
Published in Proc. of the Fourth Joint IEEE International Conference on Development and Learning and on Ep-

igenetic Robotics (ICDL-Epirob2014), Genoa, Italy, pp. 227-233, October 2014. 

 

Minju Jung 
KAIST 

Daejeon, South Korea 
minju.jung@kaist.ac.kr 

Jungsik Hwang 
KAIST 

Daejeon, South Korea 
jungsik.hwang@kaist.ac.kr 

Jun Tani 
KAIST 

Daejeon, South Korea 
tani1216jp@gmail.com 

 

Abstract 

This paper introduces a novel dynamic neural network model which can recognize dynamic visual image patterns of human 

actions based on learning. The proposed model is characterized by its capability of extracting the spatio-temporal feature 

hierarchy latent in the training visual image streams. The model achieves this property by integrating two essential ideas: 

(1) multiple spatial-scales processing and (2) multiple timescales processing, which have been introduced in the convolu-

tional neural network (CNN) and the multiple timescale recurrent neural network (MTRNN), respectively. The evaluation 

of the model performance conducted by utilizing the Weizmann dataset showed that the proposed model outperforms other 

neural network models in recognition of a set of prototypical human movement patterns. Furthermore, additional evaluation 

testing for recognition of concatenated sequences of these prototypical movement patterns indicates that the model is en-

dowed with a remarkable capability for contextual recognition of long-range dynamic visual patterns. 

 

Index Terms—Convolutional neural network, deep learning, delay response manner, dynamic vision, multiple timescale 

recurrent neural network, self-organization, spatio-temporal hierarchy 

 

I. INTRODUCTION 

Human’s cognitive competency to visually recognize others’ actions should involve implementation of sophisticated mech-

anisms that utilize both compositional and contextual information processing in order to adequately manage massively 

high-dimensional spatio-temporal patterns [1-3]. For the purpose of exploring the possible underlying mechanisms for such 

cognitive competency, brain-inspired synthetic modeling has been considered to be one feasible approach to pursue. In the 

machine vision research community, deep learning schemes by utilizing particular neural network models [4-7] have at-

tracted large attentions recently. Among such models, the convolutional neural network (CNN) [4], developed as inspired 

by the spatial hierarchical processing of visual features known in mammal visual cortical areas, has demonstrated remark-

ably superior recognition performance for static natural visual images as compared to other existing methods [8]. 

However, the original form of CNN cannot cope with dynamic visual image patterns efficiently because the model is 

merely a static input-output mapping system that does not comprise any temporal processing elements. In order to over-

come this limitation, several studies have introduced some extensions of the CNN. For example, the 3D CNN proposed by 

Ji et al. [9]. As its name implies, 3D CNN can deal with spatio-temporal dimensions by replacing 2D convolution with 3D 

convolution, which convolves 3D kernels to the cube formed by stacking multiple contiguous frames together. Indeed, 3D 

CNN performed well on standard human action recognition datasets, specifically the TRECVID and KTH datasets [10], 

which are recognized well by simply extracting short-range temporal correlations [11]. However, the model cannot be 

applied to certain classes of visual recognition tasks that require extraction of contextual information or long-range tem-

poral correlations in the visual image streams because the 3D CNN model can only maintain temporal information within 

the restricted temporal dimension of the cube. Baccouche et al. [12] has proposed a two-stage model to maintain temporal 

information in the entire sequence by adding the long short-term memory (LSTM) [13] as a second stage of the 3D CNN. 

But, spatial and temporal information processing are still not fully combined into one model. 

