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Abstract 

The current paper proposes a novel model for integrative learning of proactive visual 

attention and sensory-motor control as inspired by the premotor theory of visual attention. 

The model is characterized by coupling a slow dynamics network with a fast dynamics 

network and by inheriting our prior proposed multiple timescales recurrent neural networks 

model (MTRNN) that may correspond to the fronto-parietal networks in the cortical brains. 

The neuro-robotics experiments in a task of manipulating multiple objects utilizing the 

proposed model demonstrated that some degrees of generalization in terms of position and 

object size variation can be achieved by organizing seamless integration of the proactive 

object-related visual attention and the related sensory-motor control into a set of action 

primitives in the distributed neural activities appearing in the fast dynamics network. It was 

also shown that such action primitives can be combined in compositional ways in acquiring 

novel actions in the slow dynamics network. The experimental results presented substantiate 

the premotor theory of visual attention. 
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1. Introduction 

Humans perform gaze shifts and fixations (visual attention) proactively to gather visual 

information for guiding movements (Johansson et al, 2001). This visual attention can 

improve the reach accuracy (of the hand) to a specific target in multiple objects through 

visual feedback of the hand position (Berkinblit et al., 1995; Bowman et al., 2009; Carlton 

1981; Land et al., 1999; Paillard, 1996; Sarlegna et al., 2004; Saunders et al., 2004) and even 

when the hand is not visible (Prablanc et al., 1979, 1986, 1992, 2003). In addition, the visual 

attention can effortlessly detect (location) and help to recognize (identification) an interesting 

area or object within natural or cluttered scenes through the selective attention mechanism 

using various visual features such as color, orientation, scale, symmetry and top-down 

knowledge (Ballard, 1991; Berkinblit et al., 1995; Jeong et al., 2008; Johansson et al., 2001; 

Linda et al., 2009; Rao et al. 1995; Yuqiao et al., 2007). Due to its capacity limitations, the 

brain can process only a fraction of this information using visual attention (Lennie, 2003; 

Tsotsos, 1990; Tsubomi et al., 2009). 

Especially in the cases of goal-directed action generation accompanying complex sensory-

motor interactions with environments, proactive shifts of visual attention from one part of the 

environment to other should be indispensable to generate adequate motor behaviors. For 

example, let us consider a situation of multiple object manipulation where we are asked to 

place a red object on a blue object located on a table in front of us. Through visual search, we 

attempt to locate an object with red color as a feature. Once fixated, our hands reach out for 

the red object for grasping while visual attention is shifted to fixate the blue object. After 

fixating the blue object, the red object is moved to the location of the current fixation and is 

placed on the blue object. We see that this type of visually-guided actions dealing with 

multiple objects manipulation require proactive sequential visual attention shifts 



3 
 

synchronized with accompanied adequate hand movements (Crawford et al., 2004; Furneaux 

et al., 1999; Hayhoe et al., 2003; Herst et al., 2001; Land et al., 2000; Pelz et al., 2001). A 

particular motivation in the current study is to investigate the possible neuronal mechanism 

underlying this type of function by conducting synthetic neuro-robotics experimental studies. 

Tani’s group proposed a dynamic neural network model, the so called multiple timescale 

recurrent neural network (MTRNN) (Nishimoto et al., 2009; Yamashita & Tani, 2008) to 

account for the underlying neuronal mechanisms for learning and generation of complex 

goal-directed actions. This work show that a particular functional hierarchy can develop 

through learning by utilizing timescale differences of neural activities set into the network 

model. More specifically, it was shown that a set of primitive behaviors is acquired in the fast 

dynamic network at the lower level, while sequencing of these primitive behaviors for 

particular intention or goals develops in the slow dynamic network at the higher level. It was 

interpreted that the fast dynamics network may correspond to the inferior parietal cortex in 

which visuo-proprioceptive states for on-going actions are anticipated (Mulliken et al., 2008) 

while the slow dynamics network may correspond to the premotor or supplementary motor 

area in which plans of connecting action primitives into sequences for the current intentions 

or goals are generated (Rizzolatti et al., 1996; Tanji & Shima, 1994). The idea of the model is 

formally related to “active inference” (Friston et al., 2011), which can be regarded as a form 

of predictive coding (Rao & Ballard, 1999). The proposed model was evaluated through a 

humanoid robotics experiment dealing with single object manipulation tasks.  

The current study renovates the MTRNN model to facilitate functions of the proactive 

visual attention shifts in generating goal-directed actions. We expect the robots controlled by 

this renovated model to learn to manipulate multiple objects with generating adequate visual 

attention shifts in a goal-directed manner. More specifically, the MTRNN predicts the object 
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to be attended in terms of its attribute, e.g., by its color. The visual guiding system (Carpenter 

et al., 1992, Choi et al., 2006; Jeong et al., 2008), as an external device, spots the region of a 

specific object among others in the retinal image that (which) accords with the predicted 

attribute, e.g., red color. Then, the visual guiding system fixates the object, e.g., the red color 

object. The direction of fixation, which is the input to the MTRNN, provides information 

regarding the movement of the hands to manipulate the fixated object. One important 

proposal in the renovated model is that object manipulative motor behavior and the 

accompanying visual attention shift would be processed inseparably in distributed neural 

activities in the MTRNN.  

