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Abstract The current paper shows a neuro-robotics

experiment on developmental learning of goal-directed

actions. The robot was trained to predict visuo-proprio-

ceptive flow of achieving a set of goal-directed behaviors

through iterative tutor training processes. The learning was

conducted by employing a dynamic neural network model

which is characterized by their multiple time-scale

dynamics. The experimental results showed that functional

hierarchical structures emerge through stages of develop-

ments where behavior primitives are generated in earlier

stages and their sequences of achieving goals appear in

later stages. It was also observed that motor imagery is

generated in earlier stages compared to actual behav-

iors. Our claim that manipulatable inner representation

should emerge through the sensory–motor interactions is

corresponded to Piaget’s constructivist view.

Introduction

How can humans as well as artificial agents acquire diverse

skills for goal-directed actions in a flexible, fluent, robust,

and context-dependent manner? As a common sense, we

know that human infants develop such skills by having rich

sensory–motor interaction experiences day by day. Then,

question is what are the underlying developmental princi-

ples of transforming such experiences to skills?

Our group has investigated possible neuronal mecha-

nisms of learning goal-directed skilled actions by con-

ducting synthetic neuro-robotics experiments and by

analyzing their results with utilizing the dynamical sys-

tems framework (Beer, 1995; Schoner & Kelso, 1988;

Smith & Thelen, 1994; Tani & Fukumura, 1994). Espe-

cially, the studies have focused on the possibility that the

anticipation learning paradigm (Butz, Sigaud, Pezzulo, &

Baldassarre, 2007; Jordan & Rumelhart, 1992; Pezzulo,

2008; Tani, 1996; Wolpert & Kawato, 1998) embedded in

neuro-dynamics with rich sensory–motor interactions

could result in acquiring generalized dynamic structures

for performing a set of desired goal-directed actions

(Tani, Ito, & Sugita, 2004; Tani, Nishimoto, & Paine,

2008b). The essential idea is that anticipatory learning of

direct sensory feedbacks associated with each intended

action would result in self-organization of ‘‘internal

reality’’ (Butz, 2008) those are truly grounded to the

actual experiences of the agents. And this idea is

quite analogous to Piaget’s theories on developmental

psychology (Piaget, 1954) which consider that any rep-

resentations which children might have should have

developed through sensory–motor level environmental

interactions accompanied by goal-directed actions.

In general views, human skilled actions look too diverse

and too complex to be constructed by single level mecha-

nisms. They might require certain hierarchy. The motor

schemata theory by Arbib (1981) postulates that a complex

goal-directed action can be decomposed into sequence of

reusable behavior primitives. On other way around, the

theory says that diverse actions can be generated by means of

the higher level combining the reusable primitives stored in

the lower level in a compositional way. If this type of hier-

archical mechanism actually accounts for human skilled

actions, essential questions might be how the levels can be
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organized and then how each level can be developed with

interacting with other levels.

The anticipation mechanism enables various mental

processes of covert behaviors such as motor imagery or

motor planning (Decety, 1996; Jeannerod, 1994; Tani,

1996; Ziemke, Jirenhed, & Hesslow, 2005). Motor imagery

is considered as a process during which an individual

mentally simulates a given action. This process involves

with ‘‘the first person perspective’’ in which an individual

feels herself/himself performing the action (Decety, 1996).

Tani (1996) showed neuro-dynamics modeling of mental

simulation in which cognitive agents become able to

engage in simulated interaction with the environment

through explorative learning of the environment with

utilizing forward models (Jordan & Rumelhart, 1992;

Kawato, Maeda, Uno, & Suzuki, 1990) which serve to

prepare motor programs before initiating physical actions.

Hesslow (2002) also showed a similar idea in terms of

mental simulation hypothesis recently. Jeannerod (1994)

suggests that lookahead prediction capability by means of

motor imagery enables immediate modification of motor

program in cases of sudden unexpected changes in envi-

ronment. It has been also reported that training by mental

simulation of actions can develop their performances as

comparative to that by physical actions (Feltz & Landers,

1983; Vogt, 1995). If motor imagery is an indispensable

competency in accommodating adequate actions, one

interesting question might be how motor imagery can be

developed as compared to physical actions.

Recently, we proposed a novel neural network model so-

called the sensory forward model which utilizes distributed

representation scheme embedding multiple goal-directed

behaviors in a single neural network model (Nishimoto,

Namikawa, & Tani, 2008). The sensory forward model

(Nishimoto et al., 2008) anticipates coming sensation of

visuo-proprioceptive (VP) state (the egocentric visual state

and the body posture state) based on specified goal by

means of forward dynamics of continuous-time recurrent

neural network (CTRNN) model (Doya & Yoshizawa,

1989). By utilizing the initial sensitivity characteristics of

the nonlinear neuro-dynamics, different anticipatory tra-

jectories of VP patterns are learned to be generated

depending on the initial states given as the desired goals.