In order to successfully recognize dynamic visual image patterns that are characterized by multiple scales properties 

both in spatial and temporal dimensions, the model should possess the capability of self-organizing adequate spatio-tem-

poral hierarchy via iterative learning of the observed visual images. To satisfy this requirement, we propose a novel model, 

formed by integrating two essential ideas presented in different models: self-organization of spatial hierarchy by the CNN 
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and temporal hierarchy implementation via the multiple timescale recurrent neural network (MTRNN), a dynamic neural 

network model, proposed by Yamashita and Tani [14]. More specifically, this new model, termed the multiple spatio-

temporal scales neural network (MSTNN), assumes that the lower level network consists of the faster dynamics processing 

units permitting only shorter distance local connectivity among them, while the higher level network comprises the slower 

dynamics processing units that constitute the longer distance global connectivity. Also, the size of the receptive field at 

each level changes from relatively small in the lower level to large in the higher level, which is analogous to observed 

organization in the mammal visual cortices [15]. The assumed temporal hierarchy has also been evidenced in the human 

visual cortices [16]. The premise for this assumption is that functional hierarchy could be self-organized by utilizing both 

spatial and temporal constraints incorporated in the learning processes of massively high-dimensional spatio-temporal pat-

terns present in dynamic visual images. 

To evaluate performance of the MSTNN, we conducted two classes of recognition-by-learning tasks. The first exper-

iment was conducted to evaluate performance of the MSTNN for recognition of the set of prototypical human movement 

patterns found in the Weizmann dataset [17]. With this dataset, the MSTNN showed performance comparable to that found 

in currently published reports. Even so, the MSTNN performed better than two baseline models: CNN and 3D CNN. The 

second experiment was performed to evaluate the capability of the MSTNN to recognize long-range visual images of 

combinatorial action sequences. The prototypical actions in the Weizmann dataset were concatenated to generate the learn-

ing and the testing sequences for this experiment. The experimental result indicated that the MSTNN also performed well 

in this recognition task. The analysis on this experiment indicated that the slow timescale dynamics in the MSTNN plays 

an important role in contextual information processing for the recognition of compositional visual image sequences. The 

next section will describe our proposed model of the MSTNN. 

II. MODEL 

The multiple spatio-temporal scales neural network (MSTNN) has a capability of self-organizing spatio-temporal feature 

hierarchy by implementing spatial constraints on the CNN that shares weights to reduce the number of learnable parameters, 

and temporal constraints on the MTRNN, which assigns faster timescale dynamics at lower levels and slower timescale 

dynamics at higher levels to yield dynamic neuronal properties, i.e. fast to slow timescale dynamics toward the higher level. 

The timescale at each level is determined according to the setting of the time constant parameter (𝜏) of leaky integrator 

type neurons allocated in the level. A smaller 𝜏 and a larger 𝜏 result in faster and slower timescale dynamics, respectively. 

The top layer consists of a set of winner-take-all neural units, which represents the categorical outputs determining 

the recognition results for dynamic visual image patterns input contained in the bottom row image layer. The categorical 

outputs were trained with the targets in a delay response manner. This means that the target categorical outputs are presented 

immediately after each visual stream input is terminated. The learning processes employ a version of the back-propagation 

through time algorithm [18], which was adapted for the MTRNN model [14]. The core hypothesis assumed for the model 

is that the spatio-temporal hierarchy required for contextual recognition of dynamic visual image patterns could be self-

organized by utilizing the multiple scales of spatial-temporal constraints imposed on the neural activity in the course of 

supervised training on a set of exemplars. The details of the model are described in the following sections. 

A. Model Architecture 

The MSTNN consists of multilayers of retinotopically organized neural units that represent multiple features at each reti-

notopic position at each level as like the CNN. Standard CNN has a subsampling layer between convolutional layers that 

extracts features invariant to small distortions and shifts, while significantly reducing computational complexity. However, 

the subsampling operation generates discontinuity in the value of the neuron in the subsampling layer through time. There-

fore, the model followed another approach proposed by Simard et al. [19] which eliminates a subsampling layer by com-

bining convolution and subsampling operations into one operation performed in the convolutional layer.  