This idea accords with the recent thoughts on embodied cognition (Beer, 2000; Metta et al., 

1999; Varela & Thompson, 1991) that argues that cognitive processes such as executive 

control of attention cannot be separated from sensory-motor processes of interacting with 

environments. Furthermore, the idea is analogous to the so-called “premotor theory for visual 

attention” (Craighero et al., 1999; Rizzolatti et al., 1987) in the cognitive neuroscience 

literatures. Conventionally, spatial attention was considered as a dedicated meta-control 

mechanism, which is anatomically distinct from local regions underlying sensory-motor 

processing (Posner & Dehaene, 1994). The new theory, however, argues that there is no need 

to segregate these two mechanisms, one for attention and one for sensory-motor processing, 

as various psychological studies (Rizzolatti et al., 1994; Sheliga et al., 1995), neuroimaging 

studies (Corbetta et al., 1998; Nobre et al., 2000) and neurophysiological studies (Kustov & 

Robinson, 1996; Moore & Fallah, 2001) suggested that the same fronto-parietal circuits 

involve both processes. In addition, it was surprisingly shown that the same neuronal 

activities were observed even for covert visual attention without gaze or eye saccadic motions 

in the neurophysiological studies of monkeys by Kustov and Robinson (1996).  
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Upon this thought, the current synthetic neuro-robotics study investigates how goal-

directed skilled behaviors of multiple objects manipulation can be learned through seamless 

integration between proactive visual attention and bimanual movement controls. A particular 

expectation is that such seamless integration between the two functions can be acquired 

through iterative learning of related sensory-motor experiences, which could facilitate 

generalization and compositionality of the system in generating a diversity of multiple objects 

manipulative actions. More specifically, if some basic action primitives, such as approaching 

an object, grasping an object or placing an object on other objects can be acquired as an 

integration of visual attention and movement controls, such action primitives could be 

insensitive to changes in position and size of objects by means of generalization to some 

extent. It is also expected that novel actions can be easily developed by combining those 

primitives in compositional ways. The current paper evaluates these ideas by conducting 

neuro-robotics experiments utilizing our newly proposed model. The following sections 

present our model and experimental tasks. 

1.1 Multiple objects manipulation task 

A humanoid robot is trained for a set of actions concerning multiple objects manipulation. 

A part of our experimental scenario is similar to the Ballard group’s and Johansson et al.’s 

human experiment setting (Ballard et al., 1992, 1995; Johansson et al., 2001; Smeets et al., 

1996). They presented an eye-/hand coordination task when subjects moved color blocks 

from a pickup area and placed them in a desired location. Subjects sequentially shift the 

attention from a block before picking it up to be placed at a desired location. In our study, the 

robot learns to perform similar visual attention shifts and behaviors followed by acquired 

bimanual movement patterns; the robot sequentially attends to an object before picking it up 

and then to a destination location to place the object, as with human subjects. Therefore, 
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visual attention shifts and behavior sequences are simultaneously cooperated and anticipated 

by considering current behavior and environments. 

1.2 System overview 

As shown in Fig. 1, the neuro-robotic system consists of MTRNN, an extra device of 

visual guiding system and a humanoid robot. When the inputs of specifying current action in 

the slow dynamics part of MTRNN are given, the MTRNN generates prediction of the 

proprioceptive state (mt+1: arm joint angles) and visual attention command (vt+1) of next time 

step. Here, the visual attention command represents four object categories (red, green, blue 

and default preference color) to be attended. The proactive visual attention is performed 

overtly by directing the camera head (there is no eye saccadic movements). The visual 

guiding system receives a visual attention command from the MTRNN and the retina image 

from the robot’s vision camera. Then, the visual guiding system localizes position of an 

object with the color specified by the visual attention command in X-Y coordinate within a 

robot camera view. The center position of the attended object is converted into the two-

dimensional head joint angles (st+1) by a pre-programmed map (visuo-head directional map) 

within the visual guiding system. By making the head move to the obtained target angle (st+1) 

by PID control, the camera head can fixate the object. The current head joint angles ( ts ) are 

fed back as inputs to the MTRNN, by which the MTRNN receives positional information of 

the attended object. The current proprioceptive state ( tm ) as well as the current visual 

attention command (vt), are fed back as inputs to MTRNN. The prediction of the 

proprioceptive state (mt+1) is sent to the arm PID controller, as target joint angles at the next 

time step and the arms physically move to the target. 
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1.3 Multiple Timescales Recurrent Neural Network (MTRNN) for Behavior Generation 

Related to (With) Top-down Visual Attention Command and Arm Movement 

The MTRNN is a variation of the continuous time recurrent neural network (CTRNN) 

model (Doya et al., 1989; Williams et al., 1989) in which neural units at different levels in the 

network are assigned different time scales. It was observed that a certain functional hierarchy 

can be self-organized through learning of a set of sensory-motor sequences in which neural 

units with a fast time constant encode a set of behavioral primitives, and those with a slow 

time constant prepare for the compositional sequences of these primitives (Nishimoto et al., 

2009; Yamashita & Tani, 2008). 

