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Abstract

The current paper proposes a novel dynamic neural network model for categoriza-
tion of complex human action visual patterns. The Multiple Spatio-Temporal Scales
Recurrent Neural Network (MSTRNN) adds recurrent connectivity to a prior model,
the Multiple Spatio-Temporal Scales Neural Network (MSTNN). By developing
adequate recurrent contextual dynamics, the MSTRNN can learn to extract latent
spatio-temporal structures from input image sequences more effectively than the
MSTNN. Two experiments with the MSTRNN are detailed. The first experiment
involves categorizing a set of human movement patterns consisting of sequences
of action primitives. The MSTRNN is able to extract long-ranged correlations in
video images better than the MSTNN. Time series analysis on neural activation
values obtained from the recurrent structure shows that the MSTRNN accumulates
extracted spatio-temporal features which discriminate action sequences. The sec-
ond experiment requires that the model categorize a set of object-directed actions,
and demonstrates that the MSTRNN can learn to extract structural relationships
between actions and action-directed-objects (ADOs). Analysis of characteristics
employed in categorizing both object-directed actions and pantomime actions
indicates that the model network develops categorical memories by organizing
relational structures between each action and appropriate ADO. Such relational
structure may be necessary for categorizing human actions with an adequate ability
to generalize.

1 Introduction

Recently, a convolutional neural network (CNN) [1], inspired by the mammalian visual cortex, has
shown remarkably better object image recognition performance than conventional vision recognition
schemes employing elaborately hand-coded visual features. A CNN trained with 1 million visual
images from ImageNet [2] can classify hundreds of object images with an error rate of 6.67% [3],
near-human performance [4]. However successful in the recognition of static visual images, CNNs
have poor dynamic image processing capability. The model lacks the capacity to process temporal
information. A typical approach to overcome this limitation has been to use a 3D Convolutional
Neural Network (3D CNN) [5]. With this model, dynamic visual images can be recognized through
convolutions in the temporal and spatial domains in a fixed window. 3D CNNs have shown good
performance on many public human action video datasets such as UCF-101 [6] and HMDB-51
[7]. Even a CNN without any temporal processing capability is able to achieve recognition rates of
73% and 40.5% on UCF-101 and HMDB-51, respectively [8]. Baccouche et al. [9] has proposed a
two-stage model to extract temporal information over entire image sequences, also adding a Long



Short-Term Memory (LSTM) network [10] as a second stage of a 3D CNN. Similarly, Venugopalan
and colleagues [11] trained an LSTM (for the generation of corresponding descriptive sentences)
extended CNN (for video processing) with nearly a hundred thousand videos and corresponding
descriptions with good test results. And recently, Shi et al. [12] developed a convolutional LSTM
that has LSTM cells embedded in the structure of the CNN for precipitation nowcasting.

For machine vision systems to learn the semantics of human actions, they have to perceive continuous
visual streams and extract underlying spatio-temporal structures present in action patterns [13][14].
In the process, complex human actions can be characterized as compositions both in spatial and
in temporal dimensions, which can then decomposed into and even creatively composed from
reusable parts. "Temporal compositionality" represents goal-directed human actions as sequential
combinations of commonly used behavior primitives [13]. "Spatial compositionality" represents
the coordination of movement patterns in different limbs. Recognizing this distinction, Jung et al.
proposed the Multiple Spatio-Temporal Scale Neural Network (MSTNN) [15] model to impose both
spatial and temporal constraints on CNN neural dynamics. Specifically, Jung et al. adjusted the
time constants of the lower layers to a smaller values than that of the higher layers in the MSTNN
to make the temporal receptive field size of each layer to increase as the layer goes up. And the
spatial receptive field size of each layer in the MSTNN also increases as the layer goes up as in
the case of the CNN. As a result, the model could extract spatio-temporal features in a hierarchical
manner. This characteristic of the MSTNN differentiates the MSTNN from the rest of the models
that were discussed previously. And also, the characteristic is consistent with the neurophysiological
evidences that increasingly large spatio-temporal receptive windows are observed in the human cortex
[16][17]. In Jung et al.’s work, the MSTNN was able to categorize different sequential combinations
of behavior primitives demonstrated by different subjects by learning from exemplar videos. However,
the MSTNN is limited in that it extracts temporal features of input action videos only utilizing the
slow damping dynamics of its leaky integrator neurons. Therefore, the stored information of extracted
spatial features decays over time, leaving the model to depend largely on extracted spatial features of
recent time steps instead. As a result, the model is not able to learn complicated, temporally extended
sequences. In order to overcome these limitations, the current work adds leaky integrator neural units
with recurrent connections at each level of the MSTNN. With this addition, extracted spatial features
no longer decay over time. The extracted spatial features of previous time steps can be preserved, or
decayed, or amplified with the recurrent weights. This new model, the Multiple Spatio-Temporal
Scales Recurrent Neural Network (MSTRNN) contains both leaky integrator neural units without
recurrent connectivity as feature units and leaky integrator neural units with recurrent connectivity as
context units, with each type at each level employing identical time constants.

Learning compositional action sequences requires the development of temporal correlations in
memory. The present work investigates how a recurrent neural structure can enhance this capacity,
and compares the performance of the MSTRNN and MSTNN models in the categorization of long
sequences of primitive actions to observe the degree of enhancement. Analysis of the internal
representation of the MSTRNN further reveals how neural activation patterns develop inside the
model. Then, the paper looks more deeply into the development of structural relationships between
objects and transitive actions. For this purpose, a video dataset of object-directed human actions was
prepared. This set of actions was designed so that the category of each action and action-directed
object (ADO) could not be inferred in a trivial manner. Also, a pantomime (actions without ADOs)
version of the dataset was prepared and the MSTRNN was tested on it to see if the model can infer
correct ADOs from given pantomime action image sequences, including cases where non-ADOs
(distractors) are present in image sequences. It is impossible for the model to perform correct ADO
categorizations on the pantomime dataset without exploiting links between actions and ADOs that
are learned from the training data of object-directed human actions.

