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Abstract

Video image recognition has been extensively studied with rapid progress re-

cently. However, most methods focus on short-term rather than long-term

(contextual) video recognition. Convolutional recurrent neural networks (Con-

vRNNs) provide robust spatio-temporal information processing capabilities for

contextual video recognition, but require extensive computation that slows down

training. Inspired by normalization and detrending methods, in this paper we

propose “adaptive detrending” (AD) for temporal normalization in order to

accelerate the training of ConvRNNs, especially of convolutional gated recur-

rent unit (ConvGRU). For each neuron in a recurrent neural network (RNN),

AD identifies the trending change within a sequence and subtracts it, removing

the internal covariate shift. In experiments testing for contextual video recog-

nition with ConvGRU, results show that (1) ConvGRU clearly outperforms

feed-forward neural networks, (2) AD consistently and significantly accelerates

training and improves generalization, (3) performance is further improved when

AD is coupled with other normalization methods, and most importantly, (4) the

more long-term contextual information is required, the more AD outperforms

existing methods.
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1. Introduction

Convolutional neural networks (CNNs) [1] show remarkable performance on

the ImageNet challenge dataset, consisting of 1000 classes and 1.2 million train-

ing images [2]. Encouraged by this success, several approaches exploit the spa-

tial processing capability of CNNs in video recognition tasks [3, 4]. Two-stream5

CNNs [3] and convolutional 3D (C3D) networks [4] are the most commonly

used networks. Two-stream CNNs combine classification abilities of spatial-

and temporal-stream networks, being composed of a spatial-stream network that

processes individual RGB frames and a temporal-stream network that processes

stacked optical flow over several frames. C3D networks extend 2D convolution10

to 3D convolution by adding time as a third dimension, processing stacked

consecutive RGB frames. However, both networks employ a stacking strategy

that utilizes only a limited number of temporal correlations between stacked

frames in order to recognize videos. Once the temporal window advances to

the next position, information from the previous stack is completely dropped.15

This creates a problem of contextual recognition that requires the extraction of

long-range temporal correlations [5].

In this paper, we attempt to overcome this limitation using recently intro-

duced convolutional recurrent neural networks (ConvRNNs) that replace the

weight multiplication of RNNs with convolution in order to exploit spatial and20

temporal information processing capabilities of CNNs and recurrent neural net-

works (RNNs), respectively [6, 7, 8]. By extracting spatio-temporal features

hierarchically, ConvRNNs handle complex problems in the space-time domain,

such as precipitation nowcasting [6], video recognition [7], and video predic-

tion [8]. Also, problems restricted to the spatial domain can be handled by25

ConvRNNs in an iterative manner [9]. For example, in instance segmentation,
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ConvRNNs sequentially segment one instance of an image at a time [9]. How-

ever, training ConvRNNs is painfully slower than training feed-forward CNNs,

which receive a single frame or stacked multiple frames for video recognition,

because recurrent connections require additional computation. Moreover, it is30

hard to parallelize computation of ConvRNNs due to the sequential nature of

RNNs, which require computations from previous time steps in advance for

computing the current time step. Thus, finding a way to achieve faster learning

convergence has been a barrier to practical development of ConvRNNs.

Loffe and Szegedy [10] argue that internal covariate shift is responsible for the35

increased training time in feed-forward neural networks, including multi-layer

perceptrons (MLPs) and CNNs, and they suggest batch normalization (BN) to

normalize the input distribution of a neuron for each mini-batch, as a way to

reduce training time. BN successfully removes internal covariate shift, thereby

significantly accelerating training with improved generalization, and this tech-40

nique has become standard for training feed-forward neural networks. Some

studies use BN with RNNs because unrolled RNNs over time can be seen as

deep neural networks in terms of time as well as depth [11, 12]. However, BN

is incompatible with RNNs, regardless of computing global statistics along the

time domain [11] or local statistics at each time step [12]. Use of global statis-45

tics ignores statistics at each time step, but uses of local statistics does not

accommodate training sequences of variable lengths. As an alternative, layer

normalization (LN) [13] eliminates dependencies between mini-batch samples

that obviate the use of BN with RNNs. LN computes statistics over all neu-

rons in each layer and accelerates training of RNNs and MLPs, but not CNNs.50

Neither BN nor LN is generally applied to ConvRNNs.

The current paper focuses on the time domain in order to accelerate training

of ConvRNNs. Much of time series analysis and many forecasting methods can

be applied only to stationary time series. Detrending transforms non-stationary

time series to stationary series by identifying the change as a trend and removing55

it. This method is straightforward, and is illustrated in the context of the
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Figure 1: Example of conventional detrending with Brazilian GDP. The detrended output

is obtained by subtracting the trend from the original input. In this example, we use an

exponential moving average (EMA) with a fixed decay factor of 0.95 to define the trend.

Brazilian gross domestic product1 in Fig. 1. The current research applies this

method to normalize sequences of neurons in RNNs. Our key insight here is

that the hidden state of a gated recurrent unit (GRU) [14] can be considered as

a trend that can be approximated by the form of an exponential moving average60

with an adaptively changing decay factor. Based on this insight, we propose a

novel temporal normalization method, “adaptive detrending” (AD), for use with

GRU and convolutional gated recurrent unit (ConvGRU), which is a variant of

ConvRNNs extended from GRU. The implications of AD are fourfold:

• AD is easy to implement, reducing computational cost and consuming less65

memory than competing methods.

• AD eliminates temporal internal covariate shift.

• AD controls the degree of detrending (or normalization) through decay

factor adaptability.

1http://www2.stat.duke.edu/∼mw/data-sets/ts data/brazil econ
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• AD is fully compatible with existing normalization methods.70

2. Background

2.1. Batch Normalization

Internal covariate shift slows training of deep neural networks, because the

distribution of layer inputs changes continuously as lower layer parameters are

updated. Batch normalization (BN) [10] has recently been proposed to reduce

internal covariate shift by normalizing network activation as follows:

µ =
1

m

m∑
i=1

xi (1)

σ2 =
1

m

m∑
i=1

(xi − µ)
2

(2)

x̂i =
xi − µ√
σ2 + ε

(3)

yi = γx̂i + β (4)

where x is the activations of a neuron in a mini-batch of size m, µ and σ2 are

the mean and variance of a mini-batch, respectively, x̂ is normalized input, ε

is an infinitesimal constant for numerical stability, and y is an affine transfor-75

mation of normalized inputs x̂. During training, the input distribution to a

layer is transformed to a fixed distribution with a zero mean and unit variance,

regardless of the change in parameters of lower layers. Additionally, an affine

transformation with two learnable parameters γ and β follows normalization in

order to recover the original activation when required. BN accelerates training80

and improves generalization of CNNs on ImageNet classification tasks.