In this model, it is assumed that the anticipation of

visuo-proprioceptive flow is performed in inferior parie-

tal lobe (IPL) by which the visual state and the propri-

oceptive state of predicted are fed-back to visual cortex

and somatosensory cortex, respectively. Furthermore it is

assumed that the predicted body posture state in terms of

the proprioception might be sent to motor cortex as the

next step target where necessary motor torques to

achieve this target posture is obtained. Although IPL has

been considered as a passive integrator of multi-modal

perceptions, there are growing evidences (Ehrsson,

Fagergren, Johansson, & Forssberg, 2003; Eskandar &

Assad, 1999) those support the idea that IPL might involve

in positive anticipation of future visuo-proprioceptive

state. In addition, recently Imazu, Sugio, Tanaka, and

Inui (2007) showed novel evidences from fMRI imaging

studies that sensory prediction is conducted in IPL with

utilizing the internal model acquired in cerebellum.

Therefore, there is a possibility that both IPL and cere-

bellum contribute to achieve the sensory forward model

in real human brains. The target goal information might

be given to some IPL neurons as of their initial states

from ventral premotor (PMv) of which function has been

highlighted by the ideas of mirror neurons (Rizzolatti,

Fadiga, Galless, & Fogassi, 1996) or from lateral pre-

frontal neurons of which roles in generating goal-directed

planning are well known (Fuster, 1989).

To scale the learning capability of the original form

of the sensory forward model (Nishimoto et al., 2008)

we recently proposed a dynamic neural network model

consisting of neuron groups with multiple time-scales

activation dynamics (Yamashita & Tani, 2008). It was

shown that meaningful functional hierarchy can emerge

with taking advantages of time-scale differences among

the groups (Yamashita & Tani, 2008). The characteristics

of self-organization of implicit hierarchy with distributed

representation shown in this model contrast with the

conventional localist view (Jordan & Jacobs, 1994; Tani

& Nolfi, 1999; Wolpert & Kawato, 1998) that assumes

explicit local modules and their overt manipulations.

The current paper describes our novel robotics experi-

ments using this architecture with focusing on the aspect of

developmental learning of goal-directed skilled actions

with human interactive tutoring. The experimental results

will clarify the structural relationship among developments

of the sensory–motor primitives and their manipulations as

well as developments of physical behaviors and motor

imagery. Our analysis and discussions will show a possible

psychological mechanisms of how manipulatable repre-

sentations with compositionality could naturally develop

solely through sensory–motor experiences in anticipatory

behaviors of goal-directed agents.

Model

This section describes how the ideas of the sensory forward

model can be implemented in so-called the Multiple Time-

scales RNN (MTRNN) (Yamashita & Tani, 2008). Because

of presumptions of general readers as well as limited space

in the current special issue, the model is described intui-

tively with abstraction in details. The precise mathematical

descriptions should refer to Yamashita and Tani, 2008.
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General

The model assumes that a humanoid robot with a simple

vision system learns mutiple goal-directed tasks of

manipulating an object under tutor supervision. The goal

for each task trajectory is provided by the experimenter to

the robot by setting the initial state of some neurons in the

network model employed. Inputs to the system are the arm

joints encoder readings p̂t (eight dimensional vector of

normalized) and two dimensional vector of the camera

head angle v̂t representing object position (Fig. 1). The

camera head is programmed to target a red point marked on

the frontal surface of the object. Those two modalities of

inputs are sparsely encoded in the form of a population

coding by using the topology preserving map (TPM) where

P̂t proprioceptive state and V̂t vision state are obtained.

This topology preserving sparse encoding of visuo-pro-

prioceptive (VP) trajectories, which resembles information

processing in the primary sensory cortices such as V1 and

S1, reduced overlap between VP sequences and improved

the learning capacity of the MTRNN.

Based on the current p̂t and v̂t the system generate

predictions of proprioception pt?1 and the vision sense vt?1

for the next time step. This prediction of the proprioception

pt?1 is sent to the robot in the form of target joint angles

and actual joint movements are made by a built-in PID

controller. Changes in the environment, including changes

in object position and changes in the actual position of

joints, were sent back to the system as sensory feedback.

The main component of the system modeled by the

MTRNN receives the current input of VP state and it

outputs the prediction of its next step state. The goal for

each task trajectory is given as the initial state in terms of

the potential states of slow context units at the initial step.

The generation of each task trajectory is made possible by

the capacity of the RNN to preserve the intentionality

(a) (b)Fig. 1 The MTRNN

architecture in the behavior

generation mode (a) and in the

motor imagery and the training

mode (b)
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toward the corresponding goal as the internal dynamics

utilizing the slow context units activities.

A conventional firing rate model, in which each unit’s

activity represents the average firing rate over a group of

neurons, is used to model neurons in the MTRNN. In

addition, every unit’s membrane potential is assumed to be

influenced not only by current synaptic inputs, but also by

their previous state. In the MTRNN, each neural unit

activation is defined with continuous-time dynamics (Doya

& Yoshizawa, 1989) of which characteristic is described by

the following differential equation, which uses a parameter

s referred to as the time constant:

si
dui;t

dt
¼ �ui;t þ

X

j

wijaj;t ð1Þ

where ui,t is the membrane potential of each ith neuronal

unit at time step t, aj,t is an activation of jth unit and wij is

synaptic weight from the jth unit to the ith unit. The current

activation state of each unit is obtained as a sigmoidal

output of its potential. The time constant s mostly deter-

mines the time scale of the unit activation dynamics. When

it is set with large values, the dynamics becomes slow and

otherwise quick. Some modeling studies (Nishimoto et al.,

2008; Nolfi, 2002) have shown that s affects strength of

context-dependent memory effect in adaptive behavior.