2 Materials and Methods

The Multiple Spatio-Temporal Scales Recurrent Neural Network (MSTRNN) is a spatio-temporally
hierarchical neural network model that classifies videos. The model has the structure of the Convolu-
tional Neural Network (CNN) with additional recurrent structures included in each convolutional
layer. The recurrent structure plays an important role in extracting latent temporal information from
exemplar temporal sequences [18][19]. Context neurons constituting recurrent structures are leaky



integrator neurons with time constants that are similar to those used in the Multiple Timescales
Recurrent Neural Network (MTRNN) [20].

2.1 Model architecture

The MSTRNN model consists of the following four layers: input, context, fully-connected, and
an output layer as shown in Figure 1 (A). The MSTRNN receives RGB image sequences in the
input layer. Then from the image sequences, multiple context layers extract spatio-temporal features
from the input image sequences. The extracted spatio-temporal features go through several layers
of fully-connected layers. Then finally, in the output layer, the model classifies actions and action-
directed-objects (ADOs) in object-directed human action videos. The output layer utilizes two
softmax vectors to categorize both the action and the ADO of the input video.
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Figure 1: The architecture of the MSTRNN. (A) The full architecture of the MSTRNN. The
MSTRNN consists of an input layer, N context layers, two fully-connected layers (optional), and M
softmax vectors. N and M are adjustable numbers, and a 7 is a time constant for a context layer. (B)
The structure of the context layer. An arrow with a 7 indicates decay dynamics of leaky integrator
neurons in either the feature units or the context units. The arrow with "rec" indicates recurrent
connections made on the context units
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The context layer simultaneously extracts spatio-temporal features, and is the core building block of
the MSTRNN. The context layer consists of feature units, pooling units, and context units as shown
on Figure 1 (B). Each context layer is assigned a time constant that controls the decay dynamics
of the context units and the feature units. A larger time constant makes the internal states of leaky
integrator neurons in the context layer change more slowly at each time step. With a smaller time
constant, the internal states of the leaky integrator neurons change faster at every time step. The
MSTRNN assigns a larger time constant to higher layer leaky integrator neurons in order to develop
a spatio-temporal hierarchy [15][20].

The feature units in a context layer are composed of leaky integrator neurons with time constants
instead of static neurons as are normally used in a CNN [15]. The feature units are capable of
extracting temporal features via decay dynamics of leaky integrator neurons, as well as capable of
extracting spatial features by convolutional operations. Feature units extract features from context



units and pooling units of the previous context layer as shown on Figure 1 (B). The features in the
pooling units are extracted from them via convolutional kernels, and the features in the context units
are extracted from them with the weights connecting the feature units and the context units belonging
to the same retinotopic positions of the maps. Feature units and the context units in the same context
layer have the same map sizes, and are connected in this way so that the feature locality is retained.
The forward dynamics of the feature units are explained in Equation 1 and 2. The internal states
and the activation values of the feature units at the /th context layer, the mth map of feature units, at

time step 7 and at retinotopic coordinates (x, y) are represented as f,-¥ and f in Equation 1 and 2,
respectively.
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where 7 represents the time constant, & is the convolutional kernel, b is the bias used in the convolution
operation, * is the convolution operator, N is the total number of maps of the pooling units, A is
the total number of maps of the context units. Additionally, w is the weight connecting the context
units and the feature units, p and c are the activation values of the pooling units and the context units
respectively. The first term on the right hand side of Equation 1 describes the decay dynamics of the
leaky integrator neurons. The second term represents the convolution of the features in the pooling
units. And, the third term describes the features extracted from the context units of the previous
context layer. The hyperbolic tangent function recommended by LeCun et al. [21] is used as the
activation functions of the feature units (Equation 2).

The context units consist of maps of leaky integrator neurons with recurrent weights. They extract
spatio-temporal features in a similar manner to the feature units, except that they have enhanced
temporal processing capacity by feeding back spatio-temporal information of the previous time
step by the recurrent weights. To be specific, with recurrent connections, the context units exhibit
recurrent dynamics in addition to decay dynamics normal to leaky integrator neurons. Therefore, the
recurrent dynamics enhance the extraction of latent temporal features from input image sequences
in the context units [18][19]. The recurrent connections are made to each neuron and also to the
neurons of different maps in the same retinotopic positions to retain the locality of spatial features.
Besides recurrent connections, context units have convolutional kernels that extract features from
pooling units in the same layer (see Figure 1 (B)). The forward dynamics of context units are shown
in Equation 3 and 4. Internal states and activation values for the ath map of the context units in the
Ith context layer at time step ¢ and at retinotopic coordinates (X, y) are represented as égy and cf;y
respectively.
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where 7 represents the time constant, k is the convolutional kernel, b is the bias for the convolution
operation, * is the convolution operator, N is the total number of maps of the pooling units, B is the
total number of maps of the context units, w is the recurrent weight of the context units, p is the
neural activations of pooling units. The first term on the right hand side of Equation 3 describes the
decay dynamics of the leaky integrator neurons. The second term represents the convolution of the
pooling units. The third term describes the recurrent dynamics in terms of recurrent weights. The
neural activations of the context units in the previous time step are supplied through the recurrent
weights. For the activation function of the context units, the model uses the same hyperbolic tangent
function that was used for the feature units as shown in Equation 4.