Due to its success in feed-forward neural networks, BN has been applied

to RNNs to speed training and improve generalization [11, 12]. In [11], BN

is applied only to vertical (input-to-hidden) and not to horizontal (hidden-to-

hidden) connections because the repeated rescaling of horizontal connections85
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induces vanishing and exploding gradient problems. Also, the mean and vari-

ance for BN are computed by averaging along not only the mini-batch axis

but also the time axis, which is called “sequence-wise normalization.” On the

other hand, Cooijmans et al. [12] develop “step-wise normalization” and show

that (1) applying BN to horizontal as well as vertical connections is possible90

by properly initializing γ of an affine transformation and beneficial for reducing

temporal internal covarite shift, and (2) using statistics for each time step sepa-

rately preserves initial transient phase information. However, with this method,

estimation of statistics at each time step degrades along the time axis due to

variation in length of training and test sequences. During training, mini-batch95

configuration involves the use of zero, or last frame padding for shorter se-

quences. Furthermore, statistics for each time step are estimated only up to the

length of the longest training sequence Tmax. After training, accurate statistics

for test sequences longer than the longest training sequence Tmax cannot be

generated. Due to these factors, performance suffers.100

2.2. Layer Normalization

Ba et al. [13] introduce “layer normalization” (LN) to overcome the limita-

tions of BN when applied to RNNs. LN has the same form as that of Cooijmans

et al.’s [12] step-wise normalization, with the difference that LN normalizes over

the spatial axis rather than by mini-batch. The assumption underlying LN is105

that changes in output from one layer correlate highly with changes in summed

inputs of the next layer. Hence, LN estimates statistics for data from a single

training session using all activations in each layer. By estimating statistics over

layers instead of mini-batches, LN properly estimates statistics at each time

step, regardless of mini-batch sequence length variability. In experiments with110

RNNs, LN achieves faster convergence and better generalization than baseline

and other normalization methods, especially for long sequences and small mini-

batches.

However, LN does not perform well with CNNs. The authors report that

LN is better than the baseline without normalization, but not better than BN.115
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They hypothesize that neurons in a layer have different statistics due to the

spatial topology of feature maps, so that the central assumption of LN cannot

be supported for CNNs. We agree that normalizing all neurons in a layer with

the same statistics is not the best method for normalizing CNNs. However,

because BN works successfully for CNNs by estimating statistics of each feature120

map, LN’s shortcomings with CNNs might reflect different statistics between

feature maps, and not within a feature map.

3. Model

3.1. Gated Recurrent Unit

Standard recurrent neural networks (RNNs) have greater utility than feed-

forward networks because they add a recurrent connection to handle sequential

data. RNNs consist of three layers: an input layer x, a hidden layer h, and an

output layer y. RNNs are able to handle sequential data because the hidden

layer receives both current input from the input layer as well as information

about its own previous state through a recurrent connection as follows:

ht = g(Whxt + Uhht−1 + bh) (5)

yt = f(Wyht + by) (6)

where g(·) and f(·) are element-wise non-linear activation functions for the125

hidden and output layers, respectively, and W, U, and b represent the learnable

parameters of RNNs: forward connection weights, recurrent connection weights,

and biases, respectively.

However, standard RNNs do not capture long-term dependencies well be-

cause of vanishing and exploding gradient problems [15, 16]. The gated recur-

rent unit (GRU) was proposed by Cho et al. [14] to overcome the vanishing

gradient problem. It employs the same gating mechanism as long short-term

memory (LSTM) [17], but employs a simpler architecture by eliminating the

output gate and modifying some other parts of LSTM. Specifically, GRU has
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two gating units, called a reset gate r and an update gate z. The hidden state

ht at each time step t is calculated using a leaky integrator with an adaptive

time constant determined by the update gate z. In other words, the hidden

state ht is a linear interpolation between the previous hidden state ht−1 and

the candidate hidden state h̃t as weighted by the update gate z, and is defined

as follows:

ht = zt � h̃t + (1− zt)� ht−1 (7)

zt = σ(Wzxt + Uzht−1 + bz) (8)

where σ(·) is a sigmoid function and � is an element-wise multiplication.

The candidate hidden state h̃t at each time step t is calculated similarly

to that of the hidden layer in standard RNNs (5). However, unlike standard

RNNs, the reset gate r determines how much the previous hidden state ht−1

affects the candidate hidden state h̃t as follows:

h̃t = tanh(Whxt + rt �Uhht−1 + bh) (9)

rt = σ(Wrxt + Urht−1 + bh) (10)

3.2. Gated Recurrent Unit Normalization in the Spatial Domain130

Following Ba et al. [13], in this paper we apply recurrent batch normalization

(recurrent BN) [12] and layer normalization (LN) [13] to GRU. We refer to

recurrent BN and LN as “spatial” normalization methods to differentiate the

present approach from normalization in the time domain reviewed above. The

following equations represent GRU normalization in the spatial domain:

rt = σ(Nγ,β(Wrxt) + Nγ(Urht−1)) (11)

zt = σ(Nγ,β(Wzxt) + Nγ(Uzht−1)) (12)

h̃t = tanh(Nγ,β(Whxt) + rt �Nγ(Uhht−1)) (13)
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Figure 2: Schematic of gated recurrent unit (GRU) with adaptive detrending (AD). Gray

modules and black lines are standard for GRU, and light red modules and red lines are newly

added for AD. Solid lines represent weight multiplication operations and dashed lines represent

element-wise operations.

ht = zt � h̃t + (1− zt)� ht−1 (14)

where Nγ,β(·) represents the normalization followed by an affine transformation

with two learnable parameters (gain γ and bias β) for recurrent BN and LN,

and Nγ(·) is the same as Nγ,β(·) except for an affine transformation with only

the gain γ to remove the bias redundancy within an equation. For the same

reason, the biases of the original GRU equations are removed. Note that the135

gain γ and bias β are shared over time as mentioned in [12, 13].

3.3. Adaptive Detrending

By normalizing in a step-wise manner [12, 13], spatial methods accelerate

training and improve performance on complex sequential tasks such as language

modeling. However, spatial normalization methods have a limitation. Although140

statistics are estimated at each time separately in order to capture the initial
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transient, each estimation is based only on current neural activations. This is

not optimal for RNNs, because the true statistics of RNNs at a current step

inherently depend on those of previous steps. Hence, statistics estimation for

RNNs must take into account how RNNs generate statistics over time. Specif-145

ically, each current estimation must influence subsequent estimation(s). This

reminds us of a moving average (MA).

In statistics, a MA is widely used to extract long-term trends from noisy time

series by filtering out fluctuations. There are many variants of MA, including a

simple moving average (SMA) [18] and an exponential moving average (EMA)

[19]. Among these variants, an EMA is preferred when the MA needs to quickly

respond to recent data because past data decay exponentially over time. In

addition, unlike SMA, EMA does not require redundant computation caused

by window shifting and contains the full past history of a time series due to its

recursive formulation. The value of the EMA µt at time step t is calculated by

µt = α · xt + (1− α) · µt−1 (15)

where xt is the current input value and α is a constant decay factor or smoothing

factor between 0 and 1.

Detrending is a method that removes a slowly changing component, called

a “trend”, in order to render time series stationary. We think that detrending

can be applied to RNNs to eliminate temporal internal covariate shift. Notice

that the definition of EMA in (15) is the same as that for the hidden state h of

GRU in (7) when, rather than being fixed, the decay factor α is continuously

changing at each time step as shown in (8). By considering the hidden state h

as a trend of the candidate hidden state h̃, we can apply detrending to GRU

for temporal normalization, as follows:

yt = h̃t − ht (16)

where yt is the detrended output at time step t, and is input into the next layer150

(schematic in Fig. 2).

