were held fixed throughout a trial and the robot’s behavior was observed.  The robot  

began each trial at the home position of Figure 1.  A left turn (grey) was recorded if the robot 

reached point P1 in Figure 1, and a right turn (white) if it reached P2.  If the robot hit a wall of the 

maze, then a collision (black) was recorded. 
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Figure 5  Disconnecting the upper level.  Compare to the BN and TN activity profiles at the top 

of Figure 3 for a normal Right-Left-Right sequence (reaching goal 6 of Figure 1 at a time step of 

about 1250) using the bottleneck network.  The very similar profiles here are generated when the 

weights between the BNs and the lower level are set to zero.  The relative independence of the 

upper level from the lower indicates top-down open-loop control of turn sequences. 
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Figure 6  Phase space analysis of three-turn sequence generation as a function of task 

neuron initial activity, .  X and Y axes: Initial activities of task neurons 1 and 2, 

respectively.  Plotted numbers correspond to sequences as in the legend on the right.  

Letters represent turns of the sequences (L=Left, R=Right).  Six goals of the maze in 

Figure 1 were found. 

)0(
2,

task
Mγ

3.2.3  Evolved Time Constants 

Since obstacle avoidance requires rapid motor adjustments to avoid wall collisions, the 

motor output neurons (Figure 3, Middle; Figure 7) evolve small time constants (median value of 

τ =1 over 20 runs), allowing fast neuronal responses to changing sensor inputs.  Since controlling 

turning behavior is a longer-duration task, the BNs evolve larger time constants for slower 

neuronal responses (median value of τ =41).  Finally, the TNs, whose initial states determine 

future sequences, evolve the largest time constants (median value of τ =52) for turn sequence 
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control, which is stable despite rapidly changing pre-synaptic signals, over the entire duration of 

the task (Figure 3, Top; Figure 7).  The distributions of time constants in the bottleneck, 11-

neuron, and 9-neuron fully connected networks are shown in Figure 7.  The striking feature of 

this comparison is that TNs have significantly larger time constants than output neurons (p<<0.02, 

two-tailed, paired t-test), and tend to have the largest time constants of each network.  

 

Figure 7  Time constant (τ ) analysis of the bottleneck and fully connected networks.  Squares 

mark means across runs.  Error bars mark +/- one standard deviation.  Note low output neuron 

(nodes 1-2) and high TN (last two nodes of each network) values.  BN marks bottleneck neurons 

(nodes 6-7).   

3.2.4  Analysis Conclusions 

The analyses of Figures 4 through 6 suggest that levels of control with separate 

responsibility for local (lower level) or global (upper level) task components self-organize by 

utilizing the topological constraint on the synaptic connectivity of the bottleneck network.  The 

fully connected networks share the bottleneck network’s respective fast and slow, output and task 

neuron, temporal responses.   Such local and global function-specific neuronal activation time-

scales evolved in all three of the networks studied here.  However, the lack of separation between 

the local and global processes causes them to interfere with one another and limit the numbers of 
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sequences that can be stored in the fully connected networks.  In effect, the connections from the 

rest of the network contribute additional noise to the long-term sequence representation, limiting 

the numbers of goals found.  As discussed later, topological constraints have also been shown to 

both increase information storage and the robustness to noise in scale-free networks (Torres, 

Munoz, Marro, & Garrido 2004). 

3.3  Implementation in a Real Khepera II Robot 

In order to test the validity of the simulated controllers of section 2.1, they were transferred 

to a real Khepera II robot running in an eight-goal maze.  Up to six goals were found by the 

bottleneck network controlling a real robot.  The same controller had found seven goals in 

simulation.  More accurate simulated robot and environmental modelling should further improve 

transfer from simulation to the real robot, as would evolution using the real robot itself.     

4.  Discussion 

The following sections will discuss the generality of the presented ideas as compared and 

reconciled with prior related work.  Future possible research extensions will also be discussed.  

Special focus will be given to the problems of local versus distributed representation of 

behavioral modules, issues of architectural levels and time constants, and the biological relevance 

of the work.   

4.1  Local versus Distributed Representations 

Different sensory-motor mappings for different complex tasks are often reasonable 

assumptions, as in the different mappings between sensation and hand movements in piano-

playing versus communicating in sign-language.  However, assuming different sensory-motor 
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mappings, and hence different neuronal network modules and synaptic weights, for sequential 

tasks that require only different combinations of a set of movement primitives would quickly 

exhaust the supply of neurons in the brain.  Further, simply switching among completely separate 

motor-primitive modules (Tani & Nolfi, 1999) for different tasks would greatly limit the diversity 

of possible movements, again requiring a proliferation of slightly different modules to accomplish 

similar tasks. 

