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Abstract

In our daily life, we often adapt plans and behaviors according to the dy-

namically changing world circumstances, selecting activities that make us

feel more confident about the future. In this adaptation, Prefrontal Cortex

(PFC) is believed to have an important role, applying executive control on

other cognitive processes to achieve context switching and confidence moni-

toring; however, many questions remain open regarding the nature of neural

processes supporting executive control. The current work explores possible

mechanisms of this high-order cognitive function transferring executing con-

trol in the domain of artificial cognitive systems. In particular, we study the

self-organization of artificial neural networks accomplishing a robotic rule-

switching task analogous to the Wisconsin Card Sorting Test. The obtained

results show that behavioral rules may be encoded in neuro-dynamic attrac-

tors, with their geometric arrangements in phase space affecting the shaping

of confidence. Analysis of the emergent dynamical structures suggests pos-

sible explanations on the interactions of high and low level processes in the
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real brain.
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1. Introduction

A well-known experiment investigating executive control functions and

more specifically, rule switching, is the Wisconsin Card Sorting Test (WCST),

Berg (1948); Milner (1963), where subjects are asked to discover and apply

a card sorting rule based on reward and punishment feedback. In unpre-

dictable times during the task, the rule is changed by the experimenter and

must be re-discovered by subjects. The ordinary WCST can be further en-

riched with the option of betting on behavioural outcomes (i.e., success or

failure of sorting). The WCST-with-Betting (WCSTB) tests the capacity of

subjects to monitor and implement confidence about the currently adopted

rule, Koren et al. (2005, 2006). This is a high-level cognitive task which

requires coordinating a range of different processes, including the mainte-

nance of working memory for the currently followed rule, the examination of

conflicts between the adopted rule and the reward or punishment feedback,

higher level executive control for rule adjustment, self-monitoring for confi-

dence development, betting decisions and generation of physical actions on

the basis of the selected rule.

Existing modelling studies on WCST employ discrete and algorithmic

computational processes, based on the common assumption that, although

the posterior cortices can be characterized as fundamentally analog sys-

tems, the prefrontal cortex (PFC) has a more discrete, digital character,
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O’Reilly (2006); Dayan (2007). Previous modelling studies, e.g. Dehaene

and Changeux (1991); Stemme et al. (2007a), employ local and discrete neu-

ral network representations where currently adopted rules are represented by

separately activated local units. Rougier and O’Reilly (2002) proposed an

on-off type gating operation that acts on working memory for storing the

currently adopted rules. The essential idea is that the neural activation pat-

terns representing the current rules in the working memory can be preserved

by closing the gate until the rules are in conflict with the new rule selected by

the experimenter. Dayan (2007) generalized this model to deal with various

executive control functions, assumed to be present in PFC, employing a com-

putational scheme of conditional rule matching and action execution. Other

relevant models interpreting computationally human assumptions about rule

switching work also on the basis of discrete states for rule representation

based on either petrinets, Narayanan (2003), or pools of excitatory and in-

hibitory neurons, Stemme et al. (2007b), or Hopfield neural network with a

separate hypothesis generation module, Kaplan et al. (2006).

An alternative approach regards implementing cognitive capacities based

on dynamic neural mechanisms. In this direction, a variety of computational

models have interpreted computationally many of the well known PFC func-

tionalities. For example, dynamic working memory models are investigated

in Botvinick and Plaut (2006) showing that recurrent neural networks can

adequately accomplish serial recall tasks considering also the effects of back-

ground knowledge. Additionally, Machens et al. (2005) have investigated

interval discrimination tasks showing that attractor dynamics can effectively

combine memory maintenance and decision making, while, Johnson et al.
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(2009) have implemented an analogous model for visual working memory.

The discussion above highlights the main directions in the open debate

regarding the discrete or dynamic nature of PFC processing (see also Brody

et al. (2003)). The first type of models have been mainly inspired by exper-

imental data showing active and relatively long lasting neural activity that

may encode rules in working memory. However, an important drawback for

the discrete models concerns how the static (usually bi-stable) representa-

tions can link executive control with the non fully predefined and inherently

continuous behaviors of the agent. The dynamic approach has gained sig-

nificant support from experimental works showing that PFC processing is

based on time-dependent activation patterns, Singh and Eliasmith (2006);

Romo and Salinas (2003), as well as dynamic interaction networks in the

brain, Palva et al. (2010). Especially for rule switching, experimental elec-

trophysiological data from monkeys trained to perform WCST showed that

the DLPFC cells encode rules through dynamically changing neural activities,

Mansouri et al. (2006). The observed dynamical patterns may be ascribed to

the cognitive processes taking place when accomplishing a delayed response

tasks such as external stimuli processing, decision making, response planning,

motion execution monitoring etc. (see Jun et al. (2010) for multi-process co-

ordination in PFC). The studies mentioned above indicate that PFC internal

mechanisms are based on a dynamic rather than a stationary pattern of neu-

ral activity. In other words, active maintenance of neural activity, does not

necessarily mean static representations. The present work aims to examine

whether the executive control functions involved in WCSTB can be imple-

mented on the basis of dynamic processing and whether such a possibility
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provides the basis for a new understanding of high-level cognitive functions.

More specifically, the dynamic modelling approach suggests explanation for

the confidence and preference people show for certain situations (i.e. we feel

more confident when turning in a street cross of our hometown, than in a

street cross of another town), as well as how our minds organize rules into

classes using some type of similarity criteria.

The computational exploration of alternative mechanisms can be based

on evolutionary robotic experiments similar to Borrett et al. (2005). This

is because the real-time environmental interaction may provide more real-

istic and general explanations on executive control processes compared to

the purely theoretically operating existing models. In particular, the current

work employs a minimum constraint modelling approach to explore possible

mechanisms of executive control functionality self-organized in simple neural

network models achieving the WCSTB task. If the mechanisms for accom-

plishing the task consistently appear in statistically independent simulation

runs, comparable principles may also operate in real brains, Ruppin (2002).

In short, neural network models with recurrent connectivity are evolved to

accomplish a robotic version of the WCSTB, using a standard genetic al-

gorithm to search for optimal synaptic weights, Nolfi and Floreano (2000);

Lipson (2005). Following this approach, neural dynamics are free to self-

organize in any appropriate way, revealing new and potentially more natural

mechanisms for explaining high-level cognition, Baev (2007). We study the

successfully evolved neural network models identifying their common internal

characteristics, in order to provide suggestions of possible working principles

in the brain.