Before going any further, one critical point must be addressed. Some may
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doubt the proposed detrending method because it normalizes the candidate

hidden state h̃ not the hidden state h, which is the output of GRU that we

want to normalize. To directly normalize or detrend the hidden state h, we

need to estimate a trend µh of the hidden state h with a decay factor αh as

follows:

µht = αht · ht + (1−αht ) · µht−1 (17)

αht = σ(Wαxt + Uαht−1 + bα) (18)

However, unlike the case in which (16) utilizes the hidden state h and the

update gate z of GRU as a trend and a decay factor, respectively, (17) and

(18) are not parts of the GRU computation. Therefore, this approach requires

additional computation and memory, which is not desirable because the main

objective is to accelerate training. Going back to the definition of detrending,

the detrended output is converted to stationary input by removing the trend,

because the trend contains a low-frequency component that makes the input

non-stationary. In the same manner, the trend can be rendered stationary by

removing the input, because the input contains all frequency components in the

trend, including a low-frequency component in the trend of the trend, which

is necessary for detrending the trend. Hence, the proposed detrending method

in (16) can be considered as a normalization of the hidden state h with sign

switching as follows:

−yt = ht − h̃t (19)

Compared with direct detrending of the hidden state h, which leaves a high-

frequency component in the hidden state h, a stationary hidden state h by (19)

contains a high-frequency component in the candidate hidden state h̃. However,

we think that this difference might not be significant for GRU because it can155

control the degree of detrending or extract a required frequency component by

modulating the update gate z. A sign switched input is considered the same as

the original one in neural networks, so that hereafter we use (16) rather than

(19) for the proposed detrending method.
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As mentioned above, the proposed detrending method uses the update gate z160

in (8) as the decay factor α in (15), but it is adaptively changed over time rather

than fixed. Hence, we call this method “adaptive detrending” (AD) to differ-

entiate it from conventional detrending methods that employ a pre-defined or

fixed setting to estimate a trend. AD presents several benefits. First, it requires

negligible additional computation and memory because statistics estimation is165

already included as a part of the GRU computation. Second, AD is fully differen-

tiable. Differentiability is necessary to normalize activations of neural networks

because a statistics estimation and normalization must be included in gradient

descent optimization to prevent model explosion [10]. Third, AD automatically

estimates trend shape by adapting a decay factor at each time step for each170

sample. Hence, we do not need to worry about defining a trend fitting function

(linear, polynomial, or moving average), or about setting parameters of a trend

fitting function (such as the window size of a moving average). Furthermore,

the trend estimated by AD works as a control for the degree of detrending, neu-

rons, and samples. This is crucial because a fixed degree of detrending might175

cause loss of some informative frequency components that change over time,

neurons, and samples. Finally, AD achieves both sample-wise and neuron-wise

normalization using the time domain for normalization. Unlike BN, sample-wise

normalization of AD removes dependencies between samples in a mini-batch, so

that AD can be applied to RNNs without constraints. Unlike LN, neuron-wise180

normalization of AD allows it to be applied to a network regardless of whether

neurons have similar statistics (e.g., MLPs) (e.g., CNNs).

Note that, unlike other spatial normalization methods, we do not use an

affine transformation after AD. AD itself acts as a temporal normalizer following

the affine transformation of each neuron with gain γ and bias β that change over185

time and between samples.
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3.4. Convolutional Gated Recurrent Unit

The convolutional gated recurrent unit (ConvGRU) is a natural extension

of GRU via the convolutional property of CNNs and is defined as follows:

rt = σ(Wr ∗ xt + Ur ∗ ht−1 + bh) (20)

zt = σ(Wz ∗ xt + Uz ∗ ht−1 + bz) (21)

h̃t = tanh(Wh ∗ xt + rt �Uh ∗ ht−1 + bh) (22)

ht = zt � h̃t + (1− zt)� ht−1 (23)

where ∗ is a convolution operation. The key difference between ConvGRU and

GRU is that ConvGRU preserves spatial topology because of its convolution

operation, using 2D weight kernels on 2D feature maps. Furthermore, ConvGRU190

drastically reduces the number of parameters compared with GRU when directly

applied to the spatial domain. Both spatial normalization methods and AD can

be applied to ConvGRU in the same manner as GRU.

4. Experiments

We conducted three experiments to verify the effectiveness of the proposed195

method. The first two experiments focus on contextual video recognition to

show that (1) ConvRNNs, especially ConvGRU, can successfully recognize a

video by extracting spatio-temporal features at multiple scales, as emphasized

by several authors [5, 20, 21], and (2) the proposed method significantly speeds

ConvGRU training. We do not use popular action recognition datasets including200

UCF-101 [22] and HMDB-51 [23] because feed-forward networks have already

performed well on these datasets with only short-term information processing

[3, 4]. For example, it would be very easy to categorize a video showing a person

playing a guitar without extracting a temporal profile of the video, but by
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simply categorizing an object, i.e. guitar. Rather, we use two video datasets23205

proposed by Lee et al. [20] for contextual recognition that require both temporal

as well as spatial information. The first dataset is for object-related action (OA)

recognition and the second one is for object-related action with modifier (OA-M)

recognition. In these two experiments, we compare ConvGRU with (1) a spatial

CNN receiving individual video frames as inputs and (2) convolutional 3D (C3D)210

network [4] receiving video clips, each has 16 frames, as inputs for short-term

information processing. We do this to show that long-term information is crucial

for contextual recognition, which cannot be demonstrated with UCF-101 and

HMDB-51. At the same time, we explain how AD works more effectively as a

task becomes contextually more complex by changing complexity of contextual215

information in a dataset from OA to OA-M recognition.

As the final experiment, we performed 3D skeleton-based action recognition

task on the NTU RGB+D dataset [24], which is the largest dataset for 3D hu-

man action recognition. The goals of the final experiment are (1) to investigate

whether AD is restricted only to ConvRNNs or whether it extends generally220

to RNNs, including GRU and (2) to examine the performance of AD when

long-term contextual information becomes more crucial, as the extension of the

previous two experiments. To do that, we compare the convergence speed and

recognition accuracy of GRU with or without AD and spatial normalization.

Details about network configuration, training, and evaluation protocol for spa-225

tial CNN, C3D network, and GRU are provided in Appendix A, Appendix B,

and Section 4.5, respectively.

4.1. Implementation Details

4.1.1. Architecture

ConvGRU networks used for the following experiments consist of one convo-230

lutional (Conv) layer, two convolutional gated recurrent unit (ConvGRU) layers,

2https://github.com/haanvid/CL1AD/releases
3https://github.com/haanvid/CL2AD/releases
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Table 1: Convolutional Gated Recurrent Unit Network configuration. The filter has four

dimensions (height×width×input channels×output channels) for convolutional and fully-

connected layers, two dimensions (height×width) for pooling layers, and both the stride and

pad have two dimensions (height×width).

Layer Type
Forward Recurrent

Filter Stride Pad Filter Stride Pad

1 Conv (ReLU) 7×7×3×32 3×3 0×0 - - -

2 Max 3×3 3×3 0×0 - - -

3 ConvGRU 3×3×32×64 1×1 1×1 3×3×64×64 1×1 1×1

4 Max 2×2 2×2 0×0 - - -

5 ConvGRU 3×3×64×128 1×1 1×1 3×3×128×128 1×1 1×1

6 Global Avg 6×6 - - - - -

7

FC (Softmax) 1×1×128×C1 - - - - -

...