Wolpert and Kawato (1998) propose that an explosion in the number of motor primitive 

modules needed for arbitrary movements could be avoided through a linearly weighted 

combination of a given set of modular outputs.  However, one question with their model is how 

generalization can be achieved simply through linear interpolation among the modules.  It is 

proposed that certain kernel modules have to be self-organized through their mutually interactive 

computations for the purpose of attaining the generalized internal representation. 

Although a modular system can avoid the stability-plasticity dilemma (Grossberg, 1982), 

or the catastrophic forgetting (French, 1991; McCloskey & Cohen, 1989) of old primitives when 

new ones are learned, its abilities to generalize to novel environments, create sufficiently diverse 

combinations of primitives, decide when to create new modules, and select the appropriate 

module combinations for different tasks and environments are questionable.  However, a modular 

system’s ability to generate large numbers of different movement sequences through module 

combinations highlights the difficulty of representing multiple sequences in a fully distributed 

system.  Perhaps a hybrid system using modules of distributed representations could harness the 

strengths of both approaches while avoiding their individual weaknesses. 

4.2  Levels and Time Constants 
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An important feature of the bottleneck network is its emergent hierarchical functional 

organization.  The lower level, with direct access to sensory inputs and control of motor output 

commands, automatically acquires a representation of movement primitives, such as collision 

avoidance and turning at intersections.  These tasks require fast adjustments to compensate for 

rapidly changing sensory inputs.  As a result, the output neurons evolve fast time constants. In 

contrast, the task neurons are farther removed from the rapidly changing sensory inputs and 

evolve slower neuronal activation time constants to control the longer-term task of sequence 

control.  These emergent multi-time-scale dynamics are a common feature of biological memory 

systems.  The role of different time scales in the synchronization and bifurcation of coupled 

systems, similar to the divisions of bottleneck and task neuron activities of Figures 4 and 6, was 

studied by Fujimoto and Kaneko (2003).  The need for the neural integration of information over 

multiple time scales in order to take advantage of various-duration events and environmental 

regularities has also been demonstrated in evolutionary robotics (Nolfi, 2002), in reinforcement 

learning (Precup & Sutton, 1997), and in neural network music composition (Todd, 1991; Mozer, 

1992; Eck & Schmidhuber, 2002).   

In Mozer’s (1992) model of learning variable-duration musical phrases, time constants of 

the network’s hidden units are manually tuned to optimize network performance. The hidden 

units are then able to respond at different rates that match the temporal regularities of the music.  

In contrast, the time constants governing neuronal response rates are genetically encoded in 

Nolfi’s (2002) work (as in the present model).  In Nolfi’s experiments, a mobile robot evolves to 

self-localize in its environment by detecting regularities in its sensory-motor flow at different 

time scales.  Neurons with variable activation rates and threshold activation functions evolve to 

detect events extending over variable lengths of time.     
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The current work uses the different temporal responses of TNs and output neurons to 

represent long and short-term components of a sensory-motor task.  Similarly, in Tani’s (2003) 

recurrent neural network with parametric bias, the top-down and bottom-up interaction 

mechanisms between the higher and the lower levels use careful tuning of the time constant 

parameters.  Rapid switching of movement primitives occurs in the lower level, while they are 

combined sequentially over longer periods of time in the higher level.      

A different approach to learning precise timing is used by Eck & Schmidhuber (2002) to 

learn the temporal structure of blues music and compose novel melodies with the same temporal 

characteristics.  They make use of the Long Short-Term Memory (LSTM) recurrent neural 

network (RNN) (Gers, Schraudolph, & Schmidhuber, 2002).  Instead of using time constants to 

vary neurons’ temporal responses to inputs of different time scales, they store neural activation 

values and input-based error signals over time for future use in training the network.  This 

network explicitly maintains activation and error signals, used to train the RNN’s weights, over 

variable times in “memory cells” via trainable gates.  The gates determine the type and longevity 

of stored information. 