The network utilized in the later described experiments consists of 5 layers: one input layer (layer 1), three convolu-

tional layers (layer 2-4), and one fully-connected layer (layer 5) (see Fig.1). Layer 1 is the input layer, which has only one 

feature map size of 48x54, and contains the raw input image. Layer 2 is a convolutional layer that has 6 feature maps of 

size 22x22 with step size (or “stride”) of 2. Each feature map in layer 2 connects with the feature map in layer 1 through a 

kernel size of 6x12. These feature maps are encoded via dynamic activities of (22x22x6) leaky integrator neurons with 

their time constant 𝜏 set to 2.0. Layer 3 is a convolutional layer encompassing 50 feature maps of size 8x8 with a step 

size of 2 and time constant 𝜏 set to 5.0. Each feature map in layer 3 connects with each feature map in layer 2 through a 

kernel size of 8x8. Layer 4 is a convolutional layer that has 100 feature maps of size 1x1 with a step size of 1 and time 

constant set to 100.0. Each feature map in layer 4 connects with each feature map in layer 3 through a kernel size of 8x8. 

Layer 5 generates the categorical outputs encoded by a set of static neural units using the softmax activation function. The 

number of neurons in layer 5 is the same as the number of classes in the dataset. Each neuron in layer 5 is fully-connected 

with all neurons of the 100 feature maps in layer 4. Most activated neurons in layer 5 represent the categorization result. 

Details of the forward dynamics are explained in the following section. 

B. Forward Dynamics 

We used a leaky integrator model, by which each neuron’s activity at each layer is calculated not only by convoluting its 

kernels with the corresponding feature maps in the previous layer, but also by adding its decayed internal state from the 

previous time step. The decay rate depends on the time constant 𝜏. More specifically, the internal state and activation value 



of the neuron at position (𝑥, 𝑦) in the 𝑚th feature map in the 𝑙th layer at time step 𝑡, denoted as 𝑢𝑙𝑚
𝑡𝑥𝑦

 and 𝑣𝑙𝑚
𝑡𝑥𝑦

, re-

spectively, are calculated by 
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where 𝐿 is the number of layers of the model, 𝜏𝑙 is the time constant of the 𝑙th layer, 𝑁𝑙 is the number of feature maps 

in the 𝑙th layer, 𝑆𝑙 is the step size of the 𝑙th layer, 𝑘𝑙𝑚𝑛
𝑝𝑞

 is the value at the position (𝑝, 𝑞) of the kernel connected from 

the 𝑛th feature map in the previous layer to the current feature map, 𝑏𝑙𝑚 is the bias for the current feature map, and 𝑃𝑙  
and 𝑄𝑙  are the height and width of the kernel in the 𝑙th layer respectively.  

By defining neuron and weight of the fully-connected layer as a feature map size of 1x1 and a kernel size of 1x1 

respectively, and setting 𝜏𝑙 and 𝑆𝑙 to 1, both equations for the convolutional and fully-connected layers are expressed as 

shown in Eq. (1), Eq. (2), and Eq. (8)-(10). Eq. (2) shows that the kernel is shifted by 𝑆𝑙 pixels both in horizontal and 

vertical directions before convolution, in accordance with the Simard et al. [19] approach. In Eq. (3), the softmax activation 

function is applied to neurons only in the output layer, and neurons in the other layers are calculated using a scaled version 

of the hyperbolic tangent activation function, as recommended by LeCun et al. [20]. 

C. Training Method 

The error function 𝐸 is determined using Kullback-Leibler divergence defined as follows: 
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Fig. 1. Architecture of the MSTNN. The architecture consists of one input layer, three convolutional layers and one fully-connected layer. Each layer has 

a set of parameters: feature map size, kernel size, number of feature maps (blue dashed arrow), and step size (green dotted arrow). Only the convolutional 

layer has an additional time constant parameter (red solid arrow), which plays a key role in this model. The higher convolutional layer has a larger time 
constant than the lower convolutional layer. Layer 5: the softmax activation function used for classification. 