2.2 Training method

Training was conducted in a supervised manner using the delay response scheme [15]. Black frames
were input to the MSTRNN after each input image sequence during the delay response period. In this
period, errors were calculated for each time step by comparing the outputs of the MSTRNN with the
true labels of the input image sequences using Kullback-Leibler divergence. The cost function used
in the training phase is shown in Equation 5. The error calculated for a whole input image sequence
is represented as E.
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where d is the delay response period, T is the input video’s duration (length of frames), S is the total
number of softmax vectors in the output layer. N(s) is the total number of neurons in the sth softmax
vector of the output layer, o is the true output, and o is the output categorized by the MSTRNN. The
true output was given as the one-hot-vector for each softmax vector. Here, the term one-hot-vector
refers to a vector of values where a value is “1” for the one and only correct category and “0” for
the rest of the categories. The error for each input action video is obtained with Equation 5. The
error is used for the optimization of learnable parameters with the back propagation through time
(BPTT) [22], and the stochastic gradient descent algorithms. The learnable parameters are, k, b, w of
Equation 1, &, b, w of Equation 3, weights held by the fully-connected layers, and the weights held
by the output layer. To prevent overfitting, all learnable parameters (except biases) were learned with
a weight decay of 0.0005 [23].

3 Results

The current study examines the performance of the Multiple Spatio-Temporal Scales Recurrent
Neural Network (MSTRNN) given two types of experimental task. The first task compares the
categorization performance of the model with that of the Multiple Spatio-Temporal Scales Neural
Network (MSTNN) [15]. Then, the behavioral characteristics of the context layer in the MSTRNN is
analyzed. The second task examines how the MSTRNN can learn to categorize a set of object-directed
actions with an appropriate capacity to generalize.

3.1 Learning to categorize the 3 actions concatenated Weizmann dataset
3.1.1 The 3 actions concatenated Weizmann dataset

We compared learning and categorization capabilities of the MSTRNN and the MSTNN with a set of
compositional long visual sequences. A set of exemplar video data was prepared by concatenating
videos of 3 different human actions (jump-in-place (JP), one-hand-wave (OH), and two-hand-wave
(TH) as shown on Figure 2) from the Weizmann dataset, resulting in 27 categories, and one video
clip of concatenated actions for each category. 27 videos for each of 9 subjects exist in the dataset.
The foreground silhouettes of the resulting 3 actions concatenated Weizmann (3ACW) dataset were
emphasized by background subtraction utilizing background sequences, and were resized to 48x54
(48 pixels wide, 54 pixels high).

3.1.2 Experimental setting

The MSTRNN and the MSTNN models were trained (see the “Training method” section) with the
same learning rate (0.1). Both models were trained for 50 epochs. For the evaluation of categorization
performance, the leave-one-subject-out cross-validation (LOSOCV) scheme was used. On this
method, for each of 50 training epochs, 1 subject was selected from the 9, his/her video clips were
left out of the training data, and these were used as test data for that epoch. 9 sets of test accuracies
from the 9 test subjects were averaged (rounded to the first decimal point). The highest accuracy is
reported in evaluation of performance.

Structurally, both the MSTRNN and the MSTNN models have an input layer with one feature map
for the input of grayscale video images. The size of the feature maps is 48x54. The models have



identical output layer structures also, consisting of a softmax vector with 27 neurons. The models
were designed to have only one softmax vector output since they only categorize the action category.
Each of the softmax neurons in the vector represents one of 27 movement categories in the 3ACW
dataset. Except for the input and output layers, the structure of the MSTRNN and the MSTNN
are specified in Table 1 and 2, respectively. The only difference between their architectures is the
addition of context units, and number of maps that consist the feature units in the layers of the models.
The number of weights used in the MSTRNN and MSTNN were designed to be similar (MSTRNN:
495,327 weights, MSTNN: 497,506 weights) by adjusting the number of maps that are used in feature
units in each layer of the MSTNN while also keeping similar ratio between the numbers of maps in
adjacent layers (see Figure 1) (B)).

(A) (B) (C)

Figure 2: The 3 human action categories used from the Weizmann dataset. (A) Jump-in-place.
(B) One-hand-wave. (C) Two-hand-wave

Table 1: Parameters of the context layers in the MSTRNN model used in the experiment.

Feature units Pooling Context units
Context Time Kernel | Map Total Pooling [ Map Total Kernel | Map Total
layer constant size size number size size number size size number
1 2 S5x11 44x44 6 2x2 22x22 6 7x7 16x16 3
2 5 7x7 16x16 50 2x2 8x8 50 8x8 1x1 25
3 100 8x8 1x1 100 - 1x1 - 1x1 1x1 50

Table 2: Parameters of the context layers in the MSTNN model used in the experiment.

Feature units Pooling units
Time Kernel | Map Total Pooling [ Map Total
Layer Type constant size size number size size number
1 Convolutional 2 S5x11 44x44 7 - - -
2 Max-pooling - - - - 2x2 22x22 7
3 Convolutional 5 X7 16x16 58 - - -
4 Max-pooling - - - - 2x2 8x8 58
5 Convolutional 100 8x8 1x1 116 - - -




3.1.3 Experimental results

The categorization accuracy on the 3ACW dataset was 83.5% for the MSTRNN and 44% for the
MSTNN (as shown in Figure 3). This result implies that context units with recurrent weights improve
categorization of long concatenated human action sequences.
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Figure 3: The mean categorization accuracy on the 3ACW dataset along the training epochs.

Internal dynamics during the ideal case, when all videos of a test subject left out from the training of
the model were classified correctly, were assessed by time series analysis on the neural activation
values obtained from the last context layer of the MSTRNN. The time series of neural activations
were visualized by using principle component analysis (PCA) [24]. Only the first and the second
principle components of the neural activations were used for the visualization. In the following
discussion of this analysis, “X” indicates arbitrary primitive actions, and the time series of neural
activations obtained when given action primitives A, B, C in a sequential manner is indicated by
trajectory A-B-C.

