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Recognition of Visually Perceived Compositional
Human Actions by Multiple Spatio-Temporal Scales

Recurrent Neural Networks
Haanvid Lee, Minju Jung, and Jun Tani

Abstract—We investigate a deep learning model for action
recognition that simultaneously extracts spatio-temporal informa-
tion from a raw RGB input data. The proposed multiple spatio-
temporal scales recurrent neural network (MSTRNN) model is
derived by combining multiple timescale recurrent dynamics
with a conventional convolutional neural network model. The
architecture of the proposed model imposes both spatial and
temporal constraints simultaneously on its neural activities. The
constraints vary, with multiple scales in different layers. As
suggested by the principle of upward and downward causation, it
is assumed that the network can develop a functional hierarchy
using its constraints during training. To evaluate and observe
the characteristics of the proposed model, we use three human
action datasets consisting of different primitive actions and
different compositionality levels. The performance capabilities
of the MSTRNN model on these datasets are compared with
those of other representative deep learning models used in the
field. The results show that the MSTRNN outperforms baseline
models while using fewer parameters. The characteristics of
the proposed model are observed by analyzing its internal
representation properties. The analysis clarifies how the spatio-
temporal constraints of the MSTRNN model aid in how it extracts
critical spatio-temporal information relevant to its given tasks.

Index Terms—Action recognition, dynamic vision processing,
convolutional neural network, recurrent neural network, symbol
grounding.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) [1], in-
spired by the mammalian visual cortex, show remarkably

better object image recognition performance than conventional
vision recognition schemes which employ elaborately hand-
coded visual features. A CNN trained with one million visual
images from ImageNet [2] was able to classify hundreds of
object images with an error rate of 6.67% [3], demonstrat-
ing near-human performance [4]. However, CNNs lack the
capacity for temporal information processing. Thus, CNNs are
less effective when used to handle video image patterns as
compared to static images.

To address this shortcoming, a number of action recognition
models have been developed. Typical deep learning models for
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action recognition are 3D convolutional neural networks (3D-
CNNs) [5], long-term recurrent convolutional networks (LR-
CNs) [6], and two-stream convolutional networks [7]. The 3D-
CNN extracts the spatio-temporal features of videos through
convolutions in the temporal and spatial domains in a fixed
window [5]. The LRCN is a two-stage model that initially
extracts spatial features in its CNN stage and then extracts
temporal features from its long-short term memory (LSTM)
[8] stage [6]. And the two-stream convolutional network has
one CNN stream for RGB input and another CNN stream for
the input of stacked optical flows. The two streams are joined
at the end to create a categorical output [7].

Although 3D-CNNs, LRCNs, and two-stream convolutional
networks perform well, some of their dynamics are not backed
by neuroscientific findings. One important piece of evidence in
mammals is that the size of the spatio-temporal receptive field
of each cell is increased as the level goes higher [9], [10].
Moreover, the principle of downward causation [11], [12],
which comes from the cybernetics era, suggests that a spatio-
temporal hierarchy can be naturally developed in the human
brain by taking advantage of the macroscopic constraints
genetically assigned to them. This evidence and principle
suggest that a deep learning model for action recognition
should form a hierarchy by the assignment of spatio-temporal
constraints. The model should also extract spatial and temporal
features simultaneously considering the hierarchy. However,
typical action recognition models lack these capabilities.

The current study is an extension of the multiple spatio-
temporal scales neural network (MSTNN) [13]. The neural
activities of the MSTNN are governed by spatial and temporal
constraints which correspondingly work via the local con-
nectivity of convolutional layers and time constants assigned
to leaky integrator neural units at each layer [13]. These
constraints allow the MSTNN to develop faster dynamics and
local interactions in the lower layer, whereas it develops slower
and global interactions at the higher level. This enables the
MSTNN to extract spatio-temporal features in multiple spatio-
temporal abstractions from its input videos. This formation of
a spatio-temporal hierarchy is consistent with the biological
evidence and the principle mentioned earlier.

However, the temporal processing capacity of the MSTNN
is quite limited given the fact that its essential dynamics is the
decay dynamics exerted by the leaky integrator neurons [13]
that compose the model. At the same time, the MSTNN only
uses forward connectivity without any recurrent structures,
while there is biological evidence suggesting that the primary
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visual cortex of a cat has a recurrent connectivity that is used
for identifying past and current visual inputs [14], [15]. In this
context, the current study attempts to add recursive dynamics
to the MSTNN by introducing recurrent connectivity in its
convolutional layers. This leads to our novel proposal of the
MSTRNN model in the current study.

In the experiments, MSTRNNs were compared with
MSTNNs and LRCNs. MSTRNNs were compared to the
network without recurrent connections (MSTNNs) to observe
how the existence of the recurrent structure in the models
affects the action recognition performances. Among the intro-
duced representative action recognition models, networks with
sequentially connected stages of CNNs and LSTMs (LRCNs)
were also used as baselines. The LRCN was chosen as the
baseline model of the MSTRNN to determine how spatio-
temporal constraints and the simultaneous extraction of spatial
and temporal features of the MSTRNN makes it different from
the LRCN.