FC (Softmax) 1×1×128×CN - - - - -

two max pooling (Max) layers, one global average pooling (Global Avg) layer,

and one fully-connected (FC) layer. The bottom layer is a convolutional layer

for spatial dimension reduction having 32 feature maps with 7×7 kernels and

3×3 stride, and is followed by a rectified linear unit (ReLU) activation function.235

Then, two ConvGRU layers are stacked, the first having 64 and the second 128

feature maps, with 3×3 kernels and 1×1 padding in both the forward W and

recurrent U paths. The two max pooling layers are located in between the three

layers (one convolutional and two ConvGRU layers) with subsampling factors

of 3×3 for the first and 2×2 for the second. A global average pooling layer240

[25] follows the last ConvGRU layer to vectorize all feature maps. The vector-

ized feature maps are fed into a fully-connected layer with a softmax activation

function for each category. When there are N categories in a dataset, the n-th

category has Cn classes. The network configuration is summarized in Table 1.

4.1.2. Training245

ConvGRU networks were trained by mini-batch stochastic gradient descent

(SGD) with Nesterov’s accelerated gradient (NAG) [26], with the momentum
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coefficient µ set to 0.9, and implemented in Torch7 [27] and PyTorch [28]. Mini-

batch size was set to 8. The gradient was calculated using a back-propagation

through time (BPTT) algorithm. For each category, we used the negative log

likelihood loss function ` as follows:

` = −
C∑
c=1

pc log(p̂c) (24)

where C is the number of classes, and pc and p̂c are the true and predicted

probability of class c, respectively. As in Jung et al. [5], error was only generated

at the end of a training sequence to utilize accumulated information through

space and time for recognition. As in Krizhevsky et al. [2], an L2-norm weight

decay of 0.0005 was applied while updating network parameters in order to250

prevent over-fitting. Because of the exploding gradient problem, we employed

a gradient clipping method [29] which rescales the L2-norm of the gradient to

a threshold whenever the L2-norm exceeds that threshold. Here, the threshold

was set to 10. The initial hidden state h0 in ConvGRU was set to 0.

All weights were initialized using randomly selected values from a zero-mean255

Gaussian distribution, with the standard deviation σ set differently depending

on the experiment. Similar to the bias initialization trick used to solve the

gradient vanishing problem of LSTM [30, 31], update gate biases were initialized

to -2, and the remaining biases were initialized to 0 by default (unless otherwise

noted). For both recurrent batch normalization (recurrent BN) [12] and layer260

normalization (LN) [13], the gain γ and bias β of each affine transformation

were initialized to 1 and 0, respectively. However, when recurrent BN and LN

were applied to the update gate, the bias β of each affine transformation was

initialized to -2 according to the above mentioned bias initialization trick. Note

that we did not initialize the gain γ to 0.1 as did Cooijmans et al. [12] because265

initializing the gain γ to 1 produced better results in the following experiments.

4.1.3. Data Pre-processing and Augmentation

All images in both datasets were rescaled to 128×170 pixels and integer

values 0 to 255 were normalized to real values -1 to 1. By rescaling the size
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of an image, the degree of coverage of an image by a cropped image for data-270

augmentation can be controlled to the desired level, and can be fixed among

all images, even though each might have different resolution. To reduce over-

fitting, we applied data-augmentation methods, which artificially increase the

size of training samples In detail, all images in the same video were randomly

sampled or cropped from a 112×112 region, and then the images were randomly275

flipped horizontally with a 50% probability. These augmented images were given

to the network.

4.1.4. Testing

From each test video, we obtained 10 inputs for the network by consistently

cropping 1 center and 4 corners of all images in the video, and then horizontally280

flipping them. The output at the end of a test video was used for classification

scoring in the same manner as for the training phase. The final classification

accuracy was obtained by averaging all 10 classification scores.

4.2. Evaluation Protocol

For the following two experiments, each dataset was randomly divided into285

three splits for cross-validation. Each split contained eight subjects for training

and two subjects for testing. After measuring recognition accuracy for each of

three splits, the average recognition accuracy over all three splits was calculated.

4.3. Object-Related Action Recognition

The dataset for object-related action (OA) recognition contained 900 videos290

in 15 object-action combination classes, which are a partial combination of four

objects (“Book”, “Laptop”, “Bottle”, and “Cup”) and nine actions (“Change

page”, “Sweep”, “Open”, “Close”, “Type”, “Shake”, “Drink”, “Stir”, and “Blow”)

rather than a full combination of them. To avoid action inference by object iden-

tification, each video in the dataset included two objects. One was the target295

object on which a subject performs an action, and the other was a distractor un-

related to the current action. Each object-action combination class was demon-

strated by 10 subjects, two times each, with three possible distractors present
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Table 2: Comparison of accuracy (mean ± standard deviation) on the OA recognition dataset.

Model
Accuracy (%)

Object Action Joint

Spatial CNN 86.4 ± 6.9 63.5 ± 9.9 59.6 ± 9.9

C3D 99.0 ± 0.7 98.1 ± 0.7 97.4 ± 1.0

Baseline (init bias: 0) 98.2 ± 0.6 97.8 ± 1.0 97.0 ± 1.1

Baseline (init bias: -2) 98.3 ± 0.5 98.0 ± 1.4 97.0 ± 1.4

AD (init bias: 0) 99.1 ± 0.7 98.8 ± 0.9 98.4 ± 0.8

AD (init bias: -2) 99.1 ± 0.8 99.1 ± 0.7 98.7 ± 0.8

BN (all) 99.1 ± 0.6 98.6 ± 1.1 98.0 ± 1.4

BN (hidden) 98.8 ± 1.0 98.4 ± 1.0 97.9 ± 1.2

BN (gates) 98.5 ± 1.0 97.7 ± 1.3 97.0 ± 1.5

LN (all) 98.8 ± 0.6 98.2 ± 0.7 97.5 ± 0.8

LN (hidden) 98.5 ± 0.6 98.2 ± 1.0 97.4 ± 0.9

LN (gates) 98.0 ± 0.8 97.3 ± 1.6 96.4 ± 1.5

BN+AD 99.3 ± 0.5 98.9 ± 0.8 98.8 ± 0.7

LN+AD 99.1 ± 0.5 99.4 ± 0.7 98.7 ± 0.6

each time. The viewpoint and background were static. We pre-processed all

videos to have a fixed number of frames (50 frames) because batch normal-300

ization has difficulties handling variable length sequences in a mini-batch. All

networks were initialized with a standard deviation of 0.07 and trained with

a learning rate of 0.01 over 100 epochs. In this experiment, we repeated the

evaluation protocol three times with different initialization seeds for each split,

which allowed us to gain statistically robust results from a small OA recognition305

dataset.

4.3.1. Feed-Forward Networks

Table 2 shows the test accuracy of the networks. The accuracy gap between

the spatial CNN and C3D indicates that at least short-term information needs

18



20 40 60 80 100
Epoch

0

20

40

60

80

100

Re
co

gn
iti

on
 E

rro
r (

%
)

Baseline (init bias: 0)
Baseline (init bias: -2)

(a)

20 40 60 80 100
Epoch

0

20

40

60

80

100

Re
co

gn
iti

on
 E

rro
r (

%
)

AD (init bias: 0)
AD (init bias: -2)

(b)

Figure 3: Importance of initializing the update gate bias on the object-related action (OA)

recognition dataset. The graphs compare two initialization strategies for the update gate

bias of (a) the baseline and (b) AD. Solid lines and shaded regions represent average test

recognition errors and standard deviations over three splits with three runs, respectively.

to be processed for OA recognition. In the case of the spatial CNN without using310

any temporal information, OA recognition is made difficult by both distractor

objects as well as action similarity.
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Figure 4: L2-norm of the gradient (solid lines) and detrended output (semi-transparent lines)

of AD versus iteration on the OA recognition dataset (split 1). Each L2-norm of the gradient

is smoothed by EMA with a decay factor of 0.99 for better visualization.