 



where 𝑇 is the length of the visual sequence, 𝑑 is the length of the label sequence given immediately after each visual 

stream input is terminated, 𝑦𝑚
𝑡  is redefined from 𝑣𝐿𝑚

𝑡11, which represents confidence of class 𝑚 when provided with the 

visual sequence at time step 𝑡, in order to simplify notation, and �̂�𝑚 is the true label. If input visual sequence belongs to 

class 𝑐, �̂�𝑚=𝑐 is set to 1 while the rest of the entries �̂�𝑚≠𝑐 are set to 0. Because the model is trained in a delay response 

manner, error is only generated in the final 𝑑 time steps of the visual sequence. 

Here, the learnable parameters of the network are denoted by 𝛉. We implemented a stochastic gradient descent 

method during the training phase, where the learnable parameters of the network 𝛉 are updated to minimize the error 

function defined in Eq. (4) after each visual sequence is given. Additionally, the kernel weights updating applied weight 

decay of 0.0005 in order to prevent overfitting [8]. 
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where 𝛼 is the learning rate and 〈𝛿𝐸
𝛿𝛉
〉𝑆𝑖  is the average over the 𝑖th visual sequence 𝑆𝑖 of the partial differential equation 

𝛿𝐸

𝛿𝛉
 for each learnable parameter, which can be solved with a conventional back-propagation through time method (BPTT) 

[18] by additionally considering their decaying effects determined by the time constant [14]. The BPTT is performed as 

follows. 
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where 𝑅𝑙𝑛𝑚
𝑥𝑦

 indicates a set of the position (�̃�, �̃�) of the neurons in the 𝑛th feature map in the 𝑙th layer, that are affected 

by the neuron at position (𝑥, 𝑦) in the 𝑚th feature map in the previous layer during forward dynamics, and 𝑋𝑙 and 𝑌𝑙  
are the height and width of the feature map in the 𝑙th layer, respectively. 

To accelerate training, we used an adaptive learning rate method. If the mean square error (MSE) calculated subse-

quent to one epoch is smaller than the previous one then 𝛼 is multiplied by 1.05, otherwise 𝛼 is divided by 2. 

All kernel weights and biases were initialized with randomly selected values from a zero-mean Gaussian distribution 

with standard deviation of 0.05. The initial state of each neuron in the convolutional layer 𝑢𝑙𝑚
0𝑥𝑦

 was set to 0. The remaining 

parameters, including the number of layers, the number of feature maps, the size of feature map, the size of kernel, the step 

size, and the time constant, were set as described in Section II-A. 

III. EXPERIMENT AND RESULTS 

In order to examine characteristics of the MSTNN, we performed two classes of recognition-by-learning tasks. The first 

experiment was conducted to evaluate simple prototypical action recognition performance of the model using the Weiz-

mann dataset. The second experiment was conducted to evaluate the recognition performance for long-range action se-

quences by preparing a set of concatenated sequences of the prototypical action patterns in the Weizmann dataset. When 

the MSTNN was trained in each experiment, 15 black frames were added at the end of the all visual sequences from the 

dataset to give label sequence in a delay response manner. In testing, the video sequences were recognized by majority 

voting of the recognition results generated when black frames were introduced to the MSTNN. 

For the evaluation protocol, we used leave-one-subject-out cross-validation for both experiments. If we assume the 

number of the subject is 𝑁, 𝑁 − 1 subjects are selected for training, the remaining subject is selected for testing. The 



recognition performance corresponds to the average of 𝑁 trials, each selecting a different subject for testing. 

A. Prototypical action recognition on the Weizmann Dataset 

The first experiment evaluates the basic performance of the MSTNN to perform recognition-by-learning on a set of rela-

tively simple prototypical human actions. The experiment utilizes the Weizmann dataset [17], which contains 10 human 

actions (walk, run, jump, gallop sideways, bend, one-hand wave, two-hands wave, jump in the place, jumping jack and 

skip), each being performed once by 9 subjects (see Fig. 2). The view point and background are static. In the experiment, 

we used foreground silhouettes by background subtraction using background sequences. We normalized all silhouette 