In contrast to the explicit encoding of neuronal response-time parameters of Nolfi (2002), 

Tani (2003), and the present work, or Gers et al.’s (2002) storage of training signals over time, 

Ziemke and Thieme (2002) use environmentally triggered synaptic weight changes to modulate 

sensory-motor mappings over time.  Modulations occur after opening a gating, or “decision 

neuron”, in response to environmental stimuli in multiple T-maze delayed response tasks.    For 

example, seeing a light in a particular location can trigger a change in the sensory-motor mapping 

that switches the robot’s turning direction at an intersection.  As opposed to the top-down, open-

loop control in the present work which maintains temporal modulation independently of external 
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stimuli (Figure 5), Ziemke & Thieme’s controller is a bottom-up, stimulus-driven network with 

no internal representation of time.  One could also imagine a system in which environmental cues 

help determine TN initial states, just as sound cues help determine the initial activities of 

sequence-determining supplementary motor area neurons in the primate brain (Tanji & Shima, 

1994). 

4.3  Automatic Sub-Division of Levels 

As it is hard to predict whether particular subdivisions of a task into smaller sub-tasks or 

primitives will enhance or worsen task performance in reinforcement learning (McGovern, Sutton, 

& Fagg, 1997), it is also hard to predict where in a neural network an information bottleneck 

should occur.  For example, placing it “too close” to the output or task neurons in the simple 11-

neuron network used here might limit the ability of the network to influence, and be influenced 

by those critical components.  Ideally, the algorithmic or architectural subdivision of a task to 

enhance performance should be automated.  For example, McGovern & Barto (2001) discuss 

automating the process of “sub-goal” selection to break a large task into smaller units in 

reinforcement learning algorithms.   

Since the weights of the fully connected network used here were “optimized” through a 

genetic algorithm, why didn’t the topological constraints of the bottleneck network automatically 

emerge from the fully connected network?  In other words, if zeroing some of the weights of most 

nodes in the network, i.e., to form separate top and bottom levels, significantly enhances 

performance, shouldn’t BNs automatically be generated in the fully connected network through 

evolution?  The fact that BNs were not automatically found in the present work is likely due to 

the inability of the GA to fully search the weight space of the network, especially since no 



25 

explicit mechanism of severing connections was encoded in the genome short of coincidentally 

setting many weights of many nodes to precisely 0.0.   

In contrast to the static architectures with evolved activation parameters used here, one 

may also evolve the architecture of a neural network to optimize it for a particular task.  Early 

work in such evolution was done by Miller, Todd, & Hegde (1989), who represented network 

connections in a bit string genotype.  More recently, Stanley & Mikkulainen (2004) explicitly 

encode connection “disabling” in their NeuroEvolution of Augmenting Topologies (NEAT) 

method, which starts with a simple network and gradually adds nodes and connections through 

evolution.  They also test “simplifying coevolution”, in which initially complex networks prune 

connections and nodes during evolution.  They found that starting with a simple network and 

adding additional structural complexity only as “needed” through evolution yielded the best 

performance.  However, even with such explicit pruning of connections, no emergent topological 

constraints were reported to subdivide the evolved networks into different functional levels.  A 

network architecture with separately functioning groups of neurons which enhance task 

performance represents a small region of the large solution space searched by these evolutionary 

algorithms, contributing to the difficulty of evolving successful hierarchical architectures. 

The Barabasi-Albert model (Albert & Barabasi, 2002) of growing networks with “scale-

free topologies” deals extensively with the relation between topology and performance, as further 

highlighted in the work of Torres et al. (2004).  Biological neural networks are not fully 

connected, “infinite range”, networks with every neuron connected to every other neuron.  Torres 

et al. investigated “scale-free networks”, which attempt to mimic biological networks’ finite 

connectivity by combining a majority of “boundary” nodes with small connectivity, with  a 

minority of “hub” nodes having large connectivity.  The hub nodes in scale- free networks bear a 
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resemblance to the BNs in the current network.  The bottleneck network was found to outperform 

the fully connected network in the present work by encoding turn-primitive control through the 

BNs.  Similarly, Torres et al. found that scale-free neural networks tend to outperform Hopfield-

like networks with the same number of synapses, distributed randomly over the network, by 

storing more relevant information into noise-resistant hubs.  

4.4  Generality of the Model 

How generalizable are the results presented here to other tasks and other kinds of 

controllers? As described below, elements of the TN and BN behavior representations, 

hierarchical task decomposition, and architectural constraints presented here have been 

researched in various forms.  Past work ranges from the recurrent neural network with 

“parametric bias” models (Tani, 2003), reinforcement learning, to the scale-free Barabasi-Albert 

growing networks (Albert & Barabasi, 2002; Torres, Munoz, Marro, & Garrido 2004) discussed 

previously, which can be applied to a wide variety of sensory-motor control tasks. 