4.3.2. Initialization of Update Gate Bias

Initializing the forget gate bias to a large positive value (usually 1 or 2) is a

trick widely used with LSTM to prevent the vanishing gradient problem when315

the weights and biases of LSTM are initialized with small random numbers

[30, 31]. On the other hand, when the forget gate is set at 0.5 by initializing

LSTM with small random numbers, initial information decays exponentially

over time. With this bias initialization trick, performance and convergence speed

of LSTM are improved, especially when long-term dependencies are crucial. In320

the case of GRU, initializing the update gate bias with a large negative value

provides the same effect as the bias initialization trick of LSTM.

In order to examine the effect of the bias initialization trick, we compared

convergence speeds using different initial update gate biases (between 0 and -2)

in the baseline model (ConvGRU without normalization) and adaptive detrend-325

ing (AD) (Fig. 3). Both the baseline and AD demonstrate convergence speed

improvement with the update gate bias initialized to -2 rather than 0, but the

improvement in AD is much more significant than that of the baseline. Fur-
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thermore, when the update gate bias of AD is initialized to 0, the variance of

convergence graphs trained on the three different splits is larger than the base-330

line with the zero and negative initial biases, and AD with the negative initial

bias. These results indicate that (1) a random initialization causes extremely

slow, unstable learning with AD, and (2) initialization of the update gate bias

is more crucial for AD performance than for the baseline.

Because the hidden state (or trend) of AD closely follows input sequences,335

we hypothesized that the detrended output of AD is initially too small to create

enough of a gradient for effective training when the update gate bias is initialized

to 0. To verify our hypothesis, we analyzed the L2-norm of the detrended output

and that of the gradient for both zero and negative bias initializations during

AD training as shown in Fig. 4. Because the L2-norm of the gradient shows a340

high fluctuation, we smoothed it using an exponential moving average (EMA)

with a decay factor of 0.99. As we expected, the L2-norm of the detrended

output with zero bias initialization is considerably smaller than that of the

negative bias initialization during the initial phase of learning. As a result,

BPTT cannot generate enough gradient for training, with the net result that345

zero bias initialization slows network training. In other words, negative bias

initialization converges to the local minima faster than zero bias one by boosting

the gradient scale in the initial phase of learning. Due to faster convergence, the

L2-norm of the gradient of the negative bias initialization is diminished earlier

than that of the zero bias in the later phase of learning. These results suggest350

that the large gradient in the initial phase of learning is crucial for learning

acceleration. Hence, from this point forward, the bias of the update gate was

initialized to -2.

4.3.3. Overhead Reduction for Spatial Normalization

Although spatial normalization methods can accelerate deep neural network355

training, “overhead,” including computational cost and memory consumption

are required to estimate statistics and to normalize increases. Given the benefits

of spatial normalization methods, overhead might be tolerable for most neural
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Figure 5: Effect of spatial normalization according to location on the OA recognition dataset.

(a) Batch normalization (BN). (b) Layer normalization (LN). For “hidden”, the bias of the

update gate is initialized to -2. Otherwise, the bias of an affine transformation for the update

gate is initialized to -2. Semi-transparent lines represent the log of recognition errors averaged

over three splits with three runs and solid lines represent the smoothed log of recognition

errors. Each log of the recognition error is smoothed by Savitzky-Golay filter with a window

length of 51 and polynomial order of 3 for better visualization.
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networks. However, when the same spatial normalization methods are applied

to ConvRNNs, required overhead increases dramatically because normalization360

needs to be performed on extremely high spatial-temporal dimensions in Con-

vRNNs.

As detailed in Section 3.2, recurrent BN (hereafter, dropping “recurrent”

abbreviated simply as BN) and LN normalize the three input distributions of

the candidate hidden state, reset gate, and update gate of GRU. However, all365

three normalizations might not contribute equally to the improvement achieved

by BN and LN. If this assumption is correct, we can eliminate less important

normalizations to alleviate overhead while minimizing performance and training

speed degradation. So, we investigated effects of normalization depending on

where BN and LN are employed, as follows: candidate hidden state (“hidden”),370

reset and update gates (“gates”), and candidate hidden state along with reset

and update gates (“all”).

Compared with “all”, “gates” marginally slows the convergence speed of

BN and converges to worse local optima with both BN and LN, matching the

performance degradation of “gates” (around 1.0%) (Fig. 5 and Table 2). In the375

case of “hidden” using both BN and LN, although it requires only one third the

overhead of “all”, the convergence speed and performance are similar to those

of “all”. These results indicate that normalization of the candidate hidden state

plays the most important role in convergence speed and performance increase.

Hence, from this point forward in the experiment, BN and LN were applied only380

to the candidate hidden state.

4.3.4. Adaptive Detrending versus Spatial Normalization

Since spatial normalization methods demonstrably sped-up training and im-

proved performance on many different tasks [12, 13], we expected the same

benefits from BN and LN on the OA recognition task. As expected, both BN385

and LN demonstrate increased recognition accuracy over the baseline, and BN

accelerates convergence speed (Fig. 6 and Table 2). However, LN does not offer

any acceleration in ConvGRU. LN offers greater speed over baseline, but under-
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Figure 6: Graph of test recognition error averaged over three splits with three runs versus

training epochs on the OA recognition dataset. (a) Comparison of the baseline, AD, BN,

and BN+AD. (b) Comparison of the baseline, AD, LN, and LN+AD. Spatial normalization

methods (BN and LN) are only applied to the candidate hidden state. The bias of the update

gate is initialized to -2. Solid lines and shaded regions indicate the same things as those in

Fig. 3.

performs BN when applied to CNNs because of the statistics estimation error

caused by incorrect initial assumptions (as explained in Section 2.2). Surpris-390

ingly, the convergence speed of LN was worse in ConvGRU than in CNNs. We

hypothesize that the statistics estimation error plaguing LN when implemented
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Figure 7: Visualization of change in distribution for a single neuron from the first ConvGRU

layer over 100 epochs. Each distribution represents a single neuron’s activations for 720 train-

ing videos, each having 50 frames, from the OA recognition dataset (split 1). Each distribution

is represented by the histogram, which is of activation from -1 to 1 with bins of 0.02. The

contour level indicates how many samples (total number of samples: 50×720=36000) are lo-

cated in each bin of the histogram. The maximum contour level of (a) is set differently than

those of (b) in order to aid visualization. Two selected neurons are shown in (a) and (b). Left

panel: The distribution change of the hidden state. Right panel: The distribution change of

the detrended output.
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Figure 8: Visualization of AD for a neuron. Time series are obtained from a single neuron

in the second ConvGRU layer while receiving a training video, after training is finished on

the OA recognition dataset (split 1). Three selected neurons are shown in (a)-(d). Note that

(b)-(c) are the same neuron, but receive different videos.

in CNNs is accumulated through time in ConvRNNs, leading to significant de-

crease in convergence speed.