5



In contrast to previous studies that focus on WCST exploring pure rule-

switching, the option of betting that is additionally investigated in the present

work provides a means for the deeper exploration of executive control func-

tions. In particular, our experiments investigate the self-awareness capacity

of the artificial agent that regards monitoring (i) the current behavioural

context (i.e. the agent being in either a rule exploration or a rule following

mode) and (ii) the confidence that the agent feels for each behaviour and

how the latter affects its betting strategy.

The rest of the paper is organized as follows. In the next section we

present the methodology followed in our work. In particular, we present

the Continuous Time Recurrent Neural Network (CTRNN) model used in

our study, how it is connected to the sensors and actuators of the simulated

robotic agent, the computational counterpart of the WCSTB problem, and

the evolutionary procedure used to explore configurations of CTRNN robot

controllers. Experimental results addressing robot switching and betting on

the basis of three alternative behavioural rules are presented in the follow-

ing section. Then, a detailed discussion highlights the main finding of our

computational experiments, formulating suggestions for the organization of

biological executive control processes. Finally, conclusions and suggestions

for further work are presented in the last section.

2. Experimental Methodology

In order to investigate executive control dynamics, we have designed a

robotic task that resembles Wisconsin Card Sorting test incorporating also a

betting option for the artificial agent. The task investigates rule switching in
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a sample-response paradigm, similar to Joel et al. (1997). The agent has to

learn three sample-response rules, selecting, applying and re-selecting each

one of them, as indicated by reward and punishment signals provided by the

experimenter. The three available rules named Same Side (SS), Opposite

Side (OS) and No Response (NR), are shortly described in Fig 1. The robot

starts always from the bottom of the T-maze environment, responding to

the side of light presentation. According to the Same-Side (SS) rule, the

agent must turn left if the light source appeared at its left side, and it must

turn right if the light source appeared at its right side. According to the

Opposite-Side (OS) rule, the robot has to turn to the opposite direction of

the light side, i.e. right when light appears to the left, and left when light

appears to the right. In the case of the No Response (NR) rule, the robot

should ignore the side of light staying close to the starting position.

The task explored in the current study is separated in phases, each one

consisting of several sample-response trials. While performing the trials of a

given phase, the robotic agent has to discover and follow the sample-response

rule that is assigned to the phase. Correct responses are rewarded, while

incorrect are punished (see Fig 1). At the beginning of each trial, the agent

bets for the success of the underlying response, having the opportunity to

gain some profit.

Different phases correspond to different rules which requires the agent to

switch the adopted response strategy. Changes from one phase to another

are performed by the experimenter in a random manner. This results to

unpredictable rule changes that make the agent give spontaneous incorrect

responses. Therefore, the agent has to develop mechanisms that consider
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rule changes, switch the adopted response strategy and efficiently control the

amounts of betting, in accordance with the dynamically changing circum-

stances of the experimental setup, in order to successfully accomplish the

overall task.

In the current set of experiments, instead of hand designing the mecha-

nisms (for accomplishing the above mentioned task) in the model, we evolved

Continuous Time Recurrent Neural Network (CTRNN) robot controllers,

which can freely self-organize their internal dynamics. This approach has

the potential to reveal possible mechanisms accounting for executive control

functions, Ruppin (2002). We have conducted multiple statistically indepen-

dent runs using both fully connected and bottleneck (Paine and Tani (2005))

CTRNN topologies, in order to investigate (i) the appropriateness of the

network structure and (ii) the self-organization of internal network dynamics

encompassing rule-switching and self-monitoring capacity.

2.1. Behavioural Task

The overall task is structured into P ∈ {1...10} phases, with each phase

including Tp trials. The number of trials Tp ∈ {14, 16, 18, 20, 22, 24} is ran-

domly specified, so that the agent can not predict the end of a phase. During

a phase p, the agent has to follow the same response rule for all Tp trials.

All trials have a predefined length of 170 simulation steps that is sufficiently

large to ensure that the agent can move in any location of the T-maze. The

external reinforcements (reward and punishment signals) are provided after

the elapse of 100 simulation steps so that agent is not rewarded from the

very beginning of the trial in the case of the NR rule.

Let’s assume for example that the agent should follow the SS rule. Each
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trial tests the response of the robot after light sample appearance at its left

or right side (their order is randomly chosen). When a trial starts, the robot

is sensing the light and stays at the initial position for five simulation steps

formulating its response decision and betting for the success of the given

trial. Then the agent is allowed to move freely in the T-maze, responding

to the aforementioned light cue. According to the SS rule, the response is

correct when the robot navigates to the end of the corridor and then turns

towards the side of the light sample. If the robot makes the correct choice, it

drives close to the target location where positive reward exists. In case that

the robot turning is not correct, it will drive to a punishment area receiving

negative reward indicating that the currently adopted rule is not correct and

it should be switched. Depending on the success of the trial the agent gains

(or losses) the amount of reward (or punishment) multiplied by the amount of

betting. During phase p, the robot is given 10 free of charge exploratory trials

to discover what is the correct rule (i.e. the agent is normally punished or

rewarded but this does not count in the evaluation procedure, see eq (5)). In

the remaining Tp−10 trials the performance of the robotic agent is evaluated

in terms of following the desired response rule. If all the responses provided

by the agent in these trials are correct, phase p is considered successful and

the agent moves to the next phase. Otherwise, the agent is immediately

interrupted and is evaluated for its performance so far.

When the agent enters into phase p+ 1, the response rule is changed, let

assume to OS. This means that the punishment and reward signals are moved

and -for the sake of our example- they are now positioned according to the

OS rule. However, the agent is not informed about the rule change and thus,
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in the first trials of the current phase it will continue responding according

to the previous rule. In that case, the agent will drive to a punishment area

indicating it is not following the correct rule. Ideally, the agent will realize

that the rule has changed and feeling less confident about the forthcoming

response, it will bet low in the next trial. In order to avoid punishments in

the forthcoming trials, the robot must reconsider its rule choice, exploring

alternative response rules, until switching to OS. After that, the agent should

increase the amount of betting, in order to acquire more gains. In phase

p+ 1, the robot is given again 10 free exploratory trials to discover the new

correct rule. In the remaining Tp+1−10 trials agent’s responses are evaluated

according to the currently correct rule.

If phase p+ 1 is completed successfully, the robot moves to phase p+ 2,

where the response rule is changed again −let say to NR, for our example−

and a similar experimental procedure is repeated. Rules are changed in a

random order, so that the agent cannot predict their sequence. Overall, the

task evaluates agent’s switching behaviour for a maximum of P phases.