The MSTRNN model was compared to the baselines
(MSTNN and LRCN) and evaluated using three different
human action datasets that are distinct in terms of the types and
levels of compositionality introduced in the action patterns.
”Compositionality” refers to the degree of possible compo-
sition/decomposition of one whole pattern by/into reusable
parts. For a machine vision system to recognize human actions
with semantics, it must perceive videos of actions while
extracting the underlying spatio-temporal compositionalities of
the actions. Such spatio-temporal structures should be linked
to compositionality during the generation of human actions
[16], [17]. Temporal compositionality can be accounted by
the fact that most goal-directed human actions are com-
posed of sequential combinations of commonly used behavior
primitives [16]. Spatial compositionality can be accounted
by combinations of transitive actions and objects in object-
directed actions or coordinated combinations of movement
patterns of different limbs of a person. The challenge with
regard to a visual understanding of human action is to extract
such compositional structures under the condition that each
trajectory of the perceived visual stream can be diverse, even
for an identical category of action, as the profiles of behavior
primitives are quite deformational depending on the individual.
The three actions concatenated Weizmann dataset (3ACWD),
as used in our first experiment, is created by concatenating
three actions from the Weizmann dataset [18] in a sequence.
The second and the third datasets created for the purpose
of this study have natural human action patterns with the
levels of the underlying compositionalities made to be higher
than in the first dataset. The second dataset, which is the
compositionality level 1 action dataset (CL1AD), contains
actions with objects and has action-directed-object (ADO) and
action categories. The third one, which is the compositionality
level 2 action dataset (CL2AD), has an increased level of
compositionality relative to that of the second dataset given its
ADO, action, and modifier categories. Here, a modifier refers
to words that modify actions. We test the MSTRNN with the
baselines (MSTNN and LSTM) on these datasets of different
compositionality levels to test their performance outcomes and
to determine how their categorical memories are formed after

training.

II. PROPOSED MODEL
The MSTRNN model consists of the following six types of

layers: input, convolutional and pooling layers, context layers,
fully-connected layers, and an output layer as shown in Fig. 1
(A). The MSTRNN receives a stream of RGB images in the
input layer. If the input image frame is large, it can be reduced
by going through several convolutional and pooling layers in a
sequential manner. The context layers then extract the spatio-
temporal features. The extracted spatio-temporal features pass
through several fully-connected layers. Finally, the categorical
output is realized by a fully-connected layer with softmax
activation.

The context layer of a MSTRNN simultaneously extracts
spatio-temporal features, and is the core building block of
the MSTRNN. The context layer consists of feature units,
pooling units, and context units as shown in Fig. 1 (B). If
the block that represents context units is deleted from Fig. 1
(B), Fig. 1 would be an illustration of a MSTNN structure.
The context units, which have recurrent connectivity, are the
only difference between the MSTRNN and the MSTNN. Each
context layer is assigned a time constant that controls the decay
dynamics of the context units and the feature units. A larger
time constant causes the internal states of the leaky integrator
neurons in the context layer to change more slowly at each
time step [19]. The MSTRNN assigns a larger time constant
to higher layers to develop a spatio-temporal hierarchy [13],
[19].
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Fig. 1. The architecture of the MSTRNN. (A) The full architecture of the
MSTRNN. τ is a time constant for a set of leaky integrator neurons in a
context layer. (B) The structure of the context layer. The layers/units with
memories are more shaded. The arrow labeled τ indicates the decay dynamics
of the leaky integrator neurons in the feature units and context units. The word
rec with the arrow indicates recurrent connections made in the context units.
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A. Batch Normalization

When training deep neural networks, internal covariate shift
problem arises. The training of a layer depends on the output
of the previous layer, but the distribution of neuronal activa-
tions generated by each layer changes after each update of the
weights. This causes the training of deep neural networks to
be slow and difficult.

To alleviate the internal covariate shift problem, Ioffe et
al. presented the batch normalization (BN) method [20]. It
was reported in their work that BN accelerates training of
deep neural networks. They also showed that BN enhances
the performance of neural networks. The method normalizes
each neuronal activation to zero mean and unit variance, as
described below,

µ← 1

m

m∑
i=1

xi, (1)

σ ← 1

m

m∑
i=1

(xi − µ)2, (2)

x̂i ←
(xi − µ)2√
σ2 + ε

, (3)

yi ← γx̂i + β ≡ BNγ,β(xi), (4)

where m is the size of a mini-batch, and the activation of a
neuron is represented by x. BN first computes the mean (µ)
and standard deviation (σ) of the mini-batch activations via
(1) and (2), respectively. It then normalizes the activation as
described in (3). In the equation, the small positive constant ε
is added to the variance to maintain numerical stability. The
normalized value x̂i is then scaled and shifted by trainable pa-
rameters γ and β as in (4). The process of scaling and shifting
enables the BN method to restore the original activations if
necessary.

After BN was demonstrated to be effective in dealing with
the internal covariate shift problem in feed forward networks,
Cooijmans et al. showed that BN can also be applied to
recurrent neural networks [21]. In their work, they applied
BN not only to the input that is fed forward, but also to the
input that is fed in a recurrent manner.

In our work, we used BN on the feed forward layers before
the activation functions. We also used the recurrent BN method
on the feature units and context units of the context layers to
help the proposed model generalize better and to accelerate
the training. For the LRCNs used in this experiment, BN
and recurrent BN were applied in the manner Ioffe et al.
and Cooijmans et al. suggested in their works. How the BN
and recurrent BN approaches are applied to the MSTNN is
explained in the next subsection (B. Feature Units).