AD improves convergence speed significantly as well as increasing recognition395

accuracy over those of the baseline, and over both BN and LN (Fig. 6 and Table

2). These results imply that the time domain is more critical than the spatial

domain when normalizing RNNs.

Now, in order to clearly resolve mechanisms of AD in a qualitative manner,

consider internal activations of the network. Hidden state activations drastically400

change over epochs in terms of mean and variance, indicating internal covariate
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shift (Fig. 7). However, detrended output is much more stable over epochs,

indicating that AD successfully reduces internal covariate shift. These results

support the notion that accelerated convergence depends on eliminating internal

covariate shift [10].405

At the level of a single neuron, Fig. 8 plots four time series: the candidate

hidden state, hidden state, update gate, and detrended output neurons in the

second ConvGRU layer after training. From the perspective of detrending, one

may think of the candidate hidden state, hidden state, and update gate in

terms of input, trend, and decay factor, respectively. Trends that contain the410

low-frequency component are successfully estimated and removed from inputs to

generate detrended outputs of each neuron (Fig. 8(a) and (b)). These results are

similar to the example of detrending (Fig. 1), implying that AD really works as

a detrending method. However, unlike conventional detrending methods, AD

automatically controls the degree of detrending by changing the decay factor415

over time. AD basically removes a low-frequency component from input, but a

high-frequency component can also be removed by increasing the decay factor

as required (Fig. 8(c) and (d)). Furthermore, although the time series in Fig.

8(b) and (c) come from the same neuron, AD works very differently depending

on input. These results suggest that AD adaptively provides the proper degree420

of detrending to suit each time, neuron, and sample. Note that BN and LN

control the degree of normalization by using an affine transformation, but it is

static rather than dynamic because the parameters of an affine transformation

are fixed after training.

Interestingly, in Fig. 8(d), the detrended output is almost flat at zero until425

around 30 time steps because of the high decay factor, but then suddenly the

decay factor converges to zero. Then for the remaining time steps, the trend

is fixed to -1 while the input increases rapidly from -1 to 1, and the detrended

output (trend subtracted from input) becomes 2 (1-(-1)=2). If this sudden

increase in the input after 30 time steps is important for correct classification,430

it is clear that AD improves discrimination between classes by enhancing true

class-related information while removing irrelevant information. Note that the
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detrended output of the second ConvGRU layer is given directly to the fully-

connected layer for classification. Therefore, we argue that control over the

degree of detrending by AD not only reduces temporal internal covariate shift,435

but also improves classification performance or generalization capability.

4.3.5. Synergy between Adaptive Detrending and Spatial Normalization

Because (1) normalization in the spatial or temporal domain is beneficial

for training ConvGRU (see Section 4.3.4) and (2) two domains do not overlap,

each of these improvements may be combined by applying AD together with440

spatial normalization methods. When used with BN or with LN, AD speeds

convergence more than BN, LN, or AD used alone (abbreviated as BN+AD and

LN+AD, respectively)(Fig. 6). These results empirically verify our hypothesis

that utilizing the time domain as well as the spatial domain for normalization

generates beneficial synergy.445

Furthermore, AD solves the difficulty of applying LN to CNNs and their

variants, including ConvGRU (as described in Section 4.3.4). More specifically,

neuron-wise normalization of AD, which is naturally acquired using the time

domain, overcomes the limitation of LN. Once activations of ConvGRU that

have different statistics over feature maps are normalized (or detrended) by450

AD in a neuron-wise manner, detrended activations having similar statistics

satisfy the assumption of LN. That is why the improvement from LN to LN+AD

achieved by temporal and neuron-wise normalization exceeds the improvement

from BN to BN+AD achieved by temporal normalization alone.

4.4. Object-Related Action with Modifier Recognition455

Extending the OA recognition experiment, we tested AD on the object-

related action with modifier (OA-M) recognition dataset. The dataset for OA-

M recognition consisted of 840 videos in 42 object-action-modifier combination

classes created by non-exhaustively and non-redundantly combining four ob-

jects (“Box”, “Book”, “Cup”, and “Spray”), four actions (“Move”, “Touch”,460

“Drag”, and “Sweep”), and six modifiers (“To Left”, “To Right”, “To Front”,
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Table 3: Comparison of accuracy on the OA-M recognition dataset.

Model
Accuracy (%)

Object Action Modifier Joint

Spatial CNN 87.9 57.3 36.7 26.4

C3D 97.8 91.5 72.8 68.8

Baseline 99.0 96.4 95.8 92.9

AD 98.2 98.4 98.4 95.4

LN 97.6 96.4 95.0 90.5

LN+AD 99.4 98.0 99.0 97.2

“One Time”, “Two Times”, and “Three Times”). Each object-action-modifier

combination class was performed by 10 subjects two times each with a ran-

domly selected distractor present in each video. The viewpoint and background

were static. Compared with OA recognition, OA-M recognition is more complex465

because adding the modifier category provides a large number of combination

classes, and modifier recognition requires long-term (or contextual) information.

For example, a network should wait until a video is finished to discriminate be-

tween the modifiers “One Time” and “Two Times”. Unlike the OA recognition

experiment, we directly used raw videos sampled at a frame rate of 15 fps with-470

out frame length normalization, because this processing might cause the loss

of temporal information. The maximum length of the sampled sequences was

117, which is more than two times longer than the 50 frame normal used during

OA recognition. Longer sequences require more capability to capture long-term

dependencies [32]. All networks were initialized with a standard deviation of475

0.05 and trained with a learning rate of 0.005 over 200 epochs. Because several

sequences exist in a mini-batch, each gradient for each sequence was linearly

weighted depending on its own sequence length by dividing the maximum se-

quence length by the specific training sequence length.

Recognition accuracies clearly distinguish ConvGRU, spatial CNN, and C3D480

in terms of temporal processing capability (Table 3). Although the short-term
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Figure 9: Confusion matrices of (a) C3D, (b) ConvGRU, and (c) LN+AD on the OA-M

recognition dataset.
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(a) Move (b) Touch

(c) Drag (d) Sweep

Figure 10: Sample frame for each action class from the OA-M recognition dataset.

processing capability of C3D is adequate for object and action recognition

(97.8% and 91.5%), this is not true for modifier recognition (72.8%) requir-

ing long-term information. To analyze more details of long-term processing

capabilities between the networks, we reported the confusion matrices of C3D,485

ConvGRU, and LN+AD (Fig. 9). C3D shows low recognition rates for “Sweep”

class in the action category and counting related classes (“One Time”, “Two

Times”, and “Three Times”) in the modifier category compared with those of

ConvGRU and LN+AD (Fig. 9). In the case of the modifier category, misclassi-

fications are mostly located within counting classes. These results indicate that490

C3D correctly recognizes that an input video is related to the counting modi-

fiers, but fails to match the exact numbers because the window-based temporal

processing of C3D lacks long-term processing. In the action category, C3D con-

fuses “Sweep” with “Touch” and “Drag” because (1) the shapes of the hand
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Figure 11: Graph of test recognition error averaged over three splits versus training epochs

on the object-related with modifier (OA-M) recognition dataset. Other conditions are the

same as those in Fig. 6.

Table 4: Comparison of convergence speed on the OA-M recognition dataset.