1.3.1 Forward Dynamics in MTRNN for Behavior Generation 

In the current model, corresponding to each action different behavioral trajectory is 

generated by utilizing the initial sensitivity characteristics of the MTRNN. More specifically, 

each different action is started by providing specific initial states for some neural units in the 

slow dynamics network while initial states for other neural units in slow and fast dynamics 

network are set with neutral values. Therefore, the initial state is considered to represent the 

top-down intention of the action to be generated (Nishimoto et al., 2009; Yamashita & Tani, 

2008). 

The MTRNN has 216 CTRNN units (indices i=1-216) that consist of two groups of neural 

units in the present study, namely input-output units and context units. The first 116 units are 

namely input-output units to receive the external input and their activation values correspond 

to the CTRNN output. Of these, the first 64 units (indices i = 1-64) correspond to the 

proprioceptive input (arm joint angle), the next 36 units (indices i = 65-100) correspond to 

the visual input (head movement), and the last 16 units (indices i = 101-116) correspond to 
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the visual attention command, respectively. The 14 dimensional inputs, which consist of 8 

joint angles for two arms with four degrees of freedom in each arm, two real head directional 

joint angles, and four dimensional visual attention commands, were thus transformed into 116 

dimensional sparsely encoded vectors by a topology preserving map (TPM) with 3x106 

training epochs (Kohonen, 2001; Saarinen et al., 1985). The TPM was used to separately 

cluster the various sensory, motor and visual attention sequences and preserve the topological 

information of the input vectors (proprioceptive: arm joint angles, vision sense: real head 

directional joint angles, visual attention command) by localized firing neurons. The TPM was 

trained by offline unsupervised learning with training signals. The samples to train the TPMs 

included all sequences of behavioral tasks for the CTRNN by manually controlling the robot 

through the task. The size of the TPMs is 64 (8 × 8) for proprioception, 36 (6 × 6) for the 

vision sense information and 16 (4 × 4) for the top-down visual attention command. The 

number of input-output units is determined by the sizes of the TPMs as 116 input and output 

neural units. This transformation reduces the redundancy of the input trajectories for units. 

The sizes of the TPMs were selected for the current experiment, such that they were the 

minimum value sufficiently large to allow the TPMs to reproduce in real time, sensory-motor 

sequences through the process of vector transformation to reduce time spent on computation. 

The remaining 100 units are context units that consist of fast context units and slow context 

units. The first 70 of these 100 context units (indices i = 117-186) correspond to the fast 

context units with a small time constant value and the next 30 units (indices i = 187-216) 

correspond to the slow context units with a large time constant value τ. The fast context units 

are connected to the input-output units and slow context units. However, the input-output 

units are not directly connected to the slow context units. The number of context units was 

also selected to be the minimum value sufficiently large to successfully allow the network to 
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learn the task sequences. The synaptic weights of each unit are determined through learning 

by examples. The activation of these neurons is calculated by Eq. (1) 

, , ,( / )i i t i t ij j t
j

du dt u w xτ = − +∑                              (1) 

where ui,t is the membrane potential of each i-th neural unit at time step t and xj,t is the neural 

state of the i-th unit, and wij is the synaptic weight from the j-th unit to the i-th unit. The time 

constant τ is defined as the decay rate of a unit’s membrane potential. One might consider this 

decay rate to correspond to an integrating time window of the neurons, in the sense that the 

decay rate indicates the degree to which the earlier history of synaptic inputs affects the 

current state. If the τ value is large, the activation of the unit changes slowly, because the 

internal state potential is strongly affected by the history of the unit’s potential. Conversely, if 

the τ value is small, the effect of the history of the unit’s potential is also small, and thus it is 

possible for the activation of the unit to change quickly. Context units were divided into two 

units, fast and slow context units, based on the value of time constant τ. The activity of the 

fast context units with small time constant (τ = 4) change quickly, while the activity of the 

slow context unit with a large time constant (τ = 20) changed slowly. Among the input-output 

units, the units corresponding to the proprioception and visual attention command were not 

connected to each other. In addition, input units were also not directly connected to the slow 

context units. 

Neurons in the CTRNN are modeled by a conventional firing rate model, in which the 

activity of each unit constitutes an average firing rate over units of neurons. Continuous time 

characteristics of the model neurons are described by Eq. (2). Actual updating of ui,t values is 

computed according to Eq. (2), which is the numerical approximation of Eq. (1) 
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= − + ∑                         (2) 

The activation of the i-th unit at time t is determined by the following Eq. (3) 
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∑                              (3) 

where Z is a set of output units that correspond to proprioception or vision. The softmax 

activation function is applied only to the output units, and not to the context units. Activation 

values of the context units are calculated by the function f which is a conventional unipolar 

sigmoid function. The softmax activation function applied to the CTRNN enables 

(maintaining consistency with the output of TPMs that are calculated using the softmax 

function. The output vector of the MTRNN is sent to the TPM and subsequently transformed 

into the predictions of the proprioception Mt+1 at time t+1, and the top-down visual attention 

command Vt+1 at time t+1. After this process, the robot initiates movement using these 

predicted values. 