2.2. CTRRN model and its Connectivity to the Robot

In order to investigate how rule switching and monitoring mechanisms

self-organize in neuronal dynamics for the task described above, we use a

Continuous Time Recurrent Neural Network (CTRNN), Doya and Yoshizawa

(1989); Beer (1995), to control a simulated robotic agent. This type of ar-

tificial neural networks provide an adequate framework for investigating the

temporal characteristics of cognitive functionality, Van Gelder (1998).

In the current study, we employ both bottleneck (Paine and Tani (2005))

and fully connected CTRNN topologies. As shown in Figure 2(a), a CTRNN
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is squeezed in the middle with the upper and lower parts of the network

interacting only through bottleneck neurons, partially segregating informa-

tion processing in different levels, maintaining minimum interactions between

them. The lower part receives the sensory flow and outputs motor flow, while

the higher part receives positive and negative reward stimuli and outputs

betting rate. In contrast, in the fully connected case (see Figure 2(b)) infor-

mation processing levels can hardly differentiate. All neurons are governed

by the standard leaky integrator equations described in previous studies,

Yamauchi and Beer (1996); Paine and Tani (2005):

dγi
dt

=
1

τ

(
−γi +

R∑
k=1

ws
ikIk +

N∑
m=1

wp
imAm

)
(1)

where γi is the state (cell potential) of the i−th neuron. All neurons in a net-

work share the same time constant τ in order to avoid explicit differentiation

of CTRNN parts. The state of each neuron is updated according to external

sensory input I weighted by ws , and the activity of pre-synaptic neurons A

weighted by wp . The activation of the i − th neuron is then estimated by

the non-linear sigmoid function according to:

Ai =
1

1 + e−(γi−θi)
(2)

where θi is the activation bias applied on the i− th neuron.

One important characteristic of the CTRNN, is the contextual memory

being implicitly represented by internal neurons dynamics. In our experimen-

tal setup, the neuronal state γi is initialized only once, and then neuronal

dynamics continue for the rest of the steps of robot behaviour (i.e. without

resetting γi). This characteristic is necessary in order to relate the internal
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dynamics of the model with the rate coding of neuron populations in the

brain, and the temporal nature of cortical processing.

In order to investigate embodied rule switching and self-monitoring mech-

anisms, we employ a two wheeled simulated robotic agent equipped with 8

uniformly distributed distance, and light sensors and two front sensors re-

ceiving positive or negative reward stimuli. The robotic platform is based

on YAKS environment, which simulates motion kinematics of the Khepera

robot. The simulator has been slightly modified for the needs of the present

study. In particular, the reward and punishment emitters which were not

provided by YAKS have been implemented as circular areas where the am-

plitude of reward (in the range [0, 1]) is linearly increasing from the perimeter

to centre.

For the case of the bottleneck architecture, the CTRNN affects the be-

haviour of the robot by means of one lower level motor neuron that specifies

the speed of the robot, and one higher level betting neuron that specifies the

risk that the agent takes for the success of a given trial. For the case of the

fully connected architecture, the motor neuron and the betting neuron are

randomly selected from the whole set of available neurons.

The activity of the motor neuron sets the speed of the left and right robot

wheels. Let assume that at a given time step s, the activation of the motor

neuron is As
m. Then, the instant left and right wheel speed of the simulated

robot is given by:

speedl = 0.4 + 0.6As
m speedr = 0.4 + 0.6(1− As

m) (3)

Following this approach the agent moves with a constant total speed, while

the activation of the motor neuron controls the direction of movement.
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Additionally, the activity of the betting neuron in the first five simulation

steps of each trial determines the amount of risk that the agent undertakes

for the success of the forthcoming response. In particular, let assume that

the activity of the betting neuron in the s − th simulation step of trial t, is

As
b. Then the amount of betting for the underlying trial is given by:

Bt =
5∑

s=1

As
b (4)

The agent will gain (loose) an amount in the underlying trial that is deter-

mined by Bt and the reward (punishment) received after the given response.

2.3. Evolutionary Procedure

In order to explore the self-organization of executive control dynamics in

CTRNNs, we use Genetic Algorithms1. We are interested in the broader

set of mechanisms with the capacity to develop rule switching and self-

monitoring, and thus, we do not explicitly specify any internal mechanisms

in the model. The network is allowed to self-organize in any appropriate way,

developing partial functionalities to accomplish the robotic WCSTB task.

Incremental Evolution. Due to the complexity of the investigated

executive control functions, it is difficult for the evolutionary process to con-

verge successfully when examining from the very beginning all the details of

the problem. In order to support the convergence of the procedure we have

separated evolution in three stages similar to Maniadakis and Tani (2009),

1In the current study, the evolutionary procedure aims at exploring the domain of

solutions of the underlying problem, and does not represent an artificial counterpart of

biological evolution
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investigating gradually more complex versions of the problem, starting with

pure rule following, turning to one-step rule switching, and finally to multiple

rule switching and betting. This is summarized in Table 1.

Additionally, we are interested in implementing CTRNNs that success-

fully deal with all the possible situations the agent may face in each evolu-

tionary stage. This means we need to simultaneously examine all rules in

the first stage, all switching combinations in the second stage, and all betting

options in the third stage. To this end, we separate the overall experiment

in six2 different tasks each one examining a particular case of the problem.

The evolutionary process will aim to design a single CTRNN accomplishing

all tasks.

In the first generations, the evolutionary procedure aims at CTRNN con-

trollers capable of adopting each one of the SS, OS and NR rules (two ran-

domly initialized tasks per rule). Since we have six tasks to evaluate per-

formance on three rules, in this stage we use two tasks per rule, which are

randomly initialized. The joint accomplishment of all tasks implies the agent

can follow the rules, giving successful responses for a long sequence of trials.

At the beginning of each task, the states of all CTRNN neurons are set to

zero (i.e. the robot is in a neutral state, without following any rule). The

robot explores the environment in order to discover the rule that must be

adopted for the successful completion of the single-phase task.