The network that was used in the current model con-

sisted of input–output and non-input–output units, the latter

referred to as context units. Context units were divided into

two groups based on the value of time constant s. The first

group consisted of fast context units with small time con-

stant (s = 5) whose activity changed quickly, whereas the

second group consisted of slow context unit with a large

time constant (s = 70) whose activity, in contrast, changed

much more slowly. Among the input–output units, units

corresponding to proprioception and units corresponding to

vision are not connected to each other directly. The slow

context units and the fast context units are fully connected

each other and the input–output units and the fast context

units do so as well while the slow context units and the

input–output units are not directly connected.

Training

In order to obtain a teaching signal, the experimenter

guides both hands of the robot along the trajectory of the

goal action. As the robot hands are guided along the tra-

jectory, the sensed VP sequences are recorded, and they

were used as teaching sequences. For each behavior task,

the object was located in three different positions (center

position, 2 cm left of the center and 2 cm right of the

center). The objective of learning was to find optimal

values of connective weights minimizing the error between

teaching sequences and model outputs. At the beginning of

training, synaptic weights of the network were set ran-

domly, resulting in the network generating random

sequences. Synaptic weights were modified based on the

error between teaching signals and generated sequences.

After many repetitions of this process, the error between

teaching sequences and model outputs eventually reached a

minimum level.

This training process is conducted in an off-line manner

in the sense that all teaching sequences gathered at each

tutoring session are assumed to be stored in a short-term

memory (this part is out of the scope) and they are utilized

as teacher sequences for consolidation learning of the

sensory-forward model assumed in IPL. The tutoring ses-

sion with gathering new training sequences will be iterated

in the course of development. At each training process,

lookahead prediction of the VP sequence is generated by

means of so-called closed-loop operations (Fig. 1b) in

which the current prediction of the VP state are used as

input for the next time step. Then, the error between the

teacher sequences and the lookahead sequences of imagery

are taken by which error-driven training of the network is

conducted. The purpose for employing this closed-loop

operation in training is to enhance generation of stable

dynamic structures of the network by minimizing the error

integrated during long steps of lookahead prediction. Our

preliminary trials indicated that conventional training

scheme of utilizing one-step prediction instead of look-

ahead one has difficulty in acquiring stable long-time

correlations because the error generated at each step

becomes too small.

Utilizing the characteristic of initial sensitivity, the

network dynamics is trained to generate multiple behavior

sequences through adaptation of the initial states of slow

context units. In the proposed model, a network is trained

by means of supervised learning using teaching sequences

obtained through tutoring by the experimenter. The con-

ventional back-propagation through time (BPTT) algorithm

(Rumelhart, Hinton, & Williams, 1986) is used for adap-

tation of both connective weights common to all sequences

and the initial state of slow context units for each sequence

(Nishimoto et al., 2008). (The initial states of fast context

units are not adapted but set as neutral).

Action generation in physical environment and motor

imagery

Through the training process, the network learns to predict

the VP inputs for the next time step. The prediction of

proprioceptive state provides the target joint angles to the

robot controller which enables the robot to generate

movements.
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Moreover, by using the prediction of VP feedback as

input to the next time step (closed loop operation), the

network can be able to autonomously generate VP trajec-

tories without producing actual movements. This process

of closed loop generation may correspond to motor imag-

ery in terms of mental simulation of actions (Decety, 1996;

Jeannerod, 1994; Tani, 1996). It is noted that the motor

imagery in the current paper is defined as image of

inseparable coming flows of kinesthetic one and egocentric

visual one in terms of VP trajectory.

Setup of humanoid robot experiments

A small humanoid robot was used in the role of a physical

body interacting with actual environment. A workbench

was set up in front of the robot, and a cubic object

(approximately 9 9 9 9 9 cm) placed on the workbench

served as the target object for manipulations. The robot

task is to learn to generate three different task behaviors.

The goal of each task behavior is to generate a different

sequence of behavior primitives of manipulating the object.

All task behaviors start from the home position and end

with going back to the same position(Fig. 2).

In the task-1, with starting from the home position, the

both hands grasp the object, move the object up and down

(UD) for four times, do it for left and right (LR) for four

times and go back to the home position (BH). In the task-2,

the object is moved forward and backward (FB) for four

times and then it is touched by left and right hands bilat-

erally (TchLR) for four times and finally BH. In the task-3,

the robot repeats grasping and releasing the object by both

hands (BG) for four times and then BH. A tutor teaches the

robot with these three task behaviors in three tutoring

sessions with changing the object position three times from

the center position to the left and to the right for each task

behavior. In the first session, the robot guidance is con-

ducted by disabling active movements of the robot by

setting the motor control gain to zero because the networks

are not yet effective with the randomly set initial synaptic

weight values. In the second and third sessions, the tutoring

is conducted interactively by enabling active movements of

the robot with the control gain set to 20% of its normal

operation value. The network is trained off-line by using all

tutoring sequence data obtained at each session. The net-

work consists of 144 proprioceptive units, 36 vision units,

30 fast context units and 20 slow context units.