B. Feature Units

The feature units are capable of extracting temporal features
via the decay dynamics of the leaky integrator neurons. They
are also able to extract spatial features by convolutional
operations [13]. The forward dynamics of the feature units are
explained in (5) and (6). The internal state and the activation
value of a neuron at the lth context layer, the mth map of

feature units, the retinotopic coordinates (x, y), and at time
step t are represented as f̂ txylm and f txylm respectively.

f̂ txylm =
(
1− 1

τl

)
f̂
(t−1)xy
lm (5)

+
1

τl

(
BNγ,β

(Nl−1∑
n=1

(klmn ∗ pt(l−1)n)
xy
)
+ blm

)
+

1

τl
BNγ̂,β̂

(Al−1∑
a=1

(zlma ∗ ct(l−1)a)
xy
)
,

f txylm = max(0, f̂ txylm ). (6)

Here, τ represents the time constant and k and z are the
convolutional kernels that extract the features from the pooling
units and context units, respectively, of the previous layer.
Additionally, b represents the bias used in the convolution
operation, ∗ is the convolution operator, N is the total number
of maps of the pooling units, and A is the total number of maps
of the context units. Additionally, p and c are the activation
values of the pooling units and the context units, respectively.
The first term on the right hand side of (5) describes the decay
dynamics of the leaky integrator neurons. The second term
represents the convolution of the features in the pooling units.
And the third term describes the features extracted from the
context units of the previous context layer. BN is applied to
the feed forward paths (the second and third terms of (5)).
Equation (5) also describes the dynamics of the MSTNN when
the third term is discarded. Equation (6) shows the rectified
linear unit (ReLU) that serves as the activation functions of the
feature units. ReLU is reported to accelerate the training of a
convolutional layer given that it is a non-saturating nonlinear
function [22].

C. Context Units

A set of context units (Fig. 1 (B)) is equivalent to feature
units with recurrent convolutional kernels. Due to the addition
of recurrent convolutional kernels in the structure of the feature
units, the temporal processing capacity of the context units is
enhanced compared to that of the feature units. The recurrent
dynamics of the context units enhances the extraction of latent
temporal features from input image sequences [23], [24]. The
recurrent connections are made by convolutional kernels. The
forward dynamics of the context units are shown in (7). The
internal state of a neuron in the (x, y) coordinates of the ath
map of the context units in the lth context layer, at time step
t are represented as ĉtxyla .

ĉtxyla =
(
1− 1

τl

)
ĉ
(t−1)xy
la (7)

+
1

τl
BNγ,β

( Ml∑
m=1

(k̃lam ∗ ptlm)xy + b̃la

)
+

1

τl
BNγ̂,β̂

( Bl∑
b=1

(z̃lab ∗ ct−1
lb )xy

)
.
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Fig. 2. Illustration of the dynamics in context units at the time steps of t-1
and t.

Here, c denotes the activation value of a context unit, k̃
is the convolutional kernel, b̃ is the bias for the convolution
operation, M is the total number of maps of the pooling
units, B is the total number of maps of the context units,
z̃ is the recurrent convolutional kernel of the context units,
and p is the neural activations of the pooling units. The
first term on the right hand side of (7) describes the decay
dynamics of the leaky integrator neurons. The dynamics is
illustrated in Fig. 2, indicated by the red arrow. The second
term represents the convolution of the pooling units. The feed
forward convolution is represented by the solid lines in Fig.
2. The third term describes the recurrent dynamics in terms
of the recurrent shared weights. The recurrent convolution
operation is represented by the dotted lines in Fig. 2. The
neural activations of the context units in the previous time
step are supplied through the recurrent convolutional kernels.
BN is applied to the feed forward path (the second term) and
is also applied to the recurrent path (the third term). ReLU is
used as the activation function of the context units.

D. Fully-Connected Layers

The hyperbolic tangent function recommended by LeCun et
al. [25] is used as the activation function of the fully-connected
layers,

a = 1.7159 tanh(
2

3
h), (8)

where h is the internal value of a neuron and a denotes the
activation of the neuron. The function gives outputs of 1 and
-1 for inputs of 1 and -1, respectively. At 1 and -1, the function
has maximum absolute values for its second derivatives. It was
reported in the work by LeCun et al. that this characteristic
helps a deep learning model to converge its performance near
the end of its training [25].

E. Training Method

All the videos in a dataset are padded with its last image
frame until the frame length of each video is equal to the maxi-
mum video frame length found in the dataset. The MSTRNN is
trained on the errors that are generated in the last 15 time steps
of the videos. This is because we used video datasets which
action categories are identifiable only at the end. Hereafter,
the last 15 steps are referred to as the voting period. The cost

function is the sum of the negative log likelihood errors that
were calculated for each time step during the voting period,

E = − 1

L

T∑
t=T−L+1

N∑
n=1

yn,t log ŷn,t, (9)

where E is the error obtained from an action video, L is the
voting period, T is the video duration, N is the number of
categories, ŷn is the model output, and yn is the true label.
Because the networks examined in our study have memories,
the errors are back propagated through time [26] to optimize
the learnable parameters. The MSTRNN is also trained by
means of mini-batch stochastic gradient descent. The mini-
batch sizes are 27, 90, and 84 for the first, second, and third
experiment described in the section III. EXPERIMENTS. The
Adam optimizer [27] was also used for parameter optimiza-
tion.

To prevent overfitting, all learnable parameters (except
biases) were learned with a weight decay of 0.0005 [22]. In
addition, random cropping [28] of the input images, making
them ten pixels smaller by width and height, was also used
to avoid overfitting. To alleviate the internal covariate shift
problem, the BN [20] and recurrent BN [21] methods were
used. For γ and β used in the methods, their initial values
were set to 0.1 and 0, respectively, suggested by Cooijmans
et al. [21]. Gradients are clipped in the range [-12, 12] to
provide stability during the training [29]. For the training of
the LRCNs, the forget gate values were initially set to 1 to
encourage remembering and to speed up the training [30].