1.3.2 Learning of synaptic weights 

In the present study, the TPMs were trained, prior to the MTRNN training, in an 

unsupervised manner. The MTRNN training could find the optimal values of the connective 

weights that minimize the value of learning error E. The error function E was defined by the 

Kullback-Leibler divergence, as shown in Eq. (4) 

* *
, , ,log( / )i t i t i t

t i O

E y y y
∈

=∑∑                                   (4) 
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where y*
i,,t is the desired activation value of the output neuron at time t, O is a set of output 

units, and yi,t is the activation value of the output neuron with the current connective weight. 

A conventional back propagation through time (BPTT) algorithm was used to train the model 

(Rumelhart et al., 1986). In the actual learning process, the update rule of a connective weight 

from the i-th neuron to the j-th neuron at the n-th learning iteration step considering the 

opposite direction of gradient / ijE w∂ ∂ is follows;  

( 1) ( ) ( / )ij ij ijw n w n E wα+ = − ∂ ∂                                (5) 

where α  is the learning rate. The gradient / ijE w∂ ∂  is given by Eq. (6) 

, 1
,

(1 / )i j t
tij i t

E E x
w u

τ −

∂ ∂
=

∂ ∂∑                                     (6) 

and is recursively calculated from the following recurrence formula Eq. (7) 
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           (7) 

where f ′ is the derivative of the unipolar sigmoid function and ±δik is Kronecker’s delta (±δik 

= 1 if i = k, otherwise ±δik = 0). Through iterative calculation of the BPTT, the values of the 

connective weights reach their optimal values in the sense that the errors between a teaching 

sequence and an output sequence are minimized. During the learning iterations, the learning 

rate α  is fixed at 0.0003. The initial values of the connective weights were set with random 

values ranging from -0.1 to 0.1. 

In training mode, predicted values of mt+1 serve as virtual sensory feedback for the next 

time step, instead of sensory feedback ( 1+tm ) from actual robot movements. In the process of 
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this closed-loop training, error between generated sequences and teaching signals sometimes 

grow too large to estimate the gradient of the error landscape. (The target sensory-motor state 

1+tm  is also incorporated into the predicted values of mt+1 as in Eq. (8) to avoid this problem 

in learning 

, 1, 1 , 10.99 0.01 i ti t i tm m m ++ += +                          (8) 

1.3.3 Additional novel training sequences 

During the additional training after the basic training, which is to learn a set of action 

primitives, only the connections in the slow dynamic units and those from the slow dynamics 

units to the fast ones were allowed to change. The other connective weights were fixed at the 

same values acquired in the basic training. The initial states of the slow dynamics units were 

set to different values from those of the basic action patterns. The slow dynamic units 

remembered the sequences of their primitive behaviors that were recalled by the fast 

dynamics units. Therefore, we could show how the model could generate the combination of 

basic actions with novel object positions, sizes, and colors using the previously learned action 

skills. 

2. Experiments and Results 

2.1 Task design 

A small humanoid robot, namely HOAP3, plays the role of a physical body interacting 

with the actual environment. A table was set in front of the robot where a fixed pedestal 

attached to a green (G) sheet was placed, as shown in Fig. 2 (a). The robot was supposed to 

displace two different size objects, 6x8x6 cm3 red (R) object and 6x10x6 cm3 blue (B) object 
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between the top of the table and a pedestal on the table. The robot was given a demonstration 

on how the objects should be manipulated. For example, the red object in the basement was 

placed on top of the blue object on the pedestal. There are four different height levels in our 

experimental environment; (1) object in the basement, (2) one object on the other in the 

basement, (3) object on the pedestal box and (4) one object on the other in the pedestal as 

shown in Table I and Fig. 2 (a). These sorts of level differences were introduced in the robot 

workspace due to the limited manipulation capability of the robot with multiple objects on a 

flat workspace. The position of the object on the basement as well as that of the green sheet 

on the pedestal, can be varied within an 8 cm range from left [L] to right [R] in Fig. 2 (b). In 

the current convention, an object located in the first, second, third, and forth level denote that 

the object is in the basement, on an object placed in the basement, on the green sheet attached 

to the pedestal, and on an object placed on the pedestal as in Fig. 3 (a), respectively. It should 

also be noted that the exact robot arm posture for holding these two objects differs due to the 

size difference between these two objects. 

In the current experiment, the robot was initially trained for three types of basic 

displacement actions, with all possible combinations for the object position variations of left 

[L], center [C], and right [R] in the source and the destination, as shown in Fig. 2 (b). The test 

was conducted to regenerate them, after training the basic action sets. Then, the experiment 

was further conducted for generalization tests. In the generalization tests, the robot was 

trained for two additional types of actions that share some action primitives that appeared in 

the basic actions, but needed to be combined in different ways to achieve the novel task. Not 

all possible combinations of the position variations were trained in this additional training. 