Neural activations of the feature units (Figure 4) at any given time step are largely affected by the
primitive action of the input video at that time step. Accordingly, neural activations approached
points representative of the current action in the PCA mapped space. Trajectories JP-X-X, OH-X-X,
TH-X-X approached markers “JP”, “OH”, “TH” respectively before the presentation of second
primitives, as shown in Figure 4 (A). Figure 4 (B) shows trajectories of X-JP-JP in order to illustrate
feature unit characteristics more clearly. In this figure, the JP-JP-JP trajectory approached the marker
“JP” in the figure. But the trajectory OH-JP-JP and TH-JP-JP first approached regions marked “OH”
and “TH” respectively, before the second and third primitives were shown. After the second and the
third primitives (JP and JP), the trajectories changed their paths and approached the region marked
“JP”. Similar characteristics are observed in JP-JP-X trajectories, as well (see Figure 4 (C)).

The decay dynamics of the feature units are responsible for trajectories in Figure 4 approaching the
markers that represent current action primitives. As described in Equation 1, the internal neural
values of the feature units are affected by both current spatial-temproal features processed from the
previous context layer and the internal neural values of the units of the previous time step. On this
method, previously extracted spatial features does not effectively affect the internal neural values of
the current time step to keep the track of which action primitives came in the past since they gradually
decay over time. This makes the current trajectories approach abstract points (markers “JP”, “OH”,
“TH” in Figure 4) in PCA mapped space corresponding to the primitive actions with which the model
is presented.

Unlike the trajectories obtained from the feature units, the trajectories obtained from the context
units of the last context layer do not simply approach positions representative of currently displayed
action primitives in the PCA mapped space, but tend to differentiate the primitives from each other.
Due to the recurrent structure in the context units, the memory of the context units does not simply
decay as in feature units. Rather, the units retain important spatio-temporal features extracted during



previous time steps and more or less reinforced during current steps. In this way, by accumulating
extracted spatio-temporal features over time during training, the trajectories obtained from context
units is able to differentiate different primitives shown to the MSTRNN during testing. As shown in
Figure 5 (A), the trajectories that start with same first primitives passes through same path before the
second primitives are shown to the MSTRNN. The trajectories differentiates in terms of the second
primitives when they appear (Figure 5 (B)). And, the trajectories are further differentiated in terms of
the third primitives as well (Figure 5 (C)). The differences between the trajectories of context units
and feature units come clear in their direct comparison (as shown in Figure 5 (D) and Figure 4 (B) for
X-JP-JP trajectories).
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Figure 4: Time series neural activation patterns of the feature units in the third (last) context
layer of the MSTRNN as analyzed by PCA. First and second principle components of the activation
patterns were used to visualize the activation patterns. (A) Time series neural activation values
obtained by feeding the MSTRNN input videos of all categories. (B) Time series neural activation
values obtained by feeding the MSTRNN input videos with the same second and third primitive
actions. (C) Time series neural activation values obtained by feeding the MSTRNN input videos with
the same first and second primitive actions.



15 JP-X-X trajectory
(A) OH-X-X trajectory
10 XXX TH-X-X tn‘aieclory ' »
x O JP-X-X trajectory starting position
% x X O OH-X-X trajectory starting position
5 o « O TH-X-X trajectory starting position
o X X X JP-X-X trajectory ending position
g 2 X < OH-X-X trajectory ending position
0 (o) X  TH-X-X trajectory ending position
X
X
SE % x % x%
* X X X
-10
-10 -5 0 5 10
PCl
(B) e JP-JP-X trajectory
JP-OH-X trajectory
10 % XX JP-TH-X trajectory
\ X O JPJP-X trajeptory startiryg posit!qn
o X X O JP-OH-X trajectory starting position
5 O JP-TH-X trajectory starting position
8 X JP-JP-X trajectory ending position
o JP-OH-X trajectory ending position
0 (o) X JP-TH-X trajectory ending position
-5
-10
-10 -5 0 5 10
PCl1
(C) 10.5 JP-JP-JP trajectory
< JP-JP-OH trajectory
JP-JP-TH trajectory
X  JP-JP-JP trajectory ending position
X < JP-JP-OH trajectory ending position
x JP-JP-TH trajectory ending position
(o]
O 10 o
a
9.5
-3 -2 -1 0 1
PCl1
D 20 JP-JP-JP trajectory
( ) 15 OH-JP-JP trajectory
TH-JP-JP trajectory
10 x O JP-JP-JP trajectory starting position
O OH-JP-JP trajectory starting position
5 O TH-JP-JP trajectory starting position
s v X X JP-JPJP trajectory ending position
o 0 o X OH-JP-JP trajectory endjng posjtjon
X  TH-JP-JP trajectory ending position
-5
-10
-15
-20 -10 0 10 20
PCl1

Figure 5: Time series neural activation patterns of the context units in the third (last) context
layer of the MSTRNN as analyzed by PCA. The first and second principle components of the
activation patterns were used to visualize the activation patterns. (A) Time series neural activation
values obtained by feeding the MSTRNN input videos of all categories. (B) Time series neural
activation values obtained by feeding the MSTRNN input videos with the same first primitive (JP)
actions. (C) Time series neural activation values obtained by feeding the MSTRNN input videos with
the same first and second primitive actions (JP, JP). (D) Time series neural activation values obtained
by feeding the MSTRNN input videos with the same second and third primitive actions (JP, JP).