The learning rate was 0.01 for the first 200 epochs and
was then lowered to 0.005 and 0.001 for the next 100 epochs
and the last 300 epochs, respectively, in the experiment with
3ACWD. In the second and third experiments, the learning
rate was 0.005 for the first 400 epochs and was then lowered
to 0.001. The MSTRNNs and baselines were trained until their
recognition accuracies converged.

F. Performance Evaluation

To evaluate the categorization performance, the leave-one-
subject-out cross-validation scheme was used. In this method,
one subject was selected from the dataset and his/her video
clips were left out of the training data, to be used as the
test data. The test videos were padded with its last image
frame until their frame lengths reached the maximum frame
length found in the dataset. Recognition accuracies obtained
from all possible validation sets were averaged to be used as
an evaluation measure. When there was more than one set
of categories, such as actions and action-related objects, the
recognition accuracy for the action-ADO pair was computed.
The epoch for which the model showed the best accuracy in
the joint category was then selected. The accuracy of each
set of categories (i.e., objects and actions for the second
experiment described in the section III. EXPERIMENTS) at the
epoch was used for evaluation. The accuracies were rounded
off to the second decimal place and recorded as measures of
the overall performance of an action recognition model.
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III. EXPERIMENTS

In all experiments, the MSTRNN is compared with the
baseline models (MSTNN, LRCN). The first experiment was
conducted using a relatively simple action dataset. Then, in the
second and third experiments, the MSTRNN and the baseline
models were tested on datasets that look more natural and have
higher compositionality levels.

A. Model Parameter Settings

The MSTRNN, MSTNN, and LRCN have identical input
and output layers according to the datasets with which they
are tested. The datasets are described in detail in the Dataset
section inside sections B, C, and D of section III. EXPERI-
MENTS. Table I shows the RGB input image sizes according
to the datasets after cropping, as described in the Training
Method section.

A convolutional layer and a pooling layer were used as
a preprocessing stage to decrease the computing time of the
models by decreasing their input size, as shown in Fig. 3.
The first convolutional kernel of the MSTRNN, MSTNN, and
LRCN had a kernel size of 3x3 and a stride of 2x2 for
3ACWD and a stride of 3x3 for the other two datasets to
decrease the input feature size. With few exceptions, most of
the convolutional kernels used in the models have a size of 3x3
and a stride of 1x1. And all pooling kernels used in the models
have a size of 2x2 and a stride of 2x2. The convolutional kernel
was 3x3 and the pooling kernel was 2x2 because these sizes
were found to be best for CNNs [31].

TABLE I
INPUT AND OUTPUT OF THE TESTED MODELS

Dataset
Input
Size

Output
Category

Softmax
Neurons

3ACWD 73x73 Action 27

CL1AD 108x108
ADO 4

Action 9

CL2AD 108x108
ADO 4

Action 4
Modifier 6

MSTRNN: The MSTRNN model has one convolutional
layer, one pooling layer, two context layers, two fully-
connected layers, and a softmax layer, as described in Fig.
3 (A). The first and second context layers have time constants
of 2 and 100, respectively, as Jung et al. [13] assigned to
the first and last convolutional layers of the MSTNN used in
their work. Sensitivity analysis of the time constants of the
MSTRNN was conducted, and the result is discussed in the
section V. APPENDIX. The result supports the assignment of
the time constants.

Convolutional kernels that connect to context units (see Fig.
1 (B)) recurrently have a kernel size of 3x3 with a stride
of 1x1 along with 1x1 zero padding. These convolutional
kernels were used so that the resulting map sizes of the
context units remain unchanged as the time steps progress.
The convolutional kernels that connect the pooling units to

𝜏𝜏 = 100

𝜏𝜏 = 2

pool

conv
160

pool

fc
1024

fc
1024

conv
320

pool

conv
64 

𝜏𝜏 = 100

𝜏𝜏 = 2 context
128 

fc
512

fc
512

context
256

pool

conv
64 

LSTM
256

pool

conv
128 

pool

fc
1024

LSTM
256

conv
256

pool

conv
64 

softmaxsoftmax softmax

(A) (B) (C)

Fig. 3. Architectures of the models used in the experiments. (A) Architecture
of the MSTRNN. (B) Architecture of the MSTNN. (C) Architecture of the
LRCN. The layers that have memory are shaded.

the context units and the context units to the next layer have
a size of 2x2 with a stride of 1x1.

Baselines: The MSTNN model has three convolutional
layers, three pooling layers, two fully-connected layers, and a
softmax layer (Fig. 3 (B)). The second and third convolutional
layers consist of leaky integrator neurons that have time
constants of 2 and 100, respectively.

The LRCN has three convolutional layers, three pooling
layers, one fully-connected layer, two LSTM layers, and a
softmax layer (Fig. 3 (C)). The original authors of the paper
introducing the LRCN model reported that LRCNs having
one fully-connected layer before the LSTM stage showed
better performance than having two fully-connected layers [6].
Therefore, we used one fully-connected layer in the LRCN as
shown in Fig. 3 (C). Although Donahue et al. [6] used the
LRCN with one LSTM layer for an action recognition task,
here we assigned two LSTM layers in the LRCN for a fair
comparison with the MSTRNN and MSTNN, both of which
have two temporal information processing layers (i.e., context
layers of the MSTRNN and convolutional layers with leaky
integrator neurons of the MSTNN). We also used 256 LSTM
hidden units for the two LSTM layers because Donahue et al.
reported that increasing the LSTM hidden units beyond 256
did not bring about a performance boost when the model was
given RGB images as input.