In the second evolutionary stage, the tasks are getting more complex,

2The number of tasks is specified by the six different switching combinations that may

be defined among rules, that is (i) SS→OS, (ii) SS→NR, (iii) OS→SS, (iv) OS→NR, (v)

NR→OS, (vi) NR→SS.
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searching for controllers capable of switching between rules. Specifically,

during generations 201-700, we explore tasks consisting of two phases, asking

for controllers capable of making one rule-switching step, and additionally bet

successfully for the given responses (i.e. reduce betting during the transition

period, but increase betting when the rules are successfully followed). Note

in Table 1, that each task examines a different switching combination among

rules. For all six tasks, properly positioned reward and punishment signals

indicate the response strategy that the agent should follow in each trial. The

state of CTRNN neurons is reset to zero only once, at the beginning of each

task. For all the subsequent steps neural states are kept continuous. This

means that special memory pathways have to develop in order to support

rule switching.

Finally, during generations 701-1200, we explore the stability of rule

switching and the success of the betting strategy. In particular, we inves-

tigate the performance of CTRNN controllers under multiple and unpre-

dictable changes of the correct rule as well as the capacity of the agent to

reduce betting during rule transition periods, but increase it when rules are

correctly followed. All tasks consist of a ten-phases sequence. Rules are ran-

domly assigned to the phases, while the number of trials in each phase is also

specified in a random manner. The performance of the agent is evaluated

on phase p only if it has adopted the correct rule in phase p-1. Similarly to

previous generations, CTRNN is reset to zero at the beginning of each task,

and then keeps continuous neural state when passing from one phase to the

other.

Measure of Successful Switching. To evaluate the accomplishment
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of a task, we consider two aspects of robot performance that regard (i) the

success of rule following and (ii) the success of betting. In order to verify

that rules are switched properly and the correct rule is followed at a given

trial, we are based on target positions (see Fig 1). This approach is followed

because it is necessary to have a continuous measure for the success of the

given response. Let’s assume that D is the distance between the starting

position of the robot and the target. Then, the minimum distance between

the target and the robot route can be used for measuring the success of a

given robot response. The target positions are specified according to (i) the

current rule, and (ii) the side of the light cue, as it is described in Fig 1.

Therefore, the changing of rules when we pass from one phase to the other

will specify a varying set of target positions. Overall, the ability of the agent

to switch (SW) between rules during the p phases of a task i, is measured

by:

SWi =

p∑
q=1

(
Tq∑

t=11

(
1− dmin

D

))
(5)

The evaluation starts from trial t = 11 because the first ten trials of each

phase are exploratory and they are not considered in evaluation.

Measure of Successful Betting. Furthermore, we evaluate agent’s

ability to bet correctly during a sequence of trials. Let us assume that in

a given trial t, the agent bets the amount Bt ∈ [0, 1], while after giving

the underlying response the maximum punishment received was Pt ∈ [0, 1],

and the maximum reward received was Rt ∈ [0, 1]. Then the correctness of
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agent’s betting choice (CB) in trial t is defined by:

CBt =

 Bt · (Rt − c · Pt), if Bt > 0.5

−(1−Bt) · (Rt − Pt), if Bt ≤ 0.5
. (6)

We assume that the agent is willing to bet if Bt is larger than 0.5, while it

avoids betting if Bt is less than 0.5. The first line of eq (6), examines the

case that the agent bets (i.e. Bt > 0.5). If the agent is rewarded (i.e. Rt

is high) it gains a profit, while if the agent is punished (i.e. Pt is high) it

has a loss. High values of Rt imply low values of Pt and vice versa. The

weighting coefficient for punishment is set to the relatively large value of

c = 6.0 encouraging the agent to reduce betting during the rule transition

period. Low values of the weighting coefficient (e.g. c = 1) make the agent

develop an “always-bet” strategy. In the second part of eq (6) we examine

the case of avoiding betting (i.e. Bt ≤ 0.5). When the response given by the

agent is incorrect (Pt is high), the no-betting choice was right, and the agent

makes profit. However, if the response given by the robot was correct (Rt

is high), then “avoid-betting” choice was incorrect, and the agent has a loss

of possible profit. Overall, for a task i described by a sequence of p phases,

the capacity of the agent to bet efficiently (BET) is evaluated by the partial

fitness measure:

BETi =

p∑
q=1

(
Tq∑
t=1

CBt

)
(7)

Measure of Task Accomplishment. The success of the agent on

accomplishing the task i ∈ {1, 2, . . . 6}, is obtained by the multiplication of

SWi and BETi with a weighting coefficient d:

ETaski = (SWi) · (BETi)
d (8)
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In the first stage of incremental evolution (i.e. generations 1-200) we use

d=0, emphasizing the acquisition of rules. In the second stage of evolution

(i.e. generations 201-700) d=0.5 making the agent to consider both rule

switching and betting. In the last stage, (i.e. generations 701-1200) we use

d=2.0, which makes evaluation focus on betting, considering also that the

rule switching capacity of the agent must be preserved.

Fitness Measure. All individuals encoding CTRNN controllers are

tested on the incrementally more complex versions of Task1, Task2, Task3,

Task4, Task5, and Task6 described above. The accomplishment of each task

is evaluated separately according to eq (8). Then, the “total fitness” of the

individual is estimated by:

fit =
6∏

j=1

ETaskj (9)

The multiplication operator favors individuals that can accomplish (at least

partly) all tasks, distinguishing them from those that fail in any of them.

2.4. Computational Details

The current study employs CTRNNs consisting of 6 neurons in the low

level, and 8 neurons in the high level. This corresponds to a total number

of 112 input synapses wik (96 directed to the lower part and 16 directed to

the upper part). In the case of the bottleneck CTRNN scheme the inter-

connectivity of neurons is described by 128 synapses wim (lower level: 36,

upper level: 64, inter-level connectivity: 28). In the case of the fully con-

nected CTRNN, we use 148 synapses wim (lower level: 36, upper level: 64,

inter-level connectivity: 48).
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In order to evolve CTRNN configurations, we have used populations of

1000 individuals. Real-encoding is used to map synaptic weights wik, wim ∈

[−5, 5] and neural biases θi ∈ [−1, 1] to chromosomes. The time constant τ

is not evolved, being set to 4 for all neurons. Based on the above, a com-

plete network configuration is described in a chromosome of 254 parameters

(i.e. 112+128+6+8) for the case of the bottleneck and 274 parameters (i.e.

112+148+6+8) for the case of the fully connected CTRNN.

Each candidate solution (i.e. CTRNN configuration) is separately tested

on all six tasks described above, evaluating agent’s rule-switching and betting

capacity on all possible circumstances. At the beginning of each trial, the

robot is located at a predefined starting position with its direction randomly

specified in the range [85o, 95o] degrees. The robot is kept in the same initial

position for 5 simulation steps deciding the underlying response and the

amount of betting. Then it is allowed to navigate freely in the environment

for 165 more simulation steps (the total number of simulations steps in a

trial is 170, which makes 170-5=165). Sensor noise has been set to 3%. After

the completion of one trial the simulated robot is automatically transferred

to the initial position having a new random direction, in order to start the

next trial.