3.2 Learning to categorize the object-directed human action dataset

This experiment examines how accurately the MSTRNN is able to categorize actions and corre-
sponding action-directed-objects (ADOs) as represented in object-directed human action videos,
also answering if the MSTRNN can distinguish ADOs from both non-ADOs and ADOs present in
image sequences by learning structural links between the actions and the ADOs. To this end, the
MSTRNN was tested on a pantomime version (actions without ADOs) of the object-directed human
action dataset (ODHAD), both with and without non-ADOs present as distractors. Performance was
compared with the result obtained when the MSTRNN was presented with objects-present test data
to confirm that the MSTRNN does develop such structural links.

3.2.1 Object-directed human action dataset

The first experiment involves the categorization of object-directed actions, and for this, an object-
directed human action dataset (ODHAD) consisting of 9 subjects performing 9 actions directed at 4
objects was prepared. There were 15 object-directed action categories in total (as shown in Figure 6
and Table 3). The dataset was designed so that the categorization task is non-trivial. We introduced a
non-ADO as a distractor along with an ADO in each video scene to prevent the model from inferring
a human action or an ADO solely through recognizing the presence of a certain object in a video.
For each object-directed action category, 6 videos were shot for each subject with three different
non-ADOs appearing in two videos each in different states (opened or closed) except the cup (which
does not have more than one state) as they are presented in the other videos as ADOs. During dataset
recording, subjects generated each action naturally and without constraints on movement trajectory
or speed. For manipulating objects, left-handed subjects were free to use their left hands. Objects
were located in various positions in the task space. However, the camera view angle was fixed (the
problem of view invariance is beyond the scope of the current study).

Sweep-Book Open-Book Close-Book Change page-Book

Sweép—La ptop Open-Laptop Close-Laptop Type-Laptop

Open-Bottle Close-Bottle Drink-Bottle Shake-Bottle

‘ Drink-Cup Stir—Cup Bldw-Cup

Figure 6: A sample frame for each object-directed action from the object-directed human
action dataset. A distractor object appears along with an action-directed object in each video of the
dataset. Distractors except the cup (book, laptop, and bottle) appears in videos in all possible states
(opened or closed).

Table 3: Composition of the ODHAD.

Actions
ADOs Sweep | Open | Close | Drink | Change-page | Type | Shake | Stir | Blow
Book 1 2 3 - 4 - - - -
Laptop 5 6 7 - - 8 -
Bottle - 9 10 11 - - 12 - -
Cup - - - 13 - - - 14 15

10



The second experiment in categorization of object-directed actions required preparation of two
pantomime versions of the ODHAD. The pantomime version of ODHAD refers to the videos of
human actions without ADOs. Although the actions look like as if the subjects are using imaginary
objects in their actions. One pantomime version of the dataset had no objects in the scene, and the
other included only distractors (non-ADQs) in the scene. Both versions of the dataset were prepared
for the joint categories of Drink-Cup and Stir-Cup, as was the original version of the dataset for
these two joint categories only compiled from 5 subjects whose video data had not been used during
training with the ODHAD in the first experiment.

3.2.2 Experimental setting

The MSTRNN model used for the experiments with the ODHAD and its pantomime versions has
one input layer (three 110x110 feature maps), four context layers, two fully-connected layers (512
dimensions), and an output layer with two softmax vectors to indicate categorized objects (a softmax
vector with 4 neurons) and actions (a softmax vector with 9 neurons). Table 4 shows the parameter
settings of the context layers in the MSTRNN model. The time constants of the context layers were
picked both manually and heuristically, and it was observed that the MSTRNN performed best when
small, large time constants were assigned to the lower, higher layers, respectively. Time constants of
2,3, 5, and 110 were used for the first to the fourth context layers, respectively. The learning rate
of the model started at 0.01 and decayed by 2% every epoch. The model network was trained for
130 epochs. In addition to using weight decay to alleviate the risk of overfitting (see the “Training
method” section), the dropout technique was applied to the fully-connected layers of the MSTRNN
with a dropout rate of 70% [25]. Also to alleviate the overfitting problem, 100x100 pixel patches
were randomly sampled from the 110x110 pixel images, and were used as a training data to make the
recognition of object-directed human actions more robust to locational translations of input images
[26].

Table 4: Parameter settings of the context layers in the MSTRNN.

Feature units Pooling units Context units
Context Time Kernel Map Total Pooling Map Total Kernel Map Total
layer constant size size number size size number size size number
1 2 5x5 96x96 20 2x2 48x48 20 5x5 44x44 20
2 3 5x5 44x44 50 2x2 22x22 50 5x5 18x18 50
3 5 5x5 18x18 90 2x2 9x9 90 4x4 6x6 90
4 110 4x4 6x6 230 2x2 3x3 230 3x3 Ix1 230

The leave-one-subject-out cross-validation (LOSOCV) scheme was used to assess overall categoriza-
tion accuracy in a similar manner to the way it was used for the experiment with the 3ACW dataset.
The dataset excluding one subject’s data was used for training the MSTRNN, and the excluded
subject’s data was used for testing at each epoch, resulting in accuracy measures for 130 epochs. As
there are 9 ways of excluding one subject’s data for the purpose of testing among 9 subjects, there
are 9 sets of test accuracies, each set containing accuracies for all 130 epochs. By averaging these 9
sets of test accuracies, we obtained an averaged set of test accuracies for 130 epochs. Among the
averaged set of accuracies, the epoch that showed the maximum recognition accuracy on the joint
category of action-ADO pair was found. The averaged categorization accuracies of this epoch on the
action, the ADO, and the joint category of action-ADO pair were rounded off to the first decimal
place and recorded as measures of overall performance.