The parameters of the MSTNN and LRCN are compared
with the MSTRNN in Table II. The numbers were rounded up
to the nearest ten thousand. The numbers of parameters in the
three models differ subtly from those in experiments due to
the different numbers of outputs depending on a dataset (Table
I).
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TABLE II
NUMBER OF PARAMETERS IN THE TESTED MODELS

MSTRNN LRCN MSTNN

3M 4.6M 4.6M

B. Categorization of the Three Actions Concatenated Patterns
from the Weizmann Dataset

This section uses 3ACWD, which is less compositionally
complex than CL1AD and CL2AD, to compare the character-
istics of the proposed model (MSTRNN), the model without
recurrent weights (MSTNN), and the model with separate
spatial and temporal information processing stages with no
temporal constraints (LRCN).

Dataset: A set of compositional action videos was prepared
by concatenating videos of three different human actions from
the Weizmann dataset [18]. The three actions were jump-in-
place (JP), one-hand-wave (OH), and two-hand-wave (TH), as
shown in Fig. 4, resulting in 27 categories, and one video clip
of the concatenated actions for each category. 27 videos for
each of the nine subjects exist in the dataset. The videos of
the original dataset had frame rates of 25 and frame sizes of
144x180. After the concatenation of the videos, we resized the
concatenated video frames to 83x83 and downsampled their
frame rates by half of the original rates.

(A) (C)(B)(A) (B) (C)

Fig. 4. The three human action categories used from the Weizmann dataset:
(A) Jump-in-place. (B) One-hand-wave. (C) Two-hand-wave.

Results: The action categorization accuracy of the
MSTRNN on 3ACWD was highest by the mean recognition
rate of 89.30% with the standard error of 4.60% (Table
III). This result demonstrates that context units with recur-
rent weights improve the categorization of long concatenated
human action sequences. It also implies that the simultane-
ous extraction of spatio-temporal features with constraints
(MSTRNN) is more beneficial during video processing as
compared to separate extraction of spatial and temporal fea-
tures with no temporal constraints (LRCN).

TABLE III
ACTION RECOGNITION ACCURACIES ON 3ACWD IN PERCENTAGES

MSTRNN LRCN MSTNN

Accuracy 89.30±4.60 86.42±5.52 48.15±5.69

Chance Level 3.70

Next, the internal dynamics of MSTRNN, MSTNN, and
LRCN were assessed by a time series analysis of their neural
activation values. A test subject’s videos were given as input to
the models and their activation values were obtained from the
second LSTM layer of the LRCN, the second convolutional

layer among the two convolutional layers that are composed
of leaky integrator neurons in the MSTNN, and the context
units in the second context layer of the MSTRNN (see Fig.
3). The time series neural activations were visualized by means
of a principle component analysis (PCA) [32]. First three
principle components of the neural activations were used for
the visualization. In the following discussion of this analysis,
the PCA mapping of the time series neural activations obtained
when given action primitives A, B, and C in a sequential
manner is designated as PCA trajectory A-B-C. Because all
models were trained to categorize actions based on the outputs
obtained during the voting period, the last 15 positions of the
trajectories should be differentiated based on the history of the
images that were shown in sequence.

We compare the PCA trajectories of the MSTRNN,
MSTNN, and LRCN obtained from the three input videos
that have identical actions for all three primitive actions (JP-
JP-JP, OH-OH-OH, TH-TH-TH), and two videos that have
OH and TH as their first action primitives and have JP for
their second and third action primitives (OH-JP-JP, TH-JP-
JP). The PCA trajectories obtained from the three models are
shown in Fig. 5. The first, second, third columns of Fig. 5
shows the trajectories drawn with the first and second principle
components, the first and third principle components, and the
second and third principle components respectively.

For all models (MSTRNN, MSTNN, LRCN), the PCA
trajectories of OH-OH-OH and OH-JP-JP are very similar to
one another while the images of the first primitive action (OH)
are fed into the models, as shown in Fig. 5. In addition, the
PCA trajectories of TH-TH-TH and TH-JP-JP have similar
characteristics in terms of the trajectories of OH-OH-OH and
OH-JP-JP. But the trajectories of OH-JP-JP and TH-JP-JP take
different paths from those of OH-OH-OH and TH-TH-TH,
respectively, when images of the second action primitives are
used as input to the models.

For the MSTNN, the trajectories of OH-JP-JP and TH-JP-
JP approach the end of the JP-JP-JP trajectory, as shown in
Fig. 5 (B). The decay dynamics of the MSTNN is responsible
for its development of similar activation values for the input
videos of JP-JP-JP, OH-JP-JP, and TH-JP-JP, while JP was
input to the model for second and third primitive actions. The
internal neural values of the convolutional layers composed
of leaky integrator neurons in the MSTNN are affected by
both the current feed forward input and the decayed internal
neural values of the previous time step. Because the spatio-
temporal information of the past gradually decays over time,
spatio-temporal features extracted in the past cannot effectively
influence the internal neural values of the current time step to
monitor which action primitives came in the past.