A standard genetic algorithm evolves populations, driven by the fitness

measure described above. Due to the multiplicative nature of eq (9) being

very sensitive in the failure of any of the six tasks, in the current imple-

mentation we have eliminated the use of crossover. This is because the

drastic changes that crossover makes in the structure of CTRNNs impedes

the progress of evolution in the early stages of the genetic algorithm. There-
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fore, the evolution have been based only on mutation that corresponds to

the addition of a random number in [−1.5, 1.5] for wik, wim and a random

number in [−0.3, 0.3] for θi. During evolutionary steps, each parameter has

probability 4% to be mutated.

3. Results

We have conducted experiments examining the possible neuronal mech-

anisms accounting for executive control function and particularly those in-

volved in manipulating behavioural rules switching to the most appropriate

ones as environmental conditions change, and additionally those involved in

confidence development.

For each type of CTRNN architecture, we conducted 14 independent evo-

lutionary runs. For the bottleneck CTRNNs, 6 runs converged successfully,

producing robot controllers that can effectively switch rules and bet correctly.

For the fully connected network architecture, none of the evolutionary runs

produced a successful CTRNN model. Obviously, the bottleneck architecture

outperformed the fully connected one in the WCSTB, implying that partial

segregation of higher and lower level functionalities facilitates the perfor-

mance of the overall system. In the following paragraphs we investigate

further the results obtained with the bottleneck CTRNN.

An example sequence of robot trials together with the rule changes made

by the experimenter is shown in Fig 3. In the first five trials the agent

successfully follows the SS rule receiving rewards. The agent bets maximally

with full confidence on its rule-choice. Then in the 6th trial, the experimenter

changes the rule to NR. The robot that is not aware of this change responds
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according to the SS rule and is punished. Immediately after that, the amount

of betting decreases, implying weakening of agent’s confidence about the

currently correct rule. After two explorative trials, the agent finds that NR

is now the correct rule, receiving positive reward (in trial 8). Subsequently,

its confidence to the currently adopted rule is strengthened, and thus the

amount of betting increases. The agent follows the NR rule for some more

trials giving successful responses. Then in trial 15, the rule is unexpectedly

changed again, and the agent gives a wrong response which makes the amount

of betting to fall down. The agent identifies the correct rule receiving a

positive reward at trial 18. Then its confidence increases, and in the next

trial it bets high. In subsequent trials, the agent responds following the OS

rule, receiving rewards. The experimenter changes the rule again in trial 27.

It takes two more trials to the agent to identify that now SS is the correct

rule. In the following trials, the agent increased adequately the amount of

betting, responding successfully according to SS rule. Overall, the figure

shows that the robot successfully adapts the response strategy to the rules

specified by the experimenter after a short transition period of erroneous

responses.

An interesting observation in Fig 3 is the consistency of trajectory pat-

terns when the robot is heading to the same target under the same rule. For

example, the trajectories generated at the 2nd, the 4th and the 30th trial,

with the robot going to the right wing target under SS rule, they all follow a

very similar pattern. However, if we look at the 18th, the 19th and the 25th

trial, showing the trajectory of the robot when approaching the same target

but now adopting rule OS, we observe a different motion pattern than before.
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The same observation is also true if we examine the left directed turnings

for these rules, as well as NR. This clear correlation between rules and robot

trajectories, suggests that embodiment and sensory-motor interaction with

the environment support the encoding of rules in the cognitive system.

3.1. CTRNN Internal Dynamics

In order to obtain insight into the cognitive mechanisms self-organized in

the models, we have investigated the internal dynamics of the successfully

evolved CTRNNs. We found that artificial evolution generated two broad

categories of networks in which neural dynamics are qualitatively different.

For the sake of clarity of our findings we will refer to these CTRNN categories

as “Type-A” and “Type-B”3. In the totally 6 successful evolutionary runs,

solutions of Type-A appeared 4 times, while solutions of Type-B appeared

2 times. In the following we discuss the particular characteristics of Type-

A and Type-B solutions, examining one representative CTRNN from each

category.

Focusing on a period of eight trials, Fig 4 shows the time developments of

neural activation after principal component analysis (PCA), the betting rate

and the received reward. In both cases, the experimenter changes the rule

from OS to SS in the 3rd trial, with the agent adopting SS at the 5th trial.

We see that for the Type-A solution (Fig 4(a)), the betting rate develops

a peak at the onset of trials only when a reward is given in the end of

the previous trial. Furthermore, neural activity showed distinct but similar

3We note that our findings do not exclude the possibility that more solutions may exist

for the underlying problem.
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activation patterns for the cases that either OS (trials 1,2), or SS (trials 5-8)

rule is followed. A similar observation is also true for the betting activity.

In Type-B solution, neural activity keeps rather stationary values for both

rules (Fig 4(b)). The rules SS and OS are now clearly differentiated, with

the PCA of neural activation following completely different patterns for the

two cases. The same is also true for the betting rate activity.

In order to investigate how different rules are encoded in the dynamics of

the CTRNNs, we take the phase plots of higher level neural activities after

PCA, for both Type-A and Type-B (Fig 5). In the two plots, three trajecto-

ries shown by different colours represent quasi-attractors encoding rules SS,

OS and NR. In the case of Type-A (Fig 5(a)), we see three invariant sets

of dynamically changing trajectories. Interestingly, there is a partial overlap

between the trajectories encoding SS and OS rules (i.e. trajectories shown

in red and green) while NR is represented by a distinct attractor (i.e. blue

trajectory). The overlap of SS and OS attractors suggests that these rules

are organized as subclusters of a larger cluster separating them from NR.

This is a reasonable organization since SS and OS exhibit similarities when

they are both contrasted to NR. In particular, both SS and OS ask the agent

to travel to the end of the corridor and turn left or right, while NR asks

the agent to ignore cue stimulus and stay close to the starting position (see

Fig 1). As a result the approach followed by the agent in the case of Type-

A solution focusing on the differences of SS and OS, to NR facilitates the

accomplishment of the investigated problem. On the contrary, the plot corre-

sponding to Type-B solution (Fig 5(b)), shows three attractors akin to three

different fixed points. This corresponds to clearly distinct representations
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for the rules SS, OS, NR. We would like to emphasize that this organization

of rule encoding is also reasonable, since the three rules are actually inde-

pendent from one another. The completely separate representation of SS

and OS highlights their distance, while at the same time in Fig 5(b), they

both remain far from NR. In that way, Type-B solution highlights the unique

identity of each rule. In summary, the rule representations self-organized in

Type-A and Type-B solutions reflects the different interpretations one can

give to the rule-switching problem investigated in the present work.