frames into the same size of 48x54, and converted those into a 2592 dimensional vector in a raster scan manner. The 

performance of the MSTNN and two baseline models (CNN, 3D CNN) were evaluated using exactly the same conditions, 

with the following exclusions: (1) the recognition of the two baseline models was done using general majority voting, 

which encompasses recognition results over the entire time span of the input, and (2) the size of the temporal dimension of 

the cube was set to 7 for the 3D CNN, as used by Ji et al. [9]. The recognition accuracy of the MSTNN and two baseline 

models are shown in Table I along with published accuracies of the leave-one-subject-out cross-validation for the evalua-

tion protocol. 

The MSTNN achieves an accuracy comparable with published accuracies (97.78%), although we cannot directly 

compare to published accuracies because they performed experiments under different conditions in terms of data prepro-

cessing, parameter settings, and so on. The accuracy of the MSTNN is superior to those of the two baseline models: 3D 

CNN (96.67%) and CNN (92.22%). Accuracy difference between MSTNN and CNN is quite large compared to that of the 

3D CNN. It is consistent with [9] that considering temporal information improves the recognition performance since all 

capabilities of spatial feature extraction of the three models are the same. 

B. Recognition of sequentially combined prototypical actions 

In the second experiment, the MSTNN is tested with 

visual images containing sequential combinations of 

prototypical human action patterns for the purpose of 

examining its capability for contextual recognition of 

long-range dynamic visual image patterns. For this 

purpose, visual image patterns of 9 action sequences 

were synthesized by concatenating two prototypical 

actions out of three (jump in the place (JP), one-hand 

wave (OH), and two-hands wave (TH)) in the Weiz-

mann dataset for all possible combinations for each 

subject. The number of frames per concatenated pro-

totypical action is 42 frames. 

The MSTNN was then trained and tested for recognition of 9 categories of the combinatorial action patterns with the 

aforementioned leave-one-subject-out cross-validation for the evaluation protocol. The experiment results indicate that the 

recognition accuracy was 85.19%. Comparative studies with CNN and 3D CNN were not made in this experiment because 

it is obvious that CNN, without any temporal processing mechanisms, cannot cope with the current recognition task, and 

3D CNN is limited to a small number of contiguous video frames as reported in [9]. 

The task of recognizing the combinatorial action sequences is not trivial because the network has to keep the memory 

of the first actions perceived when it generates the categorical outputs for the whole combinatorial action sequences at the 

end in the delay response manner. In order to clarify the underlying mechanism, we conducted analysis of the internal 

dynamics. Fig. 3 shows time developments of 50 representative neural units’ activity in layer 2 with a smaller time constant 

(𝜏2 = 2.0), and 20 representative neural units’ activity in the layer 4 with a larger time constant (𝜏4 = 100.0) for the cases 

of three different combinatorial actions (JP → JP, OH → JP, and TH → JP) done by three different subjects. 

 
 

Fig. 2. A sample of actions from the Weizmann dataset. 

 

TABLE I 

COMPARISON OF ACCURACIES ON THE WEIZMANN DATASET 

 

Method Accuracy 

MSTNN 97.78% 

3D CNN 96.67% 

CNN 92.22% 

Bregonzio et al. [21] 96.66% 

Sun et al. [22] 97.8% 

Weinland and Boyer [23] 100% 

Zhang et al. [24] 92.89% 
 



The neural activity in layer 2 showed detailed rhythmic patterns that are assumed to be correlated with cyclic move-

ments in the actions, such as jumping or waving hands repeatedly. Conversely, the neural activity in layer 4 showed steady 

patterns during the period of movement repetition same movements repeated but changed drastically to other steady pat-

terns when the actions were altered. More importantly, among-subjects-variances of layer 4 activity were shown to be 

smaller than those of layer 2 activity for the same combinatorial actions. Furthermore, it was interesting to see that layer 4 

activity was significantly different for even the same action of “jump in place” each time it was preceded by a different 

 
(a) Subject 1 

 