In the experiment with the two pantomime datasets, the MSTRNN used the set of parameters learned
from the first experiment conducted with the object-directed human action dataset (ODHAD). The
set of parameters is the one that was trained with ODHAD until the epoch where the model showed
the maximum recognition accuracy on the joint category of action-ADO pair. The learned parameters
were tested on the ODHAD and the two pantomime datasets, each taken from 5 test subjects, and
containing the joint categories of Drink-Cup and Stir-Cup. The recognition accuracy of the MSTRNN
on the joint action-ADO category was measured and rounded off to the first decimal place.

3.2.3 Experimental results

For the first experiment in categorization of object-directed actions, the overall categorization accura-
cies for ADOs, actions, and action-ADO pairs were 81.9%, 75.9%, and 68.9% respectively. From
these average recognition accuracies, it can be seen that - although the MSTRNN model used in
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the experiment can categorize object-directed action patterns in the test data with generalization to
some degree - the model exhibited a certain amount of mis-categorization. See the video in the link
(https://sites.google.com/site/mstrnn1/) for demonstration of the MSTRNN categorizing test videos
of the ODHAD.

Next, we examined structural links developed between actions and ADOs. Table 5 shows ADO
categorization rates during test conditions where specific ADOs and non-ADOs were present in the
test data. Where the MSTRNN failed to correctly categorize an ADO, it was most likely to confuse
present non-ADOs as ADOs in 9 out of 12 test conditions (see Table 5). This result indicates that the
model network was successful in capturing structural links between objects and actions directed at
them, although exhibiting a tendency to be more or less distracted by present non-ADOs more or less
similar to the ADO, i.e. the network mistook a book for a laptop and a laptop for a book in 19.4%
and 18.1% of cases, respectively.

Table 5: ADO categorization rate on all possible cases of ADO, DO pair present in the input
videos.

Objects in the videos Categorized ADOs (%)
ADOs Non-ADOs | Book | Laptop | Bottle | Cup
Book Laptop 76.4 194 0 4.2
Book Bottle 80.6 42 8.3 6.9
Book Cup 81.9 4.2 4.2 9.7
Laptop Book 18.1 79.2 1.4 1.4
Laptop Bottle 0 87.5 5.6 6.9
Laptop Cup 1.4 84.7 6.9 6.9
Bottle Book 1.4 4.2 84.7 9.7
Bottle Laptop 1.4 12.5 84.7 14
Bottle Cup 0 0 81.9 18.1
Cup Book 11.1 0 93 | 79.6
Cup Laptop 1.9 5.6 13 79.6
Cup Bottle 0 0 13 87

The ADO categorization rates were rounded off to the first decimal place.

After categorization of all object-directed action cases, neural activity in the higher layer was analyzed.
Neural activation values of the last time step in the second fully connected layer were plotted in
2-dimensional space by principle component analysis (PCA) [24]. Input image sequences from which
the MSTRNN generates similar ouputs are identifiable by the clusters of neural activations in the
PCA mapping shown in Figure 7. Neural activations first cluster by the ADO category (markers of
same colors) and by the action category (markers of same shapes). Also, the PCA mapping can be
interpretted as having two large clusters of book and laptop; bottle and cup ADO pairs (marked by
symbols A and B in Figure 7). Then, those groups of clustered points make sub-clusters according to
action category. Finally, these groups sub-cluster according to action-ADO joint category (markers of
both same colors and shapes).

Figure 7 shows that neural activations of the same action-ADO pairs cluster more closely together
than do clusters of other categories of neural activations. It is interesting to note that input image
sequences with the same action-ADO pairs are not mapped to exactly the same postions. This is
because, even if the test videos belong to the same joint category, present non-ADOs, ADO tragectory
and orientation, test subject idiosyncrasies and many other variables all differ. The next most closely
gathered neural activations in general are the ones that have same action categories. Action-ADO
clusters of neural activations can be viewed as subgroups of a class of activations that have the same
actions in general, indicated in Figure 7 with same marker shapes. For example, though they employ
different objects, Open-Book and Open-Laptop are located close together in the PCA mapped space
as they have the same action category. Compare this result with that for Open-Bottle. Though still
appearing on the same side of the map, and closer to Open-Book or Open-Laptop than to other
action-ADO pairs, Open-Bottle neural activations appear relatively farther away because image
sequences for Open-Bottle differ from Open-Laptop or Open-Book more than these do from each
other.

Neural activations also group according to ADO. Figure 7 shows that neural activations generated
from test videos of the same joint categories organize into overgroups according to the four ADO
categories. However, these groups are distributed differently than are the groups for actions. In
Figure 7, neural activations with the same ADO are more spread out than are activations with the
same actions. For example, neural activations of bottle and cup ADO categories are spread out while
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neural activations of Drink-Bottle and Drink-Cup are tightly clustered. Finally, neural activations
cluster by book and laptop, bottle and cup ADO pairs. Figure 7 indicates the neural activations of
book and laptop, and bottle and cup ADO pairs with red and blue line borders. For example, book
and laptop neural activations — as a pair - appear far from those of bottle and cup neural activations -
as a pair — even with same actions (such as “open” and “close”) since representative image sequences
differ a great deal more between these pairings than within them. By analyzing neural activity
according to these ADO pairs, we also see that same-action neural activations with different ADOs
subcluster at the boundaries where relevant ADO cluster regions meet. For example, Drink-Bottle and
Drink-Cup appear relatively close together, especially given the distance separating other Cup from
Bottle activations. Similar cases can be observed in neural activations generated by the book and the
laptop test data as well, for example Sweep-Book and Sweep-Laptop, Open-Book and Open-Laptop,
Close-Book and Close Laptop — all of these form subclusters of activity.