Additionally, our observations imply that continuous dynamic systems

may accomplish two types of rule encoding. The one is represented by par-

tially overlapping attractors with invariant sets of dynamically changing tra-

jectories and the other by distinct attractors akin to fixed points. The former

case might be analogous to the monkey experiment results by Mansouri et al.

(2006). On the other hand, the latter case might be similar to the discrete-

like encoding suggested in O’Reilly (2006) even though our model does not

employ complex hand-coded mechanisms like gating of local stripes.

3.2. Betting Strategy

Moreover, we examine the success of betting strategy based on the cur-

rently adopted rule in each trial (we remind that the agent decides the amount

of betting during the very first steps of each trial). A representative sample of

80 consecutive trials corresponding to Type-A and the Type-B results is ex-

plored in Fig 7, demonstrating the time history of the average neural activity

principal components at the onset of trials, the betting rate, and the reward

at the end of the underlying trials. The time of rule changes (specified by the

experimenter) is indicated by colour changes in the plots. For both Type-A
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and Type-B, we observe that the neural activation pattern differentiates de-

pending on the currently adopted rule. Furthermore we observe that neural

activity is different when the correct rule is unknown (rule transition period

in the first trials of each phase), or successfully identified (rule following pe-

riod of a phase). In the same way, the amount of betting decreases during

the rule exploration period, but rises up when rules are successfully followed.

Interestingly, the amount of betting in successful trials differs depending on

the rules adopted, keeping nearly constant values. In the case of Type-A,

the betting rate for NR is the highest, for OS is the lowest, while for SS is

in the middle. For Type-B, we see a similar ordering in the betting rates of

the three rules (NR:high, SS:middle, OS:low), with the average betting rate

however, being higher than Type-A.

We have studied further the obtained CTRNNs in order to explain how

rules are linked with the betting amounts. Statistical analysis of agent’s

behaviour under “no-rule-change” conditions revealed that the amount of

betting is related with rule stability. In the no-rule-change experiment the

agent has to follow a single rule for a long sequence of trials, without switch-

ing. Making statistics of the obtained CTRNN solutions on this test, we

observed that there is a small chance for the agent to unreasonably switch

the adopted rule, even if it is normally rewarded. For the case of Type-A

solution, Table 2(a) shows the probability of unreasonable switching for the

three rules, together with the corresponding average rates of betting for each

case. We observe that rules OS and NR having the lowest and highest bet-

ting rates respectively, inversely show the highest and lowest unreasonable-

switching probabilities. The same relationship is also valid for the case of
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Type-B solution, as it is shown in Table 2(b). Note that in the latter case,

the probabilities of unreasonable switching are generally lower compared to

the Type-A solution, which explains the higher betting rates for Type-B.

This finding implies that the agent has developed a two-fold context-

dependent monitoring system that affects betting. First, the agent employs

some kind of objective criteria that are based on the probability of success or

failure of forthcoming trials (i.e. when reward or punishment is more likely)

in order to increase or lower the amount of betting. Second, the agent uses

subjective criteria, considering its own capacity to stably follow a given rule.

On this basis, an internal confidence mechanism makes the agent bet higher

for more stable rules.

3.3. Relevance to Biological Data

The investigation of the implemented models revealed the emergence of

brain-like characteristics in the CTRNNs. More specifically, the bottleneck

connectivity used in the model enforces the modular organization of the over-

all system separating the processing of high and low level cognitive issues,

in a way that resembles the organization of the primate brain. The up-

per part of the network is mainly involved in rule manipulation and betting,

which clearly indicates PFC-like functionality, Ko et al. (2008); Fecteau et al.

(2007); Bechara et al. (1997). Moreover, the lower part of the network consid-

ers mainly environment interaction issues, similar to the role of the posterior

sensory-motor areas in the primates’ brain. Note that the mechanisms of

low-level control are shaped in the early generations of the tuning procedure,

while the high-level skills need much more time to shape and stabilize. This

is in agreement with the primates developmental procedure that starts with
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acquiring the capacity to interact efficiently with the environment, and then

proceeds with high-level cognition and executive control functioning.

Rule preservation in WCST is a known deficit for adult pathologic sub-

jects (e.g schizophrenia), Everett et al. (2001). The Type-A and Type-B

models discussed in the previous sections do not show any type of preserva-

tion characteristics. However, the different rule switching mechanisms they

have implemented differentiate the average number of trials needed to suc-

cessfully identify the new correct rule (4.7 for Type-A and 1.8 for Type-B

solutions). In an attempt to simulate pathologic brain functioning, we have

investigated the effect of artificially reduced neural activity in the higher

part of the CTRNNs. In all successful models, we have found pairs of high

level neurons that after a 30% - 50% reduction on their activity significantly

eliminate the rule switching capacity of the models. Note that the artificially

imposed disorder reduced flexibility on rule switching does not actually affect

their navigation skills which remain intact.

Regarding the cognitive dynamics involved in betting, our model follows

the basic rule of probabilistic cognition that explains the majority of hu-

man risky decisions. According to the probabilistic explanation of decision

making, subjects decisions aim to maximize the utility expected from their

behaviours, Luce and Raiffa (1989); Boyer (2006). This is also a major as-

sumption of reinforcement learning methods, Sutton and Barto (1998). Simi-

larly in our model the agent bets higher for the more stably represented rules

that have larger probability to lead to a positive feedback, while bets lower

for less stable rules. A number of modern studies demonstrated that human

behaviour is not entirely consistent with the above mentioned probabilis-
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tic approach, especially in non-laboratory, real life conditions, Boyer (2006).

More specifically, humans in real-life are often risk-aversive or risk-seeking

with the latter showing a clear peak during adolescence. Besides genetic

parameters, the operating environment is one important factor that shapes

our mood for risk, Dodge and Pettit (2003). A similar observation has also

appeared in our experiments. More specifically, the coefficient c that weights

negative reward in eq (6), determines how important is punishment signal

for the survival of an agent in the next evolutionary generation. We observed

that c significantly biases the mood for risk developed by the agents. Low

c values lead to the development of gradually more risk-seeking strategies,

while high c values lead to gradually more risk-aversive strategies. This dual

performance for our models is similar to Frank and Claus (2006), exploring

the role of orbitofrontal cortex in risky decisions.