Model
Epochs to

Baseline’s max accuracy
Degree of acceleration

Baseline 200 ×1.0

AD 63 ×3.2

LN+AD 28 ×7.1

during action are similar (Fig. 10) and (2) the number of samples for “Sweep”495

is half those of “Touch” and “Drag”. To resolve ambiguity between actions, the

network should accumulate information over long periods of time.

On the other hand, thanks to the rich spatio-temporal processing capability

of ConvGRU, ConvGRU is capable of contextual video recognition, including

the failure classes of C3D (Fig. 9(b) and Table 3). This is why ConvGRU must500

be used, despite the computational burden of ConvGRU. Hence, the proposed

method is crucial because it reduces the computational burden of ConvGRU by

significantly accelerating training (Fig. 11). Also, we measured the number of

epochs required to attain maximum baseline accuracy by the networks. Note

that we smoothed out fluctuations in Fig. 11 by using the Savitzky-Golay filter505
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with a window length of 51 and a polynomial order of 3 before measuring the

degree of acceleration by each model. AD needs 3.2 times fewer epochs than

the baseline (Table 4). Furthermore, AD improves the generalization capability

of ConvGRU. Recognition accuracy is improved 2.5% (Table 3).

BN is not used in this experiment because of mini-batch sequence length510

variability. LN performs worse than the baseline in terms of training speed

and recognition accuracy (Fig. 11 and Table 3). As hypothesized in the previ-

ous experiment, we think that LN statistical estimation error accumulates over

time, leading to poorer results. However, by solving the limitation of LN with

neuron-wise normalization of AD, LN+AD shows the most significant improve-515

ments in both training speed and generalization over the baseline, as well as

over LN or AD, alone. Specifically, LN+AD requires 7.1 and 2.2 times fewer

epochs, and improves recognition accuracy by 4.3% and 1.8% compared with

those of the baseline and AD, respectively (Tables 3 and 4). The confusion

matrix of LN+AD in Fig. 9(c) shows that LN+AD further improves the recog-520

nition accuracy of ConvGRU, especially for the classes (“Sweep” in the action

category; and “One Time”, “Two Times”, and “Three Times” in the modifier

category) requiring to process long-term information. This result implies that

the proposed method helps to deal with long-term processing.

4.5. 3D Skeleton-Based Action Recognition525

We performed one more experiment for 3D skeleton-based action recognition

that needs to extract long-term contextual information for better action recog-

nition [24, 33, 34], which is consistent with the previous two experiments. The

goal of the experiment was to show that (1) AD is not restricted to ConvGRU

for video recognition, but is more generally applicable up to GRU and (2) AD530

provides even better training speed, generalization, and synergy with spatial

normalization methods when longer temporal processing is required. For this

experiment, we used the NTU RGB+D dataset [24] because it is currently the

largest dataset for 3D human action recognition with high intra-class and view

point variants. The NTU RGB+D dataset consists of 56,880 action samples in535
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Table 5: Comparison of accuracy on the NTU RGB+D datasets

Model
Accuracy (%)

Cross Subject Cross View

Baseline 68.8 76.0

AD 73.0 80.2

LN 70.0 77.4

LN+AD 77.3 85.2

ST-LSTM + Trust Gate [33] 69.2 77.7

Temporal Conv [35] 74.3 83.1

Clips + CNN + MTLN [34] 79.6 84.8

ST-GCN [36] 81.5 88.3

60 action classes. Each sample was collected from 40 subjects with three dif-

ferent camera views and contains four different modalities: RGB videos, depth

map sequences, 3D skeleton data, and infrared videos. Among the four modali-

ties, we only used 3D skeleton data for evaluating GRU. Each 3D skeleton data

contains at most two subjects and each subject has 25 3D joints (X, Y, and540

Z), so the dimension of each data is 2×3×25=150. The longest sample in the

dataset has 300 time steps, which is 2.6 times longer than that of the OA-M

dataset.

All networks consisted of three GRU layers, each with 300 neurons, followed

by a fully-connected layer for classification. Output activations of stacked GRU545

were averaged over time and then passed to the fully-connected layer to gen-

erate classification results. The initial hidden state h0 in GRU was set to 0.

The update gate bias was initialized to -5 in order to capture longer tempo-

ral dependencies. The gain γ and bias β of each affine transformation for LN

were intialized to 1 and 0, respectively. Note that LN was applied only to the550

candidate hidden state. All networks were trained by stochastic gradient de-

scent (SGD) with Nesterov momentum 0.9 [26]; the size of mini-batch, L2-norm

weight decay, and threshold of gradient clipping were set to 64, 0.0002, and 1,
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Figure 12: Graph of test recognition error averaged over three runs versus training epochs

in the cross view evaluation on the NTU RGB+D dataset. (a) Cross-subject evaluation. (b)

Cross-view evaluation.

respectively. All networks were trained with an initial learning rate of 0.1 over

80 epochs. During training, we dropped the learning rate 10 times at 20 and 60555

epochs.

We followed two standard evaluation protocols defined in [24]. One is a cross-

subject evaluation, in which 20 subjects were used for training (40,320 samples)

and the remaining subjects were for testing (16,560 samples). The other is a
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cross-view evaluation, in which two camera views were used for training (37,920560

samples) and the remaining one was for testing (18,960 samples). We repeated

the evaluation protocols three times to get robust results.

All normalization methods (AD, LN, and LN+AD) improve the recognition

accuracy in both cross-subject and cross-view evaluations (Table 5). Further-

more, AD, LN, and LN+AD achieve a training speed-up (Fig. 12). Unlike565

previous experiments for contextual video recognition, LN successfully improves

both training speed and generalization [13] because the limitation of LN does

not occur in GRU. However, even in this case, AD consistently outperforms LN,

reflecting the effectiveness of temporal normalization. Surprisingly, although we

used a simple GRU without any prior knowledge of the task, recognition accu-570

racies of AD and LN+AD are competitive with recent stat-of-the-art results

[33, 35, 34, 36], which indicates that AD and LN+AD provide strong gener-

alization capability. We found that the degree of improvement in learning ac-

celeration and generalization by AD is better in the 3D skeleton-based action

recognition experiment than in either the OA or OA-M recognition experiment.575

This implies that temporal normalization by AD becomes more effective as

the maximum sequence length increases because unrolled RNNs over long time

scales can be considered as deep feed-forward networks, which suffer from severe

internal covariate shift.

5. Discussion and Conclusion580

This paper proposes a novel temporal normalization method, “adaptive de-

trending” (AD), to accelerate training of recurrent neural networks (RNNs) by

removing the temporal internal covariate shift. Although several normalization

methods employing batch normalization (BN) have been proposed to accelerate

training of RNNs, these methods utilize only the spatial domain and neglect the585

time domain for statistical estimation. The key insight of this paper is to view

the hidden state of the gated recurrent unit (GRU) as a trend with an exponen-

tial moving average. With this in mind, and with simple modifications, we were
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able to implement AD in GRU. AD has several advantages over other normal-

ization methods: It is highly efficient in terms of computational and memory590

requirements. Unlike conventional detrending methods that require manual pa-

rameter setting, AD learns and estimates trends automatically. AD is generally

applicable to both GRU and ConvGRU, which is not the case for either BN or

for layer normalization (LN).