Using a small number of parameters to control the dynamics of RNNs, generating diverse 

behavior sequences, has also been extensively studied in the “recurrent neural network with 

parametric bias” (RNNPB) models, e.g.,  Tani  (2003).  The current study of the BN network 

shares general concepts with the RNNPB, where the BN corresponds to the parametric bias (PB).  

The PB parameters of these models adaptively modulate the encoding of different self-organized 

behavior patterns in single RNNs, with nonlinear maps between the PB space and behavior 

patterns.  The current work focuses on whether PB-like functions can emerge through a GA 

without the explicit programming of the RNNPB.  It has been shown that they can, at least in the 

current navigation task.  Since the RNNPB has been applied successfully to a range of tasks 

ranging from human-robot interaction (Ogata et al., 2004), robotic arm movement imitation (Ito 
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& Tani, 2004), to the acquisition of language semantics (Sugita & Tani, 2005), it is likely that the 

BN scheme can also be successful in various task domains. 

Hierarchical learning in robot navigation has also been investigated using multiple levels of 

RNNs (Tani & Nolfi, 1999).  However, hierarchical task decomposition is not limited to neural 

network models.  The reinforcement learning (RL) community has made successful use of 

hierarchical learning modules for specific simple tasks, which can then be combined in a variety 

of ways to generate more complex tasks and sequences of tasks.  For example, McGovern, Sutton, 

& Fagg (1997), use macro-actions, groups of simpler primitive movements, to accelerate the 

search for rewarding sequences of finite state movements while showing that inappropriate use of 

macro-actions can also slow it.  Unfortunately, most macros must be hand-designed, and it is hard 

to predict whether particular macros will enhance or worsen task performance.  However, without 

them the search for rewarding movement sequences is greatly lengthened.   

The use of TN initial states to encode multiple movement sequences in a single RNN, 

while limited to simple 3-turn sequences in the current work, could be extended to encode more 

sequences and more complex actions by adding higher levels to modulate the TNs of the lower 

levels.   For example, one could envision a level above the current bottleneck network’s upper 

level to encode 6-turn sequences by modulating TN activities over longer periods of time.  One 

can envision further levels of complexity, with higher levels representing sequences of sequences 

for different sets of tasks, in a manner analogous to the “chunking” phenomenon observed in 

human memory of data sequences (Sakai, Kitaguchi, & Hikosaka, 2003). The beauty of this 

system is that the synaptic connections need not grow without bound as the number and 

complexity of sequences increases.  As shown here, a single network can represent multiple 

complex movements through modulation of the activities of a small number of “task” neurons.    
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4.5  Biological Relevance 

The work presented here describes a model of behavioral sequence memory and generation 

in a single distributed network.  Hierarchical structure in the neural network controller is shown 

to improve performance in a simulated mobile robot, in terms of both learning speed and the 

number of movement sequences learned.  The model recalls in general terms the hierarchical 

organization of movements in the primate spinal cord, brainstem, and cortical regions.  Simple 

motor primitives, consisting of turns and obstacle avoidance, are generated by lower-level 

structures, analogous to the spinal cord and brainstem.  In animals, such primitives consist of 

various reflexes and rhythmic locomotor and scratching behaviors (Giszter et al., 1993; Ghez & 

Krakauer, 2000).   Different types of dynamic structures self-organize in the lower and higher 

levels of the model network.  As the brainstem helps integrate sensory information for the control 

of primitives, so the BNs in the model evolve to integrate robot sensor information and control 

turn-primitives.  As shown in Figure 4, top-down modulation of the bottleneck neurons’ 

interaction with the lower level allows behavioral switching of the primitives embedded in the 

lower level.  A cat with a severed cervical spinal cord can still generate rhythmic locomotor 

movements, but its cerebral cortex cannot modulate those movements to reach a goal.  “Cutting 

the spinal cord” of the model by severing the upper level similarly preserves the turn-primitives, 

but prevents the top-down modulation needed for goal-directed sequences.  Utilizing the initial 

sensitivity characteristics of nonlinear dynamic systems (Fan, Yao, & Tong, 1996), a mapping of 

initial task neuron activity state to particular behavior sequences self-organizes throughout the 

development of the network.  The interplay of task-specific top-down and bottom-up processes 

allows the execution of complex navigation tasks.  In contrast, interference between top-down 

and bottom-up processes appears to hamper the performance of a fully connected network 

controller that lacks hierarchical function segregation.       
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The current model shows how different turning behaviors can be triggered by modulating a 

small number of nodes (BNs) in a network.  These nodes are similar to the “command neurons” 

that switch between different behaviors in evolved autonomous agents and in animals (Ruppin, 

2002; Aharonov-Barki, Beker & Ruppin, 2001).  Just as command neurons can modulate 

behaviors by triggering different activity patterns in a given artificial or biological neural network, 

so the BNs trigger different turning behaviors in the bottom level of the current model.   