During these three training sessions some learning

related parameters are tuned in order to realize smooth

training processes. One parameter is the so-called closed-

loop ratio CLr. The current step VP inputs are weighted

sum of the predicted one in the previous step and the target

one in the current step by CLr, whereas CLr set as 1.0

means a complete closed-loop operation (lookahead pre-

diction) and that of 0.0 does a complete open-loop one

(one-step prediction). Although the complete closed-loop

operation enhances the learning process substantially

because of larger integrated error as have been described

previously, this could also break down the learning process

by accompanying sudden catastrophic changes in synaptic

weights. On other hand, the complete open-loop operation

cannot result in rigid structural learning because of quite

small amount of the error. Because it is better to relax the

training in the early period, CLr is set with a smaller value

in the earlier sessions than later ones in terms of annealing.

In fact, it was observed in our preliminary experiments that

the training did not converge well with CLr set with 0.9 in

the first session regardless of amount of the training

epochs. rI and rF are other parameters to be changed for

the self-organization of the TPM. The idea is that the

receptive field in the TPM should be changed from a wide

one with large r of rI to a sharp one of small rF for the

Fig. 2 Three task behaviors

tutored to the robot. After the

3rd session, the task-3 is

modified as illustrated by dot
lines
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relaxation reason. More descriptions about r for the TPM

self-organization should be referred to the appendix. The

setting of all these parameters for each tutoring session is

shown in Table 1.

After the basic tutoring of three sessions, the task-3 is

modified with introducing a novel behavior primitive

which is to rotate the object in the air (RO) by both hands.

In the session 4 and 5 of the task 3, BG is repeated two

times followed by three times repetitions of RO. This

additional tutoring is conducted to examine the capability

of the network to incrementally learn novel patterns. In the

session 4, the training parameters are once relaxed in order

to minimize the interference between the previously

learned contents and the new one (see the 4th and 5th

session in Table 1. It is noted that the interference could

occur not only in cases of introducing novel primitives but

also for novel sequential combinations of them, because

this requires fine adjustments in both of the lower and

higher levels to achieve end-to-end smooth connections

between the primitives.

Results

Overall task performances in the end of development

The developmental tutoring experiment was repeated twice

with setting the initial synaptic weights of the networks as

randomized. Figure 3 shows how the robot behaviors were

generated in the test run after the five sessions of tutoring in

one developmental case. Plots are shown for the VP tra-

jectories (sequences of two representative arm joint angles

denoted as ‘‘Prop #’’ and two camera head angles of nor-

malized denoted as ‘‘Vision #’’) in the tutoring in the top

row, the actually generated one in the second row and the

fast and slow context activations represented by the first

four principal components denoted as ‘‘PC #’’ after their

principal component analysis (PCA) in the third and the

forth row, respectively, for all three tasks. It is observed

that the actual VP trajectories are exactly reconstructed

from the tutoring ones for all the tasks. Actually, the robot

was successful in performing all tasks with the object

Table 1 The parameter setting for each training session

Session 1 Session 2 Session 3 Session 4 Session 5

rPropI 300 1.5 0.75 0.75 0.75

rPropF 1.5 0.75 0.375 0.375 0.375

rVisionI 150 0.75 0.375 0.375 0.375

rVisionF 0.75 0.375 0.1875 0.1875 0.1875

CLr 0.6 0.8 0.9 0.6 0.9

(a) (b) (c)

Fig. 3 VP trajectories (two normalized joint angles denoted by Prop1

and Prop2 and camara head direction denoted by Vision1 and

Vision2) in tutoring and in actual generation accompanied with fast

and slow context profiles with PCA denoted by PC1, PC2 and PC3. a
Task 1, b Task 2, c Task 3
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position varied within the range of tutored after the five

tutoring sessions. The profiles of the fast context activa-

tions and those of the slow ones can be contrasted. The fast

ones mostly synchronize with the VP trajectories while the

slow one shows smoothly changing trajectory starting from

different initial state of self-determined for each task. It is

observed that the slow context profiles abruptly change

when the cyclic pattern in the VP trajectories shift from one

primitive to another. These observation suggest that each

exact pattern of the primitives is embedded in the fast

context activation dynamics while each macro scenario of

sequencing of the primitives is embedded in the slow

context one. This result accords with the one in (Yamashita

& Tani, 2008).

Development processes

Now, the development process is closely examined as the

main focus of the current paper. Figure 4 shows one

developmental case of the task-1 with the object located in

the center from session 1 to session 3 before the novel task

behavior is introduced in the task-3. Plots are shown for the

VP trajectories of tutoring in the left, motor imagery in the

middle, and actual robot generation in the right. The slow

context units profiles in the motor imagery and the actual

behavior are plotted for their first four principal compo-

nents after the PCA. It is noted that the tutoring trajectories

in the session 1 is quite distorted. The tutoring patterns of

UD in the first half and LR in the second half are not

regular cycles. This is a typical case when cyclic patterns

are tutored to robots without using metronome-like devi-

ces. However, it can be seen that the cyclic patterns in the

tutoring become much more regular as the session

proceeds.