 
(b) Subject 2 

 

 
(c) Subject 3 

 

Fig. 3. Time developments of the internal dynamics during recognition of the concatenated action patterns. The neural activities are shown for those in 

layer 2 (𝜏2 = 2.0) and layer 4 (𝜏4 = 100.0). In each plot, the vertical axis represents the indices of the neurons and horizontal axis represents time 

steps. The plots show 50 over 2904 encoded neuron’s activities in the layer 2 (first row) and 20 over 100 neuron’s activities in the layer 4 (second row) 

during JP → JP (first column), OH → JP (second column), TH → JP (third column) demonstrated by three different subjects for (a), (b) and (c). Activities 

are mapped to the range from 0 to 1. 

 



action. It can be summarized that layer 4 activity is self-organized such that the activation patterns in layer 4 at the end of 

perceiving the same combinatorial actions become quite similar among different subjects while at the same time can be 

differentiated even when perceiving the same action using the context of perceiving different actions in the past. This 

explains how the contextual recognition with the inter-subjects generalization could be achieved in the current task. 

We also analyzed the developmental processes of the different timescale dynamics at different levels through learning. 

Fig. 4 shows the internal dynamics in layer 2 and 4 at epoch 5, 10, 50, respectively, for the case of recognizing combinatorial 

action (TH → JP) demonstrated by one subject. The fast timescale dynamics in layer 2 at epoch 5 is very similar to the one 

at epoch 50. However, the slow timescale dynamics in layer 4 at epoch 5 is much less organized when compared to the one 

at epoch 50. These results imply that the slow timescale dynamics in the higher level develops after the fast timescale 

dynamics in the lower level develops. These results are in agreement with previous results on MTRNN learning [25]. 

The observation of dynamic neural activity in layer 2 and layer 4 suggests that the slow timescale dynamics in layer 

4 may play an essential role in the contextual recognition of the visual image. Next, we examined the contribution of the 

slow timescale dynamics to the success of the contextual recognition with quantitative measure. The recognition perfor-

mance of the model was tested by changing the time constant in the fourth layer from 20 to 100, while maintain the original 

time constants for the lower layers. The experiment result is shown in Fig. 5, where it can be seen that the accuracy dete-

riorates as the time constant value is reduced from 100 to 20. 
 

IV. CONCLUSION 

The current paper proposed a novel dynamic neural network model that can recognize complex dynamic visual image 

patterns by means of self-organizing adequate spatio-temporal hierarchy via utilization of both spatial and temporal con-

straints imposed on the learning processes of the exemplar visual patterns. 

For evaluating the performance of the model, two types of human action recognition experiments were conducted. 

     
 

Fig. 4. Developmental processes of the different timescale dynamics through learning during combinatorial action (TH → JP) demonstrated by one 

subject. From left to right column indicates 5, 10, 50 epoch respectively. The rest of the formats are the same as Fig. 3. 

 

 
 

Fig. 5. Development of recognition accuracy with different time constants assigned for the layer 4. The vertical axis represents the accuracy obtained 

from leave-one-subject-out cross-validation and horizontal axis represents epochs during training phase. By changing the time constant from small 

(τ4 = 20.0) to large (τ4 = 100.0) stepping by 20, the accuracy is largely increased. 

 



The first experiment evaluated the capability for recognizing a set of prototypical actions by utilizing the Weizmann dataset. 

The experimental results showed that the MSTNN outperforms other baseline models in the recognition accuracy. The 

second experiment tested the capability for recognizing long-range visual images containing sequential combinations of 

the prototypical human actions in the Weizmann dataset. The experiment results showed that the MSTNN possesses re-

markable capability for contextual recognition of such long-range visual image patterns. The analysis of the internal neural 

activity revealed that the development of the slow timescale dynamic neural activity in the higher level contributes to the 

success of the contextual recognition.  

Future research will investigate the scaling property of the model in recognition of more complex dynamic visual 

images of human actions such as object-directed actions and human-to-human interactions.  
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