Moreover, only the synaptic weights for the slow dynamics network were trained in 

generating a new sequence utilizing previously trained behaviors stored in the fast dynamics 
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network. We expect to achieve this by the generalization capability of the MTRNN. Only one 

teaching sequence was used to train each action type, and learning by the BPTT algorithm 

was iterated for 5x103 training epochs. 

Table I shows the experimental conditions of the robot tasks. All the basic actions are 

shown in Figs. 3 (a), (b), and (c) where basic action I is to displace a blue object placed on a 

green sheet, basic action II is to displace a blue object placed on the pedestal onto a red one in 

the basement, and basic action III is to displace a red object located on the basement onto a 

blue one located on the pedestal. The sequence patterns for the visual attention shifts to be 

learned were provided for each action by an experimenter. Training of each basic action, 

accompanied with the visual attention shifts, was repeated for nine different positions under 

the physical guidance of the arm movement trajectories by the experimenter. 

The additional action IV, for the generalization test, was to displace a red object located on 

a green sheet onto a blue object located on the basement, as shown in Fig. 3 (d). Although 

this action seems to share a similar motor profile with basic action II, there is a slight 

difference in the arm posture to grasp different objects in the same position. This action was 

trained for six out of the nine possible object position variations; the remaining three 

unlearned position variations were used for the generalization test. The additional action V 

was a sequential combination of part of basic action II and action I, with the bold rectangular 

in Fig. 4, in which the blue object located on the pedestal is moved onto the red object located 

on the basement, and then moved back on the green sheet located on the pedestal, as shown 

in Fig. 4. The dashed rectangular in Fig. 4 is not used to generate additional action V. This 

action was trained for eight out of 27 possible object position variations and the remaining 19 

unlearned position variations were used for the generalization test. The number of time 



15 
 

sequences of basic actions I, II, III and the additional action IV is the same, but the additional 

action V has 1.4 times the number of sequences for basic actions by experiment trials.  

2.2 Results 

Each action generation was tested with every possible combination of object positions (left 

[L], center [C], and right [R]) in an origin and in a destination. If the goal-directed task for 

the robot is to place the source object located in the left basement to the place on the right 

destination located on the right pedestal, we called it the “action of [LR]”. Performance was 

scored in terms of a success rate across all trials for each task. A trial was considered as 

“success” if the object was moved to the desired destination within the range of 2 cm. We 

applied principal component analysis (PCA) to visualize the different neural activities of 

context units in the network during execution of behavioral tasks. We used different data sets 

for every behavior and at every position to reconstruct the PCs. 70 dimensional vectors, made 

up of fast context units, and 30 dimensional vectors, made up of slow context units, at each 

time were separately used to construct the transformation vectors PCs. After the calculation 

of the PC conversion vectors, basic behavior sequences and additional novel behavior 

sequences were separately transformed using calculated PCs. 

2.2.1 Basic actions I, II and III 

Fig. 5 shows the result of basic task II displacing the blue object located on the left of the 

pedestal onto the red object located on the right of the basement (basic action II of [LR]).  

The teaching signals and the actual signals generated by the robot trial are shown as paired 

for the proprioception (m*, m) as arm joint angles, the vision sensation (s*, s) as camera head 

position and the visual attention command (v*, v) of the top six rows. Proprioceptive signals 
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were plotted using four values consisting of two left and right arm joint angles out of the 

entire eight arm motor joint angles. In the vision sensation, the bold dash-dot line represents 

real head x-directional joint angle and the solid line represents real head y-directional joint 

angle. If the head x-directional joint angle value exceeds 0.5, the robot attended to the left or 

otherwise the robot attended to the right from initial postures. If the head y-directional joint 

angle value exceeds 0.5, the robot attends upward or otherwise the robot attends downward 

from initial postures. In the visual attention command, the bold line is for the blue color effect, 

the solid line is for the green color effect, the bold dash-dot line is for the red color effect, and 

the dashed line is for the default color effect. The seventh and eighth rows show the 

activation profiles for the fast dynamics units and the slow dynamics units by PCA with a 1st 

principal component (PC) to a 4th PC, respectively. The detailed robot behavior is as follows:  

Initially, the robot was set to home position with a neutral visual attention command (no 

color to attend). The MTRNN simultaneously predicts a visual attention command (which 

color to attend) and arm proprioceptive value for the next time step t+1 while receiving the 

input vectors including visual attention command, arm joint angles, and head directional 

angles of the current time step t. The MTRNN predicts the next visual attention command 

that is input to the visual guiding system to control the robot head direction. The target arm 

joint angles, which are the predicted proprioceptive state, are used as an input to the robot’s 