One interesting observation is that the motor imagery

patterns develop faster than the actual ones over these three

sessions. In the session 1, the cyclic pattern of UD is

successfully generated (but not for LR) in the motor

imagery while neither UD nor LR are yet generated in the

actual behavior generation. It is noted that the cyclic

pattern of UD is more regular than the tutored one in the

session 1. In the actual behavior generation, the robot

hands touched the object but not accurate enough to grasp

and hold it up and after the failure the movements were

frozen. One interesting observation was obtained by con-

ducting an extra experiment using fake visual feedback. In

this extra experiment, the tutor grasped the object and

moved it up and down immediately after the robot touched

the object. It turned out that the robot hands moved up and

down correctly following the object movement of per-

ceived. It can be understood that this arm movement was

generated by means of the entrainment with the fake visual

feedback. The same phenomena had been observed in the

case using a modular network model of the mixture of

RNN experts (Tani, Nishimoto, Namikawa, & Ito, 2008a).

In the session 2, both UD and LR cyclic patterns are

generated in the correct sequence in motor imagery while

only UD pattern is generated which cannot be shifted to LR

pattern in the actual behavior. This can be explained by an

observation that the slow context profile in the motor

imagery dynamically changes around 160 steps while that

of actual behavior does not show any significant changes

around this transition period. It is considered that the

dynamics of the slow context units is not strong enough to

generate the shifting in the actual behavior interacting with

noisy environment. This consideration is supported by the

fact that the robot could actually make the shift when the

tutor assisted the robot to do so by guiding the arm tra-

jectories with force in the transition period.

In the session 3, both UD and LR patterns are success-

fully generated both in the motor imagery and in the actual

behavior generation. It was, however, observed in limited

cases that counting of repetition times of primitives (as like

UD four times) could go wrong within the range of plus or

minus one time probably by perturbed by noise during

physical execution of actions. An interesting observation

here is that even when the counting goes wrong, smooth

transition from one primitive to another is still preserved

e.g., moving object left and right always follows immedi-

ately after the object is once placed on the table. The

transition never takes place by cutting through in the

middle of on-going primitives. This observation implies

firstly that counting in the higher level is more like implicit

and analogical process rather than explicit and logical one

and secondly that the lower level is successful in

organizing fluidity in connecting primitives which could be

expressed by Luria’s (1973) metaphor of ‘‘kinetic

melody’’.

Analyses

In this section, more detailed analyses are shown for

examining the observed developmental processes. Figure 5

shows how the success rate in metal simulation and in

actual behavior generation change in average of all three

task behaviors for the two developmental cases. Here, the

success rate is defined as rate of how many primitive events

can be successfully generated as in the trained order in

mental simulation and actual behavior. For example, the

number of primitive events in the task-1 is counted as 9

with 4 UDs, 4 LRs and 1BH. The number is counted by

looking at the robot behavior for actual behavior and by

examining plots of VP trajectories generated compared

with the trained one for mental simulation. In Fig. 5, it can

be seen that the success rate of mental simulation is higher

than the one of actual behavior at least the first three
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sessions in both developmental cases. It is observed that the

success rate becomes 1.0 as perfect after 3 sessions of

tutoring for both mental simulation and actual behavior.

Then the rate slightly decreases in the session 4 when the

novel task behavior is introduced in the task-3. It, however,

goes back to nearly 1.0 in the session 5.

Figure 6 shows the success rate for each task behavior in

actual behavior in developmental cases. It can be observed

(a)

(b)

(c)

Fig. 4 Development of task-1 for the initial 3 sessions with VP trajectories of tutoring, motor imagery and actual generation accompanied with

slow context profiles by PCA. a Session 1, b Session 2, c Session 3
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that the success rates of task-1 and task-2 stay near 1.0 after

session 3 to the end while that of task-3 once decreases in

session 4 when the novel behavior primitive RO is intro-

duced and it reaches to 1.0 in the end. This result indicates

that introduction of a novel behavior primitive in a task

behavior does not affect the performances in other task

behaviors unless they share the same behavior primitives. It

was also observed that the behavior primitive of BG, which

was followed by RO, was not distorted in the session 4 in

both development cases. Only RO was immature. This

means that once acquired primitives can be utilized in

generating different sequential combinations of the primi-

tives. Such recombination capability for primitives was

also shown in our prior study (Yamashita & Tani, 2008).

Figure 7 illustrates how the encoding of the basic

primitives by the fast context units develop during the first

three sessions. The trajectory of the fast context units

during each basic primitive pattern in mental simulation is

plotted as a phase diagram using the first and the second

principal components. Three colors in the plots denote

three different object positions cases. It is observed that

there are no regularities in the patterns shown for the

session 1 except the BG case in which each trajectory

shows a near cyclic pattern that is shifted with the position

difference. In the session 2, such near cyclic patterns

appear for all basic primitives. Finally, we see that the

shapes of the patterns in the session 3 are mostly similar to

the ones in the session 2. These results imply that basic

primitives begin to be embedded in pseudo attractor of

limit cycling by the fast context units with achieving the

object position generalization in the second session. This

development by fast context units seems to converge

mostly in the second session.