For the MSTRNN, the ends of the OH-JP-JP and TH-JP-JP
trajectories did not converge to the end point of the JP-JP-JP
trajectory. It is clearly shown in Fig. 5 (A), specifically with
regard to the PCA trajectories drawn with the first and second
principle components, that the end positions of OH-JP-JP and
TH-JP-JP do not converge to the end point of JP-JP-JP. This
shows that the MSTRNN has better categorical memory than
the MSTNN because it was able to use the spatio-temporal
information of the previously shown first action primitives of
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(A)

(B)

(C)

Fig. 5. PCA mapping of the time series activation values obtained from the MSTRNN, MSTNN, and LRCN when the test subject′s action videos of the JP-
JP-JP, OH-OH-OH, TH-TH-TH, OH-JP-JP, and TH-JP-JP concatenated action sequences were given as input to the models. (A) PCA mapping generated from
the context units in the second context layer of the MSTRNN. (B) PCA mapping generated from the second convolutional layer among the two convolutional
layers that are composed of leaky integrator neurons in the MSTNN. (C) PCA mapping generated from the second LSTM layer in the LRCN.

the OH-JP-JP and TH-JP-JP trajectories to differentiate the end
positions of the JP-JP-JP, OH-JP-JP, and TH-JP-JP trajectories.

The LRCN showed chaotic PCA trajectories that are similar
to the trajectories stemming from the Brownian motion of
particles (Fig. 5 (C)). Moreover, the end points of OH-JP-
JP and TH-JP-JP approached the end point of JP-JP-JP, as in
the trajectories obtained from the MSTNN. This suggests that
although the LSTM is regarded to self-adjust the timescales
of its own dynamics with its forgetting gates, performing
well in generating/recognizing low dimensional sequential data
[33], [34], [35], its performance cannot be guaranteed with
high dimensional temporal data. This result implies that it
is beneficial to simultaneously extract spatial and temporal
features and introduce multiscale constraints on the operation.

C. Categorization of the Compositionality Level 1 Action
Dataset

This experiment tested the MSTRNN, MSTNN, and LRCN
with the newly prepared CL1AD. CL1AD has a higher com-
positionality level than the datasets with only action categories
(e.g., 3ACWD). CL1AD contains videos of subjects manipu-
lating objects, and the dataset has categories for actions and
ADOs.

Dataset: CL1AD consists of 900 videos made by ten
subjects performing nine actions directed at four objects. There
are 15 object-directed action categories in total (Fig. 6). The
dataset was designed so that the categorization task was non-
trivial. A non-ADO (distractor) appears along with an ADO in
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Fig. 6. Composition of CL1AD. 15 classes were made by combination of
4 objects and 9 actions.

Book-Sweep Book-Open Book-Close

Laptop-Close Laptop-Type Bottle-Open

Bottle-Close Bottle-Drink Bottle-Shake

Cup-Drink Cup-Stir Cup-Blow

Book-Change page Laptop-Sweep Laptop-Open

Fig. 7. Sample frames from CL1AD. An object that is not related to the
action also appears in the scene to make the recognition of ADO non-trivial.

each video to prevent the model from inferring a human action
or an ADO solely by recognizing an object in a video (Fig. 7).
For each object-directed action category, six videos were shot
for each subject with three different non-ADOs appearing in
two videos each in different states (opened or closed) if possi-
ble, as they are presented in the other videos as ADOs. During
the recording of the dataset, the subjects generated each action
without constraints. Objects were located at random positions
in the task space. However, the camera view angle was fixed,
as the problem of view invariance is beyond the scope of the
current study. The original video frame rate is 60 and the
frame size is 480x720. For our use in the experiment, we have
downsampled the videos by a rate of 6 and resized the frames
by 118x118. The dataset is open to the public (available at
https://github.com/haanvid/CL1AD/releases).

Results: The MSTRNN again showed the highest cat-
egorization performance relative to the baselines (LRCN,
MSTNN) on CL1AD, which has a higher compositional-
ity level than 3ACWD (Table IV). This confirms that the
MSTRNN, which is characterized by its multiscale spatio-
temporal constraints, the simultaneous extraction of spatio-
temporal features, and recurrent connectivity, outperforms
the model without the recurrent connectivity (MSTNN) and
the model that lacks the capacity to extract spatio-temporal

features simultaneously and multiscale temporal constraints
(LRCN).

TABLE IV
RECOGNITION ACCURACIES ON CL1AD IN PERCENTAGES

MSTRNN LRCN MSTNN

ADO
Accuracy 95.67±1.72 92.67±2.13 85.44±4.85

Chance Level 25.00

Action
Accuracy 93.56±3.00 91.11±2.42 76.78±5.31

Chance Level 11.11

Next, we observe how the characteristics of the MSTRNN
helped with the action recognition task by comparing the time
series activations of the MSTRNN to that of the baselines
(MSTNN and LRCN). Given a test subject’s data on the
Sweep/Close-Laptop ADO-action joint category, the neural
activations of the models were visualized by PCA in a
manner similar to that in the previous experiment. The PCA
trajectories of the Sweep/Close-Laptop videos are visualized
and reported because the images and movements in the videos
differ in their early stages but become similar as the videos
play near their ends. In the early stages of the videos, different
actions of sweeping and closing the laptop are displayed in
the image streams. But near the ends of the videos for both
categories, similar actions of a test subject touching a closed
laptop and then moving their hands away from the laptop to
their knees are shown. Therefore, the videos from the classes
of Sweep/Close-Laptop require an action recognition model
to classify them using the extracted spatio-temporal features
from the early stages of the videos

The PCA trajectories obtained from the MSTRNN (Fig.
8 (A)) show that the model is capable of remembering the
spatio-temporal features of the closing and sweeping motion
in the early stage of the videos. The ends of the Sweep-Laptop
PCA trajectories and Close-Laptop trajectories are clustered
distinctively and according to their categories, especially in
the PCA plot drawn with the first and second principle
components.