PID controller to generate the arm movement. Let us look at the behaviors generated by the 

robot as shown in Fig. 5, precisely. (1) From the initial step to 25th step: according to the 

visual attention command, the robot camera detects and attends to a target object between 

two objects. (2) From the 26th step to 30th step: after encoding the location of the target 

object, the target object is grasped by robot hands, in which the robot camera is still attending 

to a target object. (3) From the 31st step to 50th step: to encode the destination of the target 
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object, the robot camera detects and attends to the destination for the target object with 

suitable arm behavior. (4) From the 51st step to 90th step: the robot arms move the target 

object to the destination place, in which the robot camera is still attending to the destination 

place. Preserving the visual attention during the robot arm movement can accurately guide 

the arm behaviors to achieve a specific action by considering both the object coordinates and 

the robot postures. (5) From the 91st step to the final step: finally, the robot goes back to the 

home position. Here it can be observed that all dimensions of teaching signals are 

reconstructed in the generation process, only with minimal errors. In addition, it can be seen 

that the profiles of the fast dynamic units after the PCA contain more complex patterns 

compared to those in the slow units. This might occur, because the activities in the fast 

dynamics units are self-organized, such that they are responsible for reconstructing details of 

proprioceptive trajectories, and the visual attention command sequences, by utilizing their 

fast timescale dynamics, as have been shown in the prior studies (Yamashita & Tani, 2008). 

A two-dimensional vector using the 2nd and 4th PCs of the PCs was plotted in Fig. 6 for 

basic actions and additional action IV at every position in order to visualize the state changes 

in the network during execution of behavioral tasks effectively. Figs. 6 (a) and (b) represent 

the fast dynamics and slow dynamics activities with PCA using the 2nd PC and 4th PC axes, 

because this vector space most efficiently visualizes the neural dynamics. Nine different 

types of trajectories represent different object position cases. As shown in Fig. 6 (a), it is 

reasonable to consider that the difference of the slow dynamics between I and III was caused 

by the difference of the visual attention sequences, because motor behavior is almost the 

same but visual attention shift sequences are significantly different. However, it is difficult to 

dissociate the effects of visual attention and motor behaviors for representing context units 

due to the distributed representation characteristics of MTRNN. This result implies that the 
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internal representations for visual attention and motor behaviors are seamlessly integrated in 

the neural activities in the model which accords with the aforementioned idea of premotor 

theory for visual attention. Finally, it can be observed that there is a smaller variance in the 

slow dynamics trajectories, depending on the object positions for each action, whereas the 

variance becomes larger in the fast dynamics trajectories. This means that the slow dynamics 

network in the higher level is successful in categorizing action primitives regardless of 

differences in object positions, while the fast dynamics network in the lower level turns out to 

be sensitive to the position differences in exact manipulation of the objects. This is a 

signature of the top-down control by the slow dynamics network on the fast dynamics 

network by means of parametric bifurcation and modification, as will be detailed in the later 

section. Although similar observations were made in prior studies (Yamashita & Tani, 2008; 

Nishimoto et al., 2009), this result confirms that functional hierarchy of segregating the 

sensory-motor processing level and the action primitive manipulation level can be self-

organized even in tasks of complex skilled action learning that involve the integration of 

visual attention control and sensory-motor control, such as shown in the current example.  

Table II summarizes learning errors and performance for the basic robot actions. The robot 

could efficiently reproduce the entire collection of learned basic behaviors by interacting with 

the real environment. All the basic actions are simultaneously generated by one network 

which has a learning error of 0.003631 between the teaching and output sequences, as 

calculated by the Kull-back-Leibler divergence (Yamashita & Tani, 2008). Additionally, we 

examined several trials for each action by placing the target object at arbitrary points between 

the left and the right location of the trained positions. It turned out that the robot can perform 

the tasks successfully with more than a 95% success rate. This indicates that the robot 

achieved the position generalization for each object to be manipulated via learning. 
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2.2.2 Additional action IV 

As shown in Fig. 6 (a), the fast dynamics unit activation of basic action II and the 

additional action IV are similar patterns, and basic action I and III are similar shape of 

trajectories because they represent the same upward movement of the object. However, fast 

dynamics unit activation of basic action II and additional action IV have less similar patterns 

compared to basic action I and III. This is caused by the untrained behavior patterns in action 

IV. As shown in Fig. 6 (b), slow context units have small within class variance of each action 

but quite different characteristics in each action that are caused by differing arm behaviors, 

together with dissimilar visual attention commands, between the two actions. 

It was expected that additional action IV could be learned with positional generalization, 

even with a partial set of training examples, for position variances because the action is 

similar to basic action II of the previously learned action, but with a target object of different 

size and color. Table III summarizes the two experimental cases with a different number of 

training behavior patterns. In the case of the first experiment with four trained positions out 

of all nine possible positional combinations, it successfully generated half of the behavior 

patterns in trained sessions and one in the behavioral patterns of the untrained session. The 

lower success rates for behavioral generation are mainly caused by an insufficient amount of 

training data. When the amount of training data is increased to six behavior patterns, all the 

behavior patterns including both the six trained cases and the three untrained cases can be 

successfully generated. It was discovered that the number of training examples in additional 

action IV was an important factor to effectively design the dynamic neural networks. Fig. 7 

shows a comparison between basic action II of [CR] case and that of the untrained additional 

action IV of [CR] case. From the teaching signal, as shown in Fig. 7 (a), the proposed model 

generated exact proprioceptive, visual sensory information, and visual attention command as 
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shown in Figs. 7 (b) and (c). As shown in Figs. 7 (b) and (c), those two actions have different 

visual attention shifts, which are blue to red attention shifts for basic action II and red to blue 

attention shifts for additional behavior IV, and slightly different arm behaviors caused by 

different object sizes. The model network can generate exact arm behavior sequences with 

attention shifts on time even through untrained training samples, as additional behavior IV of 

[CR], as shown in Fig. 7 (c).  