Discussion

Summary of the robot experiments

Now, the robotics experiment results are summarized with

qualitative discussions. It was shown that the develop-

mental learning processes of multiple goal-directed

actions were successfully converged after several sessions

of the teacher tutoring. The developmental process can be

categorized in some stages. In the first stage, which

mostly corresponds to the session 1, no tasks are com-

pleted where most of behavior primitives in actual

generation are premature. In the second stage corre-

sponding to the session 2, most of behavior primitives can

be actually generated although their sequencing is not yet

completed. In the third stage corresponding to on and

after the session 3, all tasks are successfully generated

with correct sequencing of the primitives. From this

observation, it can be said that there is an order in the

formations of different levels of functionality. The level

for behavior primitives is generated by the 2nd stage

while the level for sequencing the primitives does by the

3rd stage. It is natural that the primitive level as the lower

level is organized earlier and then the level for the

sequencing as the higher level does later based on the

prior formation of the lower level.

However, one interesting remark is that there is a time

lag between the period of becoming able to generate

motor imagery and actual behavior. The motor imagery is

generated earlier than the actual behavior as it was seen

that the motor imagery for all tasks are nearly completed

by the session 2 as compared to the session 3 by the actual

ones. This issue will be revisited with some psychological

(a) (b)Fig. 5 The developments of

success rate averaged over three

task behaviors in motor imagery

denoted by ‘‘Imagery’’ and in

actual behavior denoted by

‘‘Actual’’ for 2 case runs.

a Case 1, b Case 2

(a) (b)Fig. 6 The developments of

success rate of each task

behavior denoted as ‘‘task1,

task2 and task3’’ in actual

behavior for 2 case runs.

a Case 1, b Case 2
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considerations later in this section. Another remark is that

when a new task which composed of a prior-trained

primitive and a novel one was introduced midway, the

introduction affects the overall task performances only

slightly. Although regeneration of the novel primitive is

premature initially, the prior-trained primitive is well

adopted in this new task and also performances of other

tasks are intact.

Correspondences to psychology of development

and learning

The above mentioned qualitative observation in our

robotics experiment could correspond to some psycholog-

ical observations and theories for development and learn-

ing with abstraction. Among them Piaget’s constructivist

accounts for infant developments might be most relevant.

Piaget considered that if infants can have representations,

they should self-organize through the dynamic interactions

between subject and object. The dynamic interactions

should involve with the one in sensory–motor level

accompanied with goal-directed intentionality about the

object. Then, operative and figurative aspects of intelli-

gence should emerge as the results of self-organization

through such dynamic interactions. There are two core

concepts those compose the Piaget’s theory. One is

assimilation and the other is accommodation. Assimilation

is a process that existing scheme of subject is exploited to

establish structural coupling with object. On other hand,

accommodation is an adaptive process to modulate the

scheme to establish another structural coupling with object.

If we look at our experiments, it is understood that

scheme in Piaget’s theory may correspond to a set of

behavior primitives embedded in the fast context network.

Depending on the top–down signal conveying the task goal

information flowing from the upstream slow context net-

work, different dynamic structures of the primitives are

adopted which may explain dynamic mechanism of

assimilation. These behavior primitives are actually the

products of the neuronal self-organization with having rich

sensory–motor interactions through iterative tutoring. This

may account for accommodation. The case of introducing a

new task behavior in the session 4 could be interpreted that

both assimilation and accommodation occur because the

pre-acquired primitive is utilized in the novel task while a

novel behavior primitive is additionally self-organized. The

fact that six different behavior primitives were composi-

tionally manipulated to generate both actual behaviors and

motor imagery for achieving multiple goals in the end of

the developmental tutoring could be interpreted that certain

operational representations are finally appeared through the

long-term self-organization process. It is, however, argued

Fig. 7 The development of encoding of basic primitives by the fast context units with PCA
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that the operational representations appeared in this stage is

not just compositional, as if composed of a set of discrete

symbols, but ‘‘organically’’ composed (Tani et al., 2008a,

2008b) by capturing fluid and contextual nature of human

skilled behaviors in neuronal circuits of analog dynamical

systems. This argument is supported by the current obser-

vations of various phenomena including implicit and ana-

logical counting in repeating primitives and smooth

transitions in the primitive sequences.