4. Discussion

In the current work we investigate rule-switching and confidence devel-

opment mechanisms in robotic agents. We examine the neurodynamics self-

organized in CTRNN models in order to reveal possible working principles

for the human brain. Our study follows a minimum constraint approach that

avoids assigning predefined roles at different parts of the artificial cognitive

system. The fact that statistically independent evolutionary runs produced

results with similar qualitative characteristics, suggests that cortical mech-

anisms analogous to the ones found in our models may also govern brain

functionality. More specifically, our study suggests the following principles

that may apply to the real brain:
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• High level cognitive processes are possible to work on the basis of dy-

namical systems operating in a continuous time and space domain.

This contrast to the traditional approaches explaining high level brain

workings adopting a discrete symbol manipulation approach, O’Reilly

(2006); Dayan (2007). Such a dynamical systems framework is con-

sistently supported by our previous robotic studies, Paine and Tani

(2005); Yamashita and Tani (2008); Maniadakis and Tani (2009), as

well as other neuromodelling works (e.g. Schapiro and McClelland

(2009)) arguing that many rule-based processes accounting for human

behaviours could be better represented by means of a continuous per-

spective. Interestingly, the dynamical systems approach may develop

both stationary-like encoding, as well as dynamic encoding in the form

of invariant sets. The latter case matches very well with electrophysio-

logical brain imaging data revealing a fluctuating (rather than station-

ary) cortical activity in the brain of primates as it is shown in Mansouri

et al. (2006).

• The embodiment of the cognitive system and the interaction of the

agent with the environment, affect the self-organization of high level

cognitive mechanisms in the case of dynamic representations. The ne-

cessity for an actual behavioural response (i.e. a sequence of motor

commands) is an important feature of our approach which clearly sep-

arates our study from previous works aiming at instant conceptual

responses (for example the switching task presented in Rougier and

O’Reilly (2002) concentrates on ‘naming’ the rule rather than giving

any particular behavioural response, a theoretical problem interpreta-
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tion that is also followed in Dehaene and Changeux (1991); Stemme

et al. (2007a)). However, as it is shown from our results (i.e. Type-B

solutions) high-level functions may adopt stationary-like representa-

tions which seem to significantly improve the stability of the system

against sensory noise (see Table 2).

• Our findings showed that a loose segregation of the cognitive model

using by design bottleneck architectures, enhances the functionality of

the global system. Non-structured and fully connected neural systems

have significantly lower chances to accomplish complex functionalities.

The partial segregation of system components facilitates the emergence

of different roles in each subsystem, and the self-organization of func-

tional hierarchies. A possible correspondence between our CTRNN

models and the real brain assigns the higher part of the CTRNN to

Prefrontal cortex and the lower part to posterior sensory-motor cor-

tices. This is because the higher CTRNN part considers rule decision,

and response planning, while the lower part takes care of motion details

and the actual interaction with the environment.

• The self-organization of different types of solutions in our robotic WC-

STB experiments suggests that some high level cognitive functionalities

may are not universally organized in primates’ brains. In particular,

the obtained results showed that Type-A solutions focus on the simi-

larity of SS and OS rules (compared to NR), while Type-B solutions

follow uncorrelated and independent representations for SS and OS

adopting an equi-distance representation for all the three rules. This
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finding suggests that the different interpretations that may be given

to a problem are directly affecting the mechanisms that will be used

to face the problem. This observation addresses a rather obvious but

rarely considered parameter of cognition, that if two subjects under-

stand a given problem in different ways, then it is likely to use brain

resources differentially when solving the problem. This suggestion is

mainly relevant for high level skills because they are not directly linked

with the phylogenetically strict characteristics of the low-level sensory-

motor system.

• Finally, our results showed that artificial confidence mechanisms in-

volved in betting, rely on objective criteria (i.e. what is the probability

of receiving a reward in the next trial) as well as subjective criteria (i.e.

how efficient the agent is in following a given rule). This mechanism

that resembles the role of the critic module in reinforcement learning

schemes, Sutton and Barto (1998), suggests a stronger self-monitoring

functionality for the critic.

4.1. Generalisation

The strong coupling between cognitive dynamics and embodiment that

has been observed in our results (see paths in fig 3) raises the issue of

whether dynamic models can perform successfully when environment prop-

erties change. This is because, in the context of embodied cognition, en-

vironment seems to significantly facilitate keeping high-level information in

working memory. To investigate further this issue we have recently explored

the capacity of robotic agents to perform rule switching in multiple T-maze
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environments having different structural characteristics, Maniadakis et al.

(2011a). The task considered in this study was very similar to the one de-

scribed in the present work, with the additional difficulty for the robot to

successfully apply the delayed response rules in three different environments.

This means that there were not constant environment properties that could

support encoding rules in working memory, i.e. the moment of turning to

the left or right side greatly varies between the three environments. After

the evolution of CTRNN controllers, the analysis of neural activity showed

that in the higher level of the network, three different shapes of attractors

are implemented each one encoding one of the T-maze types (see fig 8, com-

paring SS and OS activity for Maze1, Maze2, Maze3). This observation

indicates that dynamical models abstract high-level representations of en-

vironment types in order to improve robustness against sensory variations.

Based on this abstraction, the agent successfully adjusts how rules are ap-

plied in each maze. Note that the agent can also operate successfully in new

(previously unexperienced) environments that combine the characteristics of

the known T-mazes (however, it fails in new over-sized mazes e.g. when

the length of the corridor significantly exceeds the length that the agent has

already experienced). Overall, by monitoring and abstracting environment

specific information, agents can sufficiently generalize the representation of

rules adapting smoothly their behavior in multiple environments. Note ad-

ditionally, that the three different mazes could have been represented in the

higher level by fixed point’s. However, the model prefers attractor encoding.

Intuitively, this is because dynamic approaches (i) enable operating success-

fully in mazes with varied characteristics and (ii) seems to facilitate switching
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from one maze type to the other (i.e. the partial overlap of attractors repre-

sentations alleviates moving, in mental and behavioral terms, from one maze

to the other).