The test for additional action IV shows that the novel behaviors with different object 

features such as sizes, colors and positions compared to those in basic actions are 

successfully re-generated by the MTRNN utilizing previous experiences of learning the basic 

behaviors. 

2.2.3 Additional action V 

In experiment V, we tested whether the proposed model can generalize a combination of 

two different basic actions using a previously learned primitive behavior. It was expected that 

additional action V could be learned with a combination of basic actions with novel object 

positions, composed of basic action II and I, of the previously acquired actions. The basic 

actions II and I are to grasp the blue object after attending to the blue one and then move it 

onto a red object and a green sheet, respectively. When those two actions are combined into a 

new task, which means that the robot action is to find a blue one and move it onto red one 

and then move it on the green one successively, the robot does not need to find the blue 

object to achieve basic action I (move a blue object on a green sheet) as shown in Fig. 4, 

because it has already attended to the blue object from the first basic action II (move a blue 

object on a red target). 
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We considered two experimental conditions with a different number of trained behavioral 

patterns, as shown in Table IV. In the first experiment with four trained behavior patterns out 

of all 27 possible positional combinations, almost half the behavioral patterns for both the 

trained and untrained cases could be successfully generated. Using more trained patterns, 

such as eight behavior patterns; it was found that 15 untrained object position cases could be 

successfully generated, in additional training sessions, along with eight trained cases with a 

0.003678 value of learning error. Even though the visual attention sequences skip the 

attention shift to the blue object in the middle stage between basic action II and I, the 

additional action V is successfully achieved by utilizing the primitive behaviors acquired in 

the basic actions. It was observed that four unsuccessful cases resulted from just a slight 

position error in placing an object at the destination. In the same manner, with additional 

action IV experiment, it was found that the number of training examples is also an important 

factor to successfully generate the desired behaviors. 

Fig. 8 shows the results of reproducing the performance with a novel combination of 

actions, as with the example of the additional untrained action V. Fig. 8 shows the actual 

sensory feedback in the physical environment of (a) basic action II of [RC], (b) basic action I 

of [CL], and (c) additional action V of [RCL], in which this action displaces the blue object 

located to the right [R] of the pedestal onto the red object located at the center [C] in the 

basement and then place the blue object onto the green sheet located to the left [L] on the 

pedestal; this is a sequentially combined basic action II of [RC] and a basic I of [CL]. As 

shown in Fig. 8, the additional action V of [RCL] is successfully generated by efficiently 

combining the two basic actions. Actually, it can be seen that the profiles of the 

proprioception, as well as fast and slow dynamics of additional action V of [RCL], are mostly 

similar to the two basic actions; (1) between the initial step to the 80th step, with basic action 
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II, in Fig. 8 (a), and from the initial step to the 80th step with an additional action V, in Fig. 8 

(c), when the object was grasped and then placed onto the red object, (2) between the 40th 

step to the final step with basic action I, in Fig. 8 (b), and from the 81st step to the final step 

with the additional action V, when the object was placed at the destination; then, the robot 

returned to its initial postures. The visual attention command and hand postures were 

successfully generated by the network, considering a top-down visual attention shift sequence, 

to achieve the task. The experiment of additional learning of action V shows that the novel 

behaviors are efficiently re-generated by adopting the previously learned actions. In this task, 

the MTRNN was able to make a plan to achieve untrained behavior patterns of additional 

task V using a part of the basic actions II and I without introducing specific supervisions.  

3. Discussion 

3.1 Correspondence to empirical studies 

We consider that the current model corresponds to the fronto-parietal network in the 

cortical brains that which has been considered essential in integration of sensory-motor 

processing and visual attention (Corbetta, 1998; Rizzolatti & Craighero, 1998). The visual 

attention discussed in the current robotics task can be categorized as object-related visual 

attention (Craighero et al., 1999; Schubotz & Cramon, 2002) in which some properties of 

encountering objects, such as shape, size or color, are anticipated. Schubotz and Cramon 

(2001) found a fronto-parietal network comprising the pre-supplementary motor area, the 

ventral premotor cortex, and the left anterior intraparietal sulcus to be activated 

independently of the attended stimulus property, but most intensively during object-related 

attention. Particularly, it was observed that left superior ventrolateral premotor cortex was 

activated in an object related visual attention task in contrast to the observation that 
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dorsolateral premotor cortex was activated in a spatial visual attention task and frontal 

opercular cortex in a timing task.  