The organization of sequence generation in primates has been studied extensively, as in the 

studies of Tanji & Shima (1994) and Ninokura, Mushiake, & Tanji (2003).  In the former study, 

cellular activity in monkeys’ supplementary motor area (SMA) was found to be selective for the 

sequential order of forthcoming movements, much as the task neurons’ initial activity states 

determine future movement order in the current model.  In the latter study, distinct groups of cells 

in the lateral prefrontal cortices (LPFC) of monkeys were found to integrate the physical and 

temporal properties of sequentially reached objects, in a manner analogous to integration of 

higher level sequential information and lower level sensory input by the bottleneck neurons in the 

present model.   

However, although it might be tempting to make a direct mapping between the components 

of the simple networks presented here and specific brain structures, the complexity of the neuro-

anatomical and physiological data makes such conclusions premature.  For example, other studies 

(Crutcher & Alexander, 1990; Tanji & Kurata, 1982) have also reported SMA cell activities 

correlated with immediate movement execution.  Further, Lu and Ashe (2005) found that cells in 

the primary motor cortex (M1), a major site of motor output via the corticospinal tract, can also 

encode sequences of upcoming movements.  Thus, the experimental data suggest a complex 
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system of motor sequence control including SMA, pre-SMA, as well as M1.  Additional studies 

will be needed to further elucidate the contributions of these regions to sequential behaviors.   

4.6  Summary 

The research presented here addresses the question of whether hierarchical control 

structure is needed to complete sequential movement tasks.  Tucci, Quinn, & Harvey (2002) 

showed that the sequence generation task, which Yamauchi & Beer (1994) felt required a 

modular approach, could indeed be generated with a single, non-modular, network.  Further, 

Siegelmann & Sonntag (1995) showed that first and higher order recursive networks are 

computationally equivalent.  However, the theoretical possibility that one giant first order 

network can carry out the same tasks as hierarchically structured systems implies nothing about 

the relative ease with which either system can be generated artificially or biologically.  The 

experiments reported here show that a fully connected network controller had greater difficulty 

evolving to control a complex movement task than a hierarchically organized controller with 

comparable numbers of nodes or connections.  Hierarchical organization was able to improve 

performance in a sequential movement task.  One should note, however, that the sequential 

movement task examined here was easily divisible into simpler sub-tasks, or primitives.  Further, 

the fixed bottleneck architecture used helped determine which control functions were adopted by 

which parts of the network.  In this case, that particular grouping of control “primitives” was 

beneficial.  However, it has also been shown that the use of groupings of primitives that are 

inappropriate for a particular task can retard learning of that task (McGovern et al., 1997).  Future 

work will focus on how hierarchical control architectures may emerge automatically when they 

enhance performance of a particular task, but be suppressed when they might hinder it.   

5.  Conclusion 
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     This work has demonstrated an approach to encoding goal-directed, behavioral sequences in a 

self-organized recurrent neural network controlling simulated and real mobile robots.  It further 

examined how hierarchical segregation of control can emerge in a given architecture and enhance 

controller performance.  Different types of dynamic structures self-organize in different levels of 

the network for the purpose of achieving complex navigation tasks.  Neuronal response time 

constants are automatically generated relative to the task demands, with slower responses for 

longer-term movement sequencing and faster responses for short-term wheel commands and 

obstacle avoidance behavior.  Top-down behavioral switching emerges through modulation of 

lower level activity via bottleneck neurons.  In the higher level, a mapping of initial cell activity 

states to motor-primitive sequences self-organizes by utilizing the initial sensitivity 

characteristics of nonlinear dynamic systems.  It was shown how those two levels of function 

evolved as relatively independent systems that interact only via the bottleneck, yielding more 

successful evolution than the examined fully connected networks. This research serves as an 

example of how complex dynamic structures with initial sensitivity and task-dependent temporal 

activity may self-organize to control simpler structures that encode movement primitives.  Such 

structures may be analogous to those which encode movement sequences in biological neural 

networks, and may be a promising direction for research into mobile robot navigation.   
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