The ends of the PCA trajectories of the LRCN (Fig. 8 (C))
also appear to cluster according to the class. However, their
trajectories appear to make oscillating movements, sometimes
even going back and forth. These phenomena may have oc-
curred because the LSTM could not learn to develop a spatio-
temporal hierarchy due to separate extraction of spatial and
temporal features and the lack of constraints imposed during
the process. This may be why the categorization performance
of the LRCN is lower than that of the MSTRNN.

For the MSTNN, the trajectories are mixed and are not dif-
ferentiated well (Fig. 8 (B)). This occurs due to the lack of the
recurrent pathways that exist in the other models (MSTRNN,
LRCN). The trajectories generated by the MSTNN explain
the lower performance of the MSTNN on the recognition task
compared to the other models.

D. Categorization of the Compositionality Level 2 Action
Dataset

In the third experiment, the categorization performances of
the MSTRNN and the baseline models (MSTNN and LRCN)



9

(A)

(B)

(C)

Fig. 8. PCA trajectories obtained from Sweep/Close-Laptop. (A) Trajectories of the MSTRNN. (B) Trajectories of the MSTNN. (C) Trajectories of the LRCN.

were compared by introducing a more challenging task using
CL2AD. Each action pattern in CL2AD can be expressed by
an object, an action, and an action modifier.

Dataset: CL2AD consists of 840 videos that are describable
according to the composition of four objects, four actions, and
six action modifiers. The assumed categories in the dataset in
terms of the object-action-modifier triplets are shown in Fig.
9. The total number of triplets is 42. The video recordings
were taken from ten different subjects. A subject shot two
videos for each object, action, and modifier triplet. During the
dataset recording process, the subjects generated each action
naturally. As in CL1AD, one ADO and one distractor appear in
each video of CL2AD. And distractors were randomly chosen.
Although objects were located in various positions in the task
space, the camera view angle was fixed (the problem of view
invariance is beyond the scope of the current study). The frame
rate and frame size are identical to those with CL1AD. CL1AD

is also downsampled by a rate of 6, and the frame size was
resized to 118x118. The dataset is open to the public (available
at https://github.com/haanvid/CL2AD/releases).

Fig. 9. Composition of the CL2AD. Each object-action-modifier triplet or
joint category is indicated by a connection. There are 42 joint categories.
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Spray-Move-To Left Cup-Touch-2 Times

Book-Sweep-3 TimesBox-Drag-To Front

Fig. 10. Sample frames from CL2AD. It is difficult to infer the action category
from a static image. However, it is even more difficult to infer the action
modifier from the image. Recognition of action modifiers requires an action
recognition model to extract a longer temporal correlation as compared to that
from the recognition of actions or ADOs.

The categorization of action modifiers often requires the ac-
tion recognition models to extract longer temporal correlations
than in the case when only an action category is required. For
example, for a video in the Cup-Touch-2 Times joint category,
because the model can acquire sufficient information only after
perceiving a cup twice touched, the model must extract a long-
range temporal correlation between two similar events, the first
touch and the second touch, in order to identify the proper
modifier as 2 times. In Fig. 10, we show the sampled images
from the CL2AD dataset. With a static image, it is difficult
to infer the action. But it is even more difficult to infer the
action modifier.

Results: The result obtained by testing the MSTRNN,
MSTNN, and LRCN on CL2AD, which has a higher level
of compositionality than the previously introduced datasets
(3ACWD, CL1AD), is shown in Table V. The MSTRNN
exhibited higher categorization performance in all categories
(ADO, action, and modifier) than the model without recurrent
structures (MSTNN) and the model with LSTM layers to
process temporal information (LRCN). We again find that
the recurrent structure, the capacity to extract spatio-temporal
features simultaneously, and the adequate multiscale tempo-
ral constraints of the proposed model help it during action
recognition tasks.

TABLE V
RECOGNITION ACCURACIES ON CL2AD IN PERCENTAGES

MSTRNN LRCN MSTNN

ADO
Accuracy 92.86±2.12 77.98±3.52 88.93±2.24

Chance Level 25.00

Action
Accuracy 81.43±3.26 78.10±4.12 71.67±2.82

Chance Level 25.00

Modifier
Accuracy 80.36±2.70 75.24±3.15 65.12±2.18

Chance Level 16.67

The LRCN showed the second best performances, except for
the ADO category. The MSTNN showed higher performance

than the LRCN during the ADO categorization task. This
result may be due to the fact that the LRCN extracts spatial
and temporal features separately, while the MSTNN extracts
spatio-temporal features simultaneously.

IV. CONCLUSIONS AND DISCUSSIONS

We proposed a MSTRNN model for action recognition
which extracts spatio-temporal features simultaneously using
multiscale spatio-temporal constraints imposed on the neural
activities in different layers. The MSTRNN, MSTNN and
LRCN were compared by using the 3ACWD, CL1AD, and
CL2AD, which have different compositionality levels. All
experimental results show that the MSTRNN outperforms
the baselines (MSTNN and LRCN) despite its fewer param-
eters than in the baseline models. This result shows that
the recurrent structure, spatio-temporal constraints, and the
simultaneous extraction of the spatio-temporal information
of the MSTRNN are helpful for the recognition of actions.
From experiments with 3ACWD and CL1AD, comparative
analytic results on the neural activation sequences of the
models (MSTRNN, MSTNN, and LRCN) were obtained.
The results suggest that the MSTRNN can develop more
enhanced categorical memories by which the compositional
categorization of visually grounded data can be achieved more
effectively as compared to that by the MSTNN and LRCN.
This is consistent with biological evidence showing that a
cat can identify past and current visual inputs by utilizing
the recurrent connectivity present in its visual cortex [14],
[15] and that the spatio-temporal receptive field grows as the
layer goes up in a mammalian cortex [9], [10]. The results
are also consistent with the principle of downward causation
that argues spatio-temporal hierarchy, which is considered
to be beneficial for the formation of categorical memories,
can be self-organized by the setting of global spatio-temporal
constraints [11], [12].