20 B
p 4+ Sweep-Book
4\ Open-Book
O Close-Book
15+ % CP-Book
4+ Sweep-Laptop
& Open-Laptop
10+ Q Close-Laptop
& Type-Laptop
Open-Bottle
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Figure 7: PCA mapping of activation values generated from the second fully-connected layer
of the MSTRNN given object-directed human action test data. First and Second principle com-
ponents were used for the visualization. The neural activations of correctly categorized test videos
can be largely divided in to two groups according to the two ADO pairs: book and laptop (symbol A),
bottle and cup (symbol B). The two groups have subclusters according to action categories (same
shape). And the clusters of action category can be further divided into subclusters of neural activations
that have same joint categories.

When the MSTRNN categorizes an action category of an input video correctly, the possible number of
corresponding ADOs is (in most cases) two. For example, if the model categorizes an action category
of drink correctly, then the possible corresponding ADO is either bottle or cup. On the other hand,
with the ADO correctly categorized, there are more possible corresponding actions. For example,
when the ADO is correctly categorized as laptop, there are four possible actions: sweep, open, close,
change-page (Figure 7). Interestingly, as evident in the PCA mapping, the MSTRNN exhibits higher
recognition accuracy for the ADO category (81.9%) than the action category (75.9%). And, in the
clustering structure illustrated in Figure 7, it can be seen that the MSTRNN categorizes ADOs prior
to actions. Here we see that the clusters of neural activations generated from the same actions are
subclusters of larger book and laptop, bottle and cup groups. In the end, what is strongly evident from
this preceding analysis of clustering structures evidenced in the PCA mapping of MSTRNN neural
activations is that the model learns structural links between actions and corresponding ADOs from
training data, with these relationships then facilitating ongoing agency within the given action-ADO
environment.
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Having established that the MSTRNN is able to learn structural links between actions and ADOs,
we investigated if the MSTRNN is capable of inferring correct ADOs when ADOs are absent from
test image sequences, and even when only non-ADO (distractors) appear, instead. Table 6 compares
action-ADO categorization rates given Drink-Cup and Stir-Cup test data with rates given pantomime
version test of data both with and without distractors (note that Table 6 includes only joint categories
with categorization accuracies greater than 0%).

Table 6: Action-ADO (joint category) categorization rates using object-directed test videos and
their pantomime version test data with and without distractors present in the scene.

Categorized joint categories (%)
Actual Sweep Sweep Close Drink Shake Sweep | Drink | Shake Stir
input -Book -Laptop | -Bottle | -Bottle | -Bottle -Cup -Cup -Cup -Cup
Drink-Cup 0 0 0 16.7 33 0 80 0 0
Stir-Cup 33 33 0 0 0 33 0 0 90
Drink-Cup
P i 0 0 0 6.7 0 0 93.3 0 0
Stir-Cup
P i 0 0 0 0 6.7 0 33 0 90
Drink-Cup
pantomime
with distractors 0 0 0 30 0 0 70 0 0
Stir-Cup
pantomime
with distractors 33 0 33 133 30 0 6.7 33 40

The joint category categorization rates were rounded off the the first decimal place.

Action-ADO recognition accuracies are slightly better with the pantomime test videos than with the
original object-directed human action test videos. For example, Table 6 shows that the model correctly
categorized the Drink-Cup pantomime correctly in 93.3% of instances, and incorrectly as Drink-Bottle
in 6.7%. It is worth noting that the pantomime actions of Drink-Cup and Drink-Bottle are quite
similar, so that even human beings may mis-categorize these pantomimed actions. Consider also the
categorization accuracy using the Stir-Cup pantomime test videos without distractors. Performance
here is similar to accuracies obtained using the object-present Stir-Cup test data.

When given distractors-present pantomime test data, the MSTRNN demonstrated a tendency to be
distracted by non-ADOs. Table 6 shows that the MSTRNN recognized Drink-Cup pantomime action
videos with distractor non-ADOs present as Drink-Cup (70%) and as Drink-Bottle (30%). But again,
pantomimed Drink-Cup and Drink-Bottle are difficult even for humans to distinguish, and so such
ambiguous cases may be discounted. Performance was worst with the Stir-Cup pantomime test data
with distractors. The action-ADO category of the test videos were mis-categorized more than the
other test conditions (Stir-Cup, Stir-Cup pantomime in Table 6) by 50%. This significant amount of
mis-categorization is caused by the MSTRNN mis-categorizing distractors as ADOs. Because, the
categorization performance of the MSTRNN on the Drink-Cup pantomime and Stir-Cup pantomime
test videos without distractors were similar or better than its performance on the cup and non-ADOs
present Drink-Cup, Stir-Cup test videos (Table 6). Indeed, the MSTRNN correctly categorized ADO
(cup) of the test videos by only 50% which is lower than the ADO categorization accuracies of the
other test conditions (Stir-Cup: 93.3%, Stir-Cup pantomime: 93.3%) in Table 6. In the end, the
preceding analysis shows that the ADO categorization process of the MSTRNN depends on both
currently perceived objects and actions.

4 Discussion

In the first experiment categorizing long-ranged videos of compositional human action sequences, the
proposed Multiple Spatio-Temporal Scales Recurrent Neural Network (MSTRNN) model performed
better than the previous Multiple Spatio-Temporal Scales Neural Network (MSTNN) [15] model. The
recurrent connectivity in the context units enhanced the capability of the model to extract long-term
correlations latent in training data. Analysis of the internal dynamics of the context layer demonstrated
that the feature units in the context layer tended to capture spatio-temporal features of recently given
input images over a short time interval. On the other hand, the context units in the context layer
captured spatio-temporal features of image sequences over a relatively longer period of time due to
its recurrent structure and larger time constant.
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The second experiment tasked the MSTRNN with learning to categorize object-directed human
actions in order to examine the model’s ability to capture underlying spatio-temporal structures
linking human actions and visual images of objects at which the actions are directed. The overall
categorization accuracies on the action category and the action-directed-object (ADO) category were
75.9% and 81.9%, respectively. These categorization results demonstrate that the MSTRNN is capable
of learning structural links between actions and corresponding ADOs by extracting spatio-temporal
features in its context layers. The MSTRNN was distracted by non-ADOs present in image sequences,
but could successfully recognize ADOs in most cases. Principle component analysis (PCA) [24] of
the neural activations of the last time step in the second fully-connected layer shows that the model
developed structural links between actions and corresponding ADOs. This is evident in the PCA
mapping as similar neural activations are mapped to similar locations in the PCA mapped space (as
shown in Figure 7). In PCA space, neural activations generated from test data with the same joint
category are more similar than neural activations generated from test data with same action, and both
are more similar than neural activations generated from test data with merely the same ADO.