It is noted that local representation scheme as like

hierarchically gated modular networks (Haruno, Wolpert,

& Kawato, 2003; Tani & Nolfi, 1999) can also exhibit

above mentioned properties of ‘‘organic compositionality’’

(Tani et al., 2008a, 2008b). Actually, our group has con-

ducted a similar developmental learning experiment using

the hierarchically gated CTRNN (Tani et al., 2008a,

2008b) where similar phenomena were observed. However,

it was found that this localist scheme has more difficulty in

tuning parameters related to gating dynamics compared to

the current scheme. It was severely difficult to increase

number of trained primitives up to the one in the current

experiment case because of ‘‘near-miss’’ problems (Tani

et al., 2008a, 2008b) in selecting best match modules for

the current pattern. Although this near-miss problem could

be quite improved by introducing an additional parameter

control scheme so-called the adaptive variance in the gating

dynamics (Namikawa & Tani, 2008), the whole system

becomes much more complex with more parameters. It is

speculated that the drawback of the local representation

scheme might be originated from its inherent explicitness in

operations for segmenting sensory–motor flow into primi-

tives and manipulating them into desired sequences and also

in representation of utilizing segregated modules and levels.

Such explicitness might hamper natural processes of self-

organization in the employed network model.

Our approach is also parallel to the ones by so-called the

neo-Piagetian especially who attempt to explain the infant

development as time-development of complex systems

(Smith & Thelen, 1994). Smith and Thelen (1994) claim

that infant development is better understood as the emer-

gent product of many decentralized and local interactions

that occur in real time where coherence among local parts

is achieved. Our robotics experiments have been carefully

designed such that local interactions can be enhanced in

different levels. The MTRNN was designed such that

neuronal dynamics can interact with row sensory–motor

flow in the continuous space and time domain without

introducing any apriori articulation mechanisms. Also,

there is no algorithmic operations those act on segregated

modules of the higher and the lower levels or independent

modules of encoding primitives. All there exist are just a

single network where different time-scale dynamics coexist

and their interactions result in self-organization of

functional hierarchy. Furthermore, the tutoring procedure

was designed such that the tutor and the robot can directly

interact each other with force. It was observed that not only

the robot trajectories develop but also the tutoring ones do

across sessions to generate smooth and rhythmic patterns.

The direct force level interactions enabled this sort of co-

developments between the two sides.

The sensory forward model employed in the current

study should be distinguished from the conventional for-

ward model (Kawato et al., 1990; Wolpert & Kawato,

1998). The conventional forward model predicts the

resultant future sensation for the current motor commands

given. One notorious problem is that the forward model

cannot predict all the outcomes of possible motor com-

mands because of combinatorial complexity associated

with their high dimensional space. This problem is related

to the frame problem (McCarthy, 1963) well known in

Artificial Intelligence. It tells that an optimal action can not

be determined if infinite number of possible action conse-

quences are examined at each step. Why does this happen?

This is because the conventional forward model does not

deal with goal-directedness. The conventional forward

model attempts to predict consequences of arbitrary action

sequences which may not be related to any goal achieve-

ments. On other hand, the sensory forward model of our

proposal attempts to predict coming sensory flow in the

course of achieving each specified goal. Because the sen-

sory forward model learns about only finite number of

goal-directed paths through the actual tutoring experiences,

it never faces with the combinatorial explosive problems.

Indeed, Piaget’s advocacy of goal-directedness is right in a

sense that the burden of goal-directedness with enactments

actually avoids unrealistic combinatorial computations in

cognition.

However, there is one major drawback in the current

formulation of the sensory-forward model. In the current

setting, the goal specified by the initial internal state cannot

produce multiple possible trajectories of achieving the

same goal because of the deterministic dynamics nature of

the sensory-forward model. It might be better to consider

that the initial internal state corresponds to action program

rather than goal state. This is because the sensory-forward

model can generate different trajectories of motor imagery

reaching to the same distal goal state provided that each of

such trajectories has been learned with attaining specific

initial internal state. Then, planning to achieve specified

goal states can be formulated by means of searching initial

internal states such that distal state in motor imagery

generated can match with the specified goal state. Our

recent study (Arie, Endo, Arakaki, Sugeno, & Tani, 2009)

has examined such trials.

Our experiments showed that motor imagery develop

faster than actual behaviors. Does it correspond to any
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reality in human development and learning? Some con-

temporary developmental psychologists such as Karmiloff-

Smith (1992) and Diamond (1991) claim that mental

representation develops very earlier in life, or is even innate.

It is said that infants of 2 months old already possess

intentionality toward objects to deal with but just cannot

reach properly to them because of immaturity in motor

control skills. It might be plausible that motor imagery of

reaching to objects develops easily if infants happen to

reach to the objects of their interests by motor bubbling and

such episode is reinforced with joys. However, the actual

motor acts on objects such as touching or grasping them are

far more difficult because they involve with precise arm

controls of making physical contacts to the objects, as

had been shown in our robotics experiments. Because

the generation of motor imagery, on other hand, do not

require such fineness, it could be achieved earlier. Flana-

gan, Vetter, Johansson, and Wolpert (2003) showed evi-

dences that human subjects learn to predict sensory

feedback faster than motor control in their psychophysics

experiments on object manipulation under artificial force

field. This finding might be related to the current results

because the predictability of sensory feedback directly

links to motor imagery.

Also it is known that generation of motor imagery has a

positive role in consolidating memories (Feltz & Landers,

1983; Jeannerod, 1995; Vogt, 1995), as have been men-

tioned earlier. The robot training scheme shown in the

experiment is analogous to this evidence because in our

scheme the network is trained to re-generate the teaching

sequences in the closed-loop operation without receiving

actual inputs as like rehearsing and this explains why motor

imagery develop earlier than the actual one.