We conducted three experiments as follows: (1) object-related action (OA)595

recognition, (2) object-related action with modifier (OA-M) recognition, and (3)

3D skeleton-based action recognition. These three experiments were organized

in terms of the complexity of contextual information in each dataset for exam-

ining the effectiveness of AD compared with existing normalization methods,

depending on contextual complexity. By adding a modifier category requir-600

ing accumulation of long-term contextual information, the OA-M recognition

dataset for the second experiment is more contextually complex than the OA

dataset for the first experiment. Also, the NTU RGB+D dataset for the third

experiment has high contextual complexity due to a very long sequences in the

dataset. The present set of experiments demonstrates that (1) convolutional605

GRU (ConvGRU) has much richer temporal processing capability required for

contextual recognition than feed-forward neural networks, (2) AD consistently

provides faster convergence and better generalization than baseline and spatial

normalization methods, and most importantly, (3) the benefits of AD written in

(2) are further enhanced in the case of longer temporal processing by removing610

internal covariate shift over long time scales. Also, we rediscovered that the

negative bias initialization trick for the update gate of GRU, helps to address

problems with slow and unstable learning using AD. Qualitative analysis reveals

that AD controls the degree of detrending over time, neurons, and samples, ac-

counting for the performance improvement. Furthermore, AD works well with615

spatial normalization methods. Especially in the case of CNNs, neuron-wise

normalization by AD overcomes the main limitation of LN. In conclusion, with

little additional overhead, AD substantially alleviates the computational burden

of GRU and ConvGRU by reducing the number of epochs required to converge
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and it converges to better local minima, at the same time demonstrating strong620

synergy with existing normalization methods. Looking ahead, AD should prove

helpful in studies utilizing the rich spatio-temporal processing capability of Con-

vGRU and its variants.

The detrending mechanisms of AD reminds us of background subtraction

that detects foreground by subtracting background. Among many variants of625

background subtraction to deal with temporal background change in a video,

Wren et al. [37] proposed a running Gaussian average method that updates the

background estimation over time using the exponential moving average (EMA)

in (15). Considering that AD estimates the trend by EMA, the trend and

detrended output of AD can be considered as background and foreground, re-630

spectively. In the OA and OA-M recognition datasets, the background will be

a static or slow component of a video (such as a table, the torsos of subjects,

and a distractor) and the foreground will be a fast component of a video (such

as the arms of the subjects and target object). Therefore, AD might work

as a foreground detector that focuses on motion information crucial for video635

recognition, leading to better convergence speed and generalization.

For future work, we will extend the current research for contextual video

recognition by using a large set of contextually complex videos to achieve deep

understanding of video recognition at a higher semantic level. For the purpose

of enhancing and promoting research in this direction, we will create a publicly640

available video dataset with high-level concept labels through crowdsourcing

platforms, such as Amazon Mechanical Turk (AMT). In addition, we will ap-

ply AD to speech recognition. Step-wise BN and LN [12, 13] approaches are

difficult to apply to speech recognition because these tend to lose dynamics

of speech signals. The sequence-wise BN [11] approach has demonstrated ac-645

celerated training and performance improvement in speech recognition [38] by

preserving dynamics of speech signals. However, it cannot provide different de-

grees of normalization over time as might be required for further elimination of

internal covariate shift. Automatic control over the degree of detrending by AD

is expected to balance preservation of speech signal dynamics with the reduction650
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Table A.1: Convolutional neural network configuration. The format of the table is the same

as that in Table 1.

Layer Type Filter Stride Pad

1 Conv (ReLU) 7×7×3×96 2×2 0×0

2 Max 2×2 2×2 0×0

3 Conv (ReLU) 5×5×96×256 2×2 1×1

4 Max 2×2 2×2 0×0

5 Conv (ReLU) 3×3×256×512 1×1 1×1

6 Conv (ReLU) 3×3×512×512 1×1 1×1

7 Conv (ReLU) 3×3×512×512 1×1 1×1

8 Global Avg 6×6 - -

9

FC (Softmax) 1×1×512×C1 - -

...

FC (Softmax) 1×1×512×CN - -

of internal covariate shift.
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Appendix A. Spatial Convolutional Neural Network

We followed the spatial stream CNN architecture used in [3]. However, we660

replaced the last max pooling and two fully connected layers with a global

average pooling layer. The networks consisted of five convolutional (Conv)
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layers, two max pooling (Max) layers, one global average pooling (Global Avg)

layer, and one fully-connected (FC) layer (Table A.1).

Following Section 4.1.2 for training, stochastic gradient descent (SGD) with665

Nesterov momentum 0.9 [26] was applied to train the networks. The size of

mini-batch, L2-norm weight decay, and threshold of gradient clipping were set

to 8, 0.0005, and 10, respectively. All weights and biases of the networks were

initialized from a zero-mean Gaussian distribution with a standard deviation

of 0.03. Also, data pre-processing and augmentation methods are exactly the670

same as those in Section 4.1.3. All networks were trained with a learning rate of

0.01 over 200 epochs on the object-related action dataset, and over 300 epochs

on the object-related action with modifier dataset.

We followed the evaluation protocol used in the spatial stream CNN [3].

Specifically, 25 frames were sampled with equal spacing from a video, and 10675

crops (1 center, 4 corners, and their horizontal flipping) were obtained from each

sampled frame. Then, scores were averaged across sampled frames and crops of

each sampled frame to obtain the final classification accuracy for a video.

Appendix B. Convolutional 3D Network

Because convolutional 3D (C3D) networks [4] receive L consecutive frames680

as input to process short-term information, convolution and pooling operations

are extended from 2D (spatial) to 3D (spatio-temporal). Networks consisted of

four 3D convolution (3D Conv) layers, three 3D max pooling (3D Max) layers,

one 3D global average pooling (3D Global Avg) layer, and one fully-connected

(FC) layer (Table B.1).685

Details of (1) training and (2) data pre-processing and augmentation are the

same as those in Appendix A, except that the number of stacked frames L was

set to 16. All networks were trained with a learning rate of 0.02 over 200 epochs

on the object-related action dataset, and with a learning rate of 0.01 over 300

epochs on the object-related action with modifier dataset.690

We followed the evaluation protocol used in the temporal stream CNN [3].
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Table B.1: Convolutional 3D network configuration. The format of the table is the same as

that in Table 1 except that time is added as the first dimension of the filter, stride, and pad.

Layer Type Filter Stride Pad

1 3D Conv (ReLU) 3×7×7×3×32 1×2×2 1×0×0

2 3D Max 2×2×2 2×2×2 0×0×0

3 3D Conv (ReLU) 3×5×5×32×64 1×2×2 1×1×1

4 3D Max 2×2×2 2×2×2 0×0×0

5 3D Conv (ReLU) 3×3×3×64×128 1×1×1 1×1×1

6 3D Max 2×2×2 2×2×2 0×0×0

7 3D Conv (ReLU) 3×3×3×128×256 1×1×1 1×1×1

8 3D Global Avg 2×3×3 - -

9

FC (Softmax) 1×1×1×256×C1 - -

...

FC (Softmax) 1×1×1×256×CN - -

We sampled five video clips equally spaced, each with 16 consecutive frames.

From each clip, we obtained 10 sample crops: 1 from the center, 4 from each

corner, and then by horizontally flipping these 5 crops, a total of 10 was ob-

tained. Final classification accuracy for each video was obtained by averaging695

the scores across the sampled clips and crops of each sampled clip.
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