Testing reveals that the MSTRNN can infer ADOs from pantomime action videos by exploiting the
structural links between actions and ADOs learned in training. However, the MSTRNN demonstrated
a tendency to be distracted when tested on the pantomime action videos with non-ADO distractors
present, and its ADO categorization accuracies were lower in these cases than with pantomime test
videos without distractors present. These results imply that the MSTRNN depends on spatio-temporal
features extracted from sequences of action images as well as on static object presence in order to
correlate a given action with its appropriate ADO.

Currently, the best action-ADO recognition rate obtained in the second experiment is 68.9%, which
should be improved in future study. One of the main reasons for such a significant degree of mis-
categorization might be overfitting. Overfitting may be alleviated with recently developed deep
learning regularization techniques including the dropout technique for recurrent connections [27].
By applying the dropout technique to Long Short-Term Memory (LSTM), Gal et al. came up
with the Variational LSTM which has demonstrated less susceptibility to problems of overfitting
than the standard LSTM. Recurrent batch normalization [28] may also help to alleviate overfitting.
Cooijmans et al. have shown that batch-normalization of LSTM improves its generalization capacity
and encourages faster convergence in the learning phase.

Good performance depends on appropriate model parameters. In the current study, it was found that
the performance of the model depends crucially on time constant values ascribed to each context
layer. Since there is no analytical way to determine the optimal values for time constants, these
must be established heuristically. Future study should investigate a scheme for the self-adjustment of
time constants. Two approaches immediately present themselves. One involves using LSTM [10]
or Gated Recurrent Units (GRU) [29] to adapt time constants at each time step. LSTM recurrent
neural networks have demonstrated outstanding performance on sequence-based tasks with long-term
dependencies [30]. And, the recently developed GRU has demonstrated similar or higher performance
[31]. Embedding these models in the structure of our proposed model will make a model that is
somewhat similar to the convolutional LSTM [12]. From the results that were reported so far, the
LSTM and the GRU do not develop hierarchical structures while learning from data, so constraints
on time-constant adaptation must be applied to each layer. Another approach to self-adapting time
constants involves their automatic determination by way of genetic algorithm. On this approach,
simulated robot experiments demonstrate that the network naturally develops slow dynamics in the
higher layer [32]. Therefore, integration with the current work seems promising.

Future study should also investigate the possibility of improving categorization performance by
modifying the structure of the MSTRNN. First, by implementing a top-down prediction and attention
pathway in addition to the current bottom-up pathway, MSTRNN action recognition performance
may improve because top-down processes provide values for anticipated future perceptual events.
Also, a recurrent loop may be added from the higher layer to the lower layer. Currently, recurrent
connections are made only within each context layer, and as a consequence, extracted spatio-temporal
information in the higher layer cannot affect lower layer neural activations. Recurrent structures
connecting higher to lower layers should facilitate this influence, and as a result, the capability of the
MSTRNN to extract latent features of sptaio-temporal patterns may be enhanced.

Ongoing work is focusing on improving the MSTRNN to enhance the development of structural links
via learning and involves making a dataset to be tested on an improved version of the MSTRNN.
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The dataset will be more complex in terms of action-ADO compositionality, requiring the use of
transitive verbs, object nouns and modifiers, e.g. PUT-CUP-ON-BOOK. The improved version of
the MSTRNN will be tested on this new dataset to see if the model is able to learn more complex
structural links of transitive verbs, object nouns, and modifiers.

5 Conclusion

Biological evidence exists that humans learn temporal sequences through recurrent neural networks
in their brains. Goel et al. have shown not only that recurrent neural circuits and cortical circuits in
particular are capable of encoding time, but also that there are mechanisms in place that allow such
circuits to ‘learn’ the temporal structures of stimuli [33]. Also, recent neurophysiological studies
suggest that human object recognition is aided by the understanding of object relevant actions [34].
As a recurrent neural network model for object-directed human action recognition, the MSTRNN is
inspired by such biological insights. The MSTRNN also recognizes action-directed-objects (ADOs)
in light of perceived actions, and has demonstrated a capacity to infer correct ADOs from pantomime
action videos. This capacity is grounded on learned structural links between actions and corresponding
ADOQOs, a capacity to be emphasized in future work.

In summary, the MSTRNN model network developed categorical memories for a set of trained
object-directed actions, self-organizing an internally consistent relational structure among them
within a bottom-up generated metric space. Development of such a relational structure in metric
space may facilitate generalization in categorization. But, a fundamental question presents itself:
What sort of metric space is developed in the categorical memories in the trained model network?
It is highly desired to establish a direct relation between spatio-temporal analysis of neural activity
associated with perception of categorical patterns, and intended action-ADO pairs. Although the
present preliminary study used principle component analysis (PCA) [24] to examine how neural
activations generated by the MSTRNN retain relationships between actions and corresponding ADOs,
solid results have not yet been obtained. Future study should develop effective methods to determine
a distance measure among spatio-temporal patterns in massive numbers of neural units for different
categories.
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