The motor imagery by means of lookahead prediction

can provide means for on-line monitoring of future per-

spective. If unexpected external changes happen during

physical execution of goal-directed actions, the monitoring

by the lookahead prediction can detect a future perspective

gap as the error between the originally intended goal state

and the currently predicted one. The detected error can be

utilized to modify the original goal state to currently

possible one by modulating the internal state that carries

goal information. This on-line monitoring and the error-

driven goal state modulation can be implemented by

pairing the future lookahead prediction and the past

regression as have been described elsewhere (Ito, Noda,

Hoshino, & Tani, 2006; Tani, 2003). The motor imagery

plays essential roles in accommodating cognitive behaviors

in diverse ways including goal-directed motor planning,

on-line monitoring of future perspective and resultant gaol

modulation, and enhancements of consolidation learning.

Future studies should focus to integrate those different

functions systematically in synthetic models.

Robotics synthetic approach

How can the synthetic robotics modeling researches con-

tribute to understanding of human development and

learning? It is obviously true that the robotics studies

cannot reconstruct complete realities of human develop-

mental processes. The studies, however, could show some

interesting analogy with the reality. The conventional

psychology can be considered as an attempt to elucidate

possible underlying mechanisms in a black box solely

through observations and analysis of human behavior data.

The approach of computational neuroscience goes to an

opposite direction in which detailed neuronal mechanisms

are investigated by building anatomically relevant neuronal

circuitry models based on neuroscience data of neuron

connectivities and cell firing properties but without paying

much attentions to behavioral data.

In this aspect, the recent connectionist approach applied

to developmental psychology (Elman, Bates, Johnson,

Karmiloff-Smith, Parisi, & Plunkett, 1997) is considered to

come in the midway of these two extremes. Although the

connectionist models mimic biological neuronal circuits,

their descriptions are quite abstract with neglecting detailed

cell firing properties and anatomical connectivities. How-

ever, the connectionist pay much attentions to inputs/

outputs type functionality of their networks. They attempt

to evaluate the functionality by applying the psychological

behavioral data as the inputs/outputs of the network mod-

els. This approach could provide certain constraints in

elucidating possible brain mechanisms such that the

mechanisms should be realized by collective activities of

massively parallel elements within networks as like real

brains do. This approach should be much better than

regarding a brain as a black box and evaluating whatever

computational mechanisms which best fit with the behav-

ioral data.

Although our synthetic robotics modeling approach

inherits the essential characteristics of the connectionist

approach, it goes beyond. The robotics experiments pro-

vide one more constraint that is cognitive mechanism

should be realized in the structural coupling between sub-

ject and environment (Beer, 1995). Additionally, the

robotics experiments tend to take a holistic approach of

integrating necessary ingredients into one trial model. The

robotics experiments should deal with multi-modalities of

sensations, motor systems, memory, attentions, anticipa-

tion, and learning all together at the same time of which

attitude is contrasted to the connectionist one of focusing

on a single modality of information processing at each

model. For example, although Elman’s studies of showing

how linguistic competency can develop using Elman net-

work (Elman, 1990) is inspiring, the problem of how

linguistic semantics can be grounded might be better
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understood if dynamic interactions between the linguistic

modality and the sensory–motor modality are seriously

considered as have been shown in our prior robotics study

(Sugita & Tani, 2005). If human development and learning

should be looked at with a holistic view, the robotics

experiments could provide a nice platform to implement

such view.

Summary

The current paper showed a neuro-robotics experiment in

which developmental learning processes of goal-directed

actions of a robot were examined. The robot was imple-

mented with the MTRNN model which is characterized by

co-existences of the slow context dynamics and the fast

context dynamics in generating anticipatory behaviors.

Through the iterative tutoring of the robot for multiple

goal-directed actions, certain structural developmental

processes emerged. It was observed that behavior primi-

tives are self-organized in the fast context network part

earlier and sequencing of them appear later in the slow

context part. It was also observed that motor imagery

develop faster than the actual ones. The paper discussed

that the robotics synthetic experiment results are quite

analogous to Piaget’s ideas of the constructivism which

emphasis the roles of goal-directed sensory–motor inter-

actions in acquiring operational representations in human

development.
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Appendix: Topology preserving map

The weight of TPM is updated by using the following

equation with the neighboring function h.

wiðt þ 1Þ ¼ wiðtÞ þ hiðtÞ½xðtÞ � miðtÞ� ð2Þ

hi ¼ aðtÞexp � jjrc � rijj2

rðtÞ

 !
ð3Þ

Where x(t) and mi(t) denote the input vector and the

reference vector, respectively. In the neighborhood

function the learning rate a(t) and the distribution r(t) are

annealed with time in the following time schedule.

rðtÞ ¼ rI rF

rI

� � t
maxstep

ð4Þ

aðtÞ ¼ aI aF

aI

� � t
maxstep

ð5Þ

Where rI represents the initial value of r and rF represents

the final value of r. aI is the initial learning rate. aF is the

final learning rate.
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