Although the MSTRNN showed better performance than the
other models in the comparison, its action recognition capacity
is not high enough for a practical use. One of the main reasons
for such degeneracy may be overfitting. In future work, it may
be possible to alleviate this overfitting problem with recently
developed deep learning regularization techniques, including
the dropout technique for recurrent connections based on
variational inference [36] and layer normalization [37].

In this study, we used a recurrent structure with CNNs to
categorize human actions. However, a recent study of hybrid
networks of CNNs and RNNs has shown good performance
in recognizing objects [38]. It was reported recurrent convo-
lutional neural networks (RCNNs) [38] have enhanced object
(static image) recognition capacities compared to feed forward
CNNs due to their recurrent convolutional structures. The
recurrent convolutions of a RCNN enable it to use context
information for a static image recognition task. This mech-
anism is similar to how V1 neurons change their manner of
interpreting input received from their receptive fields (RFs), as
influenced by the spatial context near their RFs [39]. In this
context, the proposed model has the potential to perform well
on object recognition tasks due to its recurrent connectivity.
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With the development of the spatio-temporal hierarchy using
multiscale spatio-temporal constraints, the proposed model
may be able to exploit more context information for the
recognition of objects in videos compared to a model without
temporal constraints (RCNNs). Moreover, the capacity to
recognize objects in videos could be used for robotic vision.
Therefore, our future research may focus on applying our
model to recognize objects from dynamic images. With regard
to video generation tasks, a model that shares similar features
to our model was successfully applied to the domain of video
generation [40]. The predictive MSTRNN (P-MSTRNN) [40]
has shown that the mechanisms of the MSTRNN are help-
ful during the generation of videos. Specifically, the spatio-
temporal hierarchy developed by spatio-temporal constraints
can be useful during the generation of videos. In future work,
it would be interesting to incorporate the P-MSTRNN into
the model proposed here to enhance its action recognition
capability.

Recently, Zhang et al. [41] found that a cortical projection is
made from the visual cortex (cingulate region) of a mouse in
a top-down manner to V1 neurons to increase their sensitivity
to visual input. Inspired by this biological finding, we are
interested in adding a top-down prediction pathway (the P-
MSTRNN structure may be used) with the goal of generating
attention patches where the model would obtain input im-
ages that are relevant to action recognition tasks. The future
model will be more computationally effective and would show
enhanced performance compared to our currently proposed
model because it could disregard areas of the images that are
not relevant to the given task. This may eventually give our
future model the potential to scale up to larger datasets with
cluttered scenes [42].

V. APPENDIX

Table VI shows the result of the sensitivity analysis made
on the time constants of the MSTRNN when the input is
CL2AD. The analysis was conducted with CL2AD because
it is the most complex one regarding compositionality among
the three datasets (i.e., 3ACWD, CL1AD, and CL2AD) used
in this work. In the table, τ1 and τ2 refer to the time
constants assigned to the first and second context layers of
the MSTRNN, respectively. The result shows that the action
recognition performance of the MSTRNN is highest when
τ1 = 2 and τ2 = 100. For the modifier recognition task,
τ1 = 2 and τ2 = 150 showed the best performance. But,
the performance was only slightly higher than when τ1 = 2
and τ2 = 100 by 0.59% (mean value). Regarding the standard
errors obtained when the settings were τ1 = 2, τ2 = 100
and τ1 = 2, τ2 = 150, this difference is not significant
and can be neglected. Lastly, for the ADO recognition, the
performance was highest for the setting of τ1 = 100, τ2 = 50.
This result may be because the ADO recognition does not
require much spatio-temporal information processing capacity
as in the case of recognizing actions and modifiers. In fact,
the setting of τ1 = 100, τ2 = 50 made the MSTRNN model
perform lower than the MSTRNN with the setting of τ1 = 2,
τ2 = 100 in the action and modifier recognition tasks. Since

the primary task of the MSTRNN is to recognize actions, it can
be concluded that the setting of τ1 = 2, τ2 = 100 is best for
the MSTRNN model used in the experiments and within the
searched pairs of time constants. This result is in accordance
with the neuroscientific evidence that the temporal receptive
windows increase as the layer goes up in the human brain
[10].

TABLE VI
SENSITIVITY ANALYSIS OF THE TIME CONSTANTS IN THE MSTRNN

Category
τ1

τ2 50 100 150

ADO
2 90.12±4.14 92.86±2.12 88.69±5.79

50 93.45±3.83 90.48±6.55 93.21±2.72
100 93.93±3.05 92.98±4.17 91.07±4.91

Action
2 79.64±3.69 81.43±3.26 79.40±3.19

50 80.24±3.13 81.31±3.22 80.36±2.65
100 79.64±3.06 79.52±3.73 79.64±4.12

Modifier
2 77.86±2.15 80.36±2.70 80.95±2.64

50 78.21±2.55 79.05±2.01 79.76±2.30
100 77.50±2.20 77.74±3.16 76.79±3.10
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