Related evidence was demonstrated by Jellema and colleagues (1994) in the recording of 

Superior Temporal Sulcus (STS) of monkeys while the monkeys observe human 

experimenters to reach objects. They described the unique response characteristics of two 

distinct populations of the STS cells. The first population of cells responded to particular 

head views and gaze directions of the experimenters. The second population of cells 

responded to reaching movements of the experimenters’ hands. An interesting finding was 

that the activities of the second population for encoding perception of reaching behavior were 

enhanced when the gaze of experimenters was directed to the object. This finding suggests 

that, in observation of other’s behaviors, some STS cells combine visual attention of others to 

objects and their particular behaviors toward the objects into meaningful concepts. 

Furthermore, it is reasonable to assume that mirror neurons in the premotor cortex (F5 in 

monkeys) could have similar properties, as it has been known that the STS provides large 

inputs to F5 in the premotor cortex in monkeys through the inferior parietal lobe (Seltzer & 

Pandya, 1994). Of particular relevance was the observation of an F5 cell that responded to the 

observation of an experimenter grasping an object when the experimenter was looking at the 

object but not when the experimenter looked away from the object (L. Fogassi, personal 

communication to Jellema et al.). This result implies a possibility that some premotor cells 

encode meaningful concepts for object manipulative actions both for own generation and 

observation of the same actions by others by combining visual attention (of self or other) and 

corresponding motor behaviors. It would be intuitive to think that an action primitive, such as 

approaching an object, should be one package made of tight coupling of visual attention 

control to the object and behavior control for arm reaching to the object. What we propose 
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here is that such packaging into action primitives might be undertaken in the premotor cortex, 

in terms of premotor theory for “object-related” visual attention. 

Based on the above discussions, we examine how the proposed model can correspond to 

findings in cognitive neuroscience and neurophysiology. An essential assumption is that 

MTRNN might correspond to the premotor-parietal network in a broad sense in which the 

slow dynamic network might correspond to the premotor cortex and the fast dynamics 

network to the parietal cortex. First, it is considered that an intention to initiate an action 

might originate in the prefrontal cortex, as the prefrontal cortex has been known as a 

distinguished source to generate goal-directed actions (Fuster, 2009). In the current model, an 

intention for action is represented by the initial state in the slow dynamic network that is 

assumed to be provided from the prefrontal cortex.  

By receiving the intention for action, the premotor cortex dispatches action primitives, 

related to visually-guided object manipulation, with organizing their adequate sequences to 

accomplish the intended action. By taking account of the observation that the mirror neurons 

in the premotor cortex tend to exhibit relatively stable tonic firing during performance of the 

corresponding action reparatory such as reaching towards an object or grasping an object 

(Rizzolatti et al., 1996), it is presumed that their rate coding level activities may correspond 

to the dynamic property in the neural units in the slow dynamics network. One central 

assumption here is that the premotor cortex should deal with both sensory-motor processing 

and object-related visual attention inseparably, as discussed in the premotor theory for visual 

attention. Results of our preliminary experiments suggest that this inseparability can be 

observed in the model. As shown in the Fig. 1, the MTRNN receives the current visual 

attention command as the inputs from the output feedback. In the experiment, when this 

channel of the inputs was deleted, the prediction outputs for the next step proprioceptive state 
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were significantly disturbed. This implies that the sensory-motor processing (prediction of the 

proprioceptive state in the current context) and proactive visual attention are tightly coupled 

in the distributed representation of the neural activities in the model.  

The premotor cortex may interact mainly with two regions, one for the frontal eye field 

(FEF) and the other for the parietal cortex. The FEF may implement both overt and covert 

visual attention by receiving the visual attention command from the premotor cortex. This 

part was implemented in the current model by connecting the output of the visual attention 

command to the visual guiding system of an external device. However, in the current 

implementation, the visual attention command is output not from the slow dynamics network 

but from the in-out network. This treatment was necessary, because the visual attention shift 

requires exact synchrony with on-going manipulative behavior (with stepwise sharp shifts) by 

receiving real time information of the visuo-proprioceptive state. Therefore, the visual 

attention command should be output from the in-out network having direct interaction with 

the sensory inputs, even though the cause of visual attention shift mostly originated in the 

slow dynamic network of mimicking the premotor cortex. This may account for why visual 

attention is generated cooperatively or in complementary ways between endogenous controls 

in the frontal cortex (Connolly et al., 2002) and exogenous control in the parietal cortex 

(Corbetta & Shulman, 2002).  

Nishimoto et al. (2009) assumed that the visuo-proprioceptive sequences are anticipated in 

the inferior parietal lobe (IPL) by receiving abstract information about the current context of 

the intended action or more specifically, the currently dispatched action primitive from the 

premotor cortex. This assumption corresponds to the recent observations suggesting that the 

IPL may play the role of forward prediction for multi-modal perceptual sequences (Ehrsson 

et al., 2003; Eskandar et al., 1999; Mulliken et al., 2008). This idea has been implemented in 
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MTRNN by allowing reciprocal interactions between the slow dynamics network 

(corresponding to the premotor cortex) and the fast dynamics network (corresponding to the 

IPL). The fast dynamics network can predict change of the visuo-proprioceptive state with 

precise timing due to its given fast