In order to investigate further the generalization capacity of dynamic ap-

proaches we have also explored the role of temporal constraints in shaping

neurodynamics, Maniadakis et al. (2011b). Keeping the task of rule switch-

ing in T-maze environments, we have investigated CTRNNs that can suc-

cessfully deal with trials having either static (predefined) or dynamic (free

agent’s choice) temporal durations. The obtained results revealed that dif-

ferent principal components of neural activity undertake the responsibility

of handling the two different versions of the experimental setup. In other

words, two subsystems are implemented which consider the two modes of

operation of the cognitive system.

Summarizing, according to the aforementioned supplementary studies,

Maniadakis et al. (2011a,b), dynamic cognition approaches have at least two

different mechanisms to support generalization, which account for (i) the

abstraction of high-level representations and (ii) the internal formulation of

partially distinct subsystems. Both can deal with sensory varying versions

of a given task, improving the robustness of the cognitive process. Of course

there are important generalization aspects which have not been addressed in

our experiments, such as the ability to incorporate new behavioral rules, to

apply known rules in drastically different situations, to combine knowledge

obtained from different tasks and others. These issues need systematic in-

vestigation to conclude whether dynamic approaches can sufficiently explain

high level cognitive processes and in which terms they might be more or less
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efficient than static representations.

5. Conclusions

In the present work we employ CTRNN models to explore cognitive pro-

cesses involved in rule switching and confidence, in the domain of artificial

agents. Our computational experiments suggest new ways for approaching

high-level cognitive functions in the real brain.

In the future we will investigate whether the results of the current work

can be used on humanoid robot control that provides a rather realistic frame-

work for exploring complex cognitive phenomena, allowing also the direct

comparison of artificial cognitive dynamics with primate’s brain.
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Figure 1: A graphical interpretation of the three sample-response rules used in our ex-

periments. Each box explains one sample-response rule. In each box, the first line shows

correct robot response when light appears to the left side of the robot, while the second

line shows correct response when light appears to the right.
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Figure 2: Schematic representation of the bottleneck and fully connected CTRNNs ex-

plored in the present study.
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Figure 3: The behaviour of the agent in a sequence of trials. Light is depicted with a

double circle, goal position is depicted with an ×, punishment area is depicted with a gray

circle, while robot path is depicted with a black line starting from the bottom of the T-

maze. In the present figure we follow a more compact representation of a sample-response

trial than the one shown in Fig 1, in order to demonstrate an adequately large number of

robot trials.
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(a) Type-A (b) Type-B

Figure 4: A comparison of the internal dynamics of Type-A and Type-B CTRNNs, for a

sequence of eight trials (separated by vertical lines) during rule transition from OS to OS.

The trials corresponding to OS are shown in green, while trials corresponding to SS are

shown in red. In the top subplots we show the first two principal components of neural

activity. The subplot in the middle depict the activity of the betting neuron. Finally,

the subplots in the bottom show the reward received by the agent in each trial. We can

easily see that missing rewards (i.e. the response of the agent is not correct) destabilize

the dynamics of the CTRNNs facilitating the transition from one rule to the other.
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(a) Type-A (b) Type-B

Figure 5: Phase plots of the principal components of neural activity for the Type-A and

Type-B CTRNNs. The x-axis corresponds to the first principal component, and y-axis

corresponds to the second principal component. The phase plot of each rule is shown

in a different colour, with red corresponding to SS, green corresponding to OS, and blue

corresponding to NR. We observe that in the case of Type-A solution there is a partial

overlap in the representation of rules SS and OS, while in the case of Type-B solution all

rules have a clearly distinct representation.
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(a) Type-A (b) Type-B

Figure 6: The averages of the first two principal components in the beginning of trials.

The plots associated to Type-A and Type-B solutions correspond to a sequence of trials

investigating rule transitions from SS to NR and then to OS.
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↓ NR ↓ OS ↓ SS ↓ NR ↓ OS ↓ SS

(a) Type-A (b) Type-B

Figure 7: A graphical illustration of the relationship between neural activity, betting rate

and received reward, for the Type-A and Type-B CTRNNs. In both cases, a sequence of

80 consecutive trials is depicted. The transitions between rules are illustrated by colour

changes. The trials corresponding to SS are shown in red, the trials corresponding to NR

are shown in blue, and those corresponding to OS are shown in green. For both Type-A

and Type-B, the subplot in the top shows the average of neural activity first two principal

components at the onset of trials, the subplot in the middle shows the amount of agent

betting in each trial, and the subplot in the bottom shows the amount of reward received

by the agent in each trial (zero reward indicates non-successful responses).
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Rule SS
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Rule OS
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Figure 8: Phase plots of neural activity in the upper level of the CTRNN, when the agent

follows the SS and OS rule in three different T-maze environments. For each plot, the

x-axis and y-axis correspond to the first and second principal component respectively. For

more details, see Maniadakis et al. (2011a).
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Evolutionary Procedure for Rule Switching

Gene- Task Descri-

rations Type ption

1st Stage Task 1: CTRNN reset- SS

Task 2: CTRNN reset- SS

Task 3: CTRNN reset- OS Single

Task 4: CTRNN reset- OS Phase

Task 5: CTRNN reset- NR

1-200

Task 6: CTRNN reset- NR

2nd Stage Task 1: CTRNN reset- SS → OS

Task 2: CTRNN reset- SS → NR

Task 3: CTRNN reset- OS → SS Two

Task 4: CTRNN reset- OS → NR Phases

Task 5: CTRNN reset- NR → OS

201-700

Task 6: CTRNN reset- NR → SS

3rd Stage Task 1: CTRNN reset- SS → OS → NR → SS . . . OS

Task 2: CTRNN reset- SS → NR → SS → OS . . . NR

Task 3: CTRNN reset- OS → SS → OS → NR . . . SS Multiple

Task 4: CTRNN reset- OS → NR → SS → OS . . . SS Phases

Task 5: CTRNN reset- NR → OS → NR → SS . . . NR

701-1200

Task 6: CTRNN reset- NR → SS → OS → NR . . . OS

Table 1: The incrementally more complex tasks used in the evolutionary procedure inves-

tigating switching between three rules.
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Rule Failure Average

Probability Betting

SS 1.78% 0.73

OS 2.99% 0.42

NR 0.0% 0.97

Rule Failure Average

Probability Betting

SS 0.01% 0.93

OS 0.08% 0.77

NR 0.0% 0.98

(a) Type-A (b)Type-B

Table 2: The relationship between failure probability and betting, for the Type-A and

Type-B CTRNNs. In both cases, we see that the agent bets higher for more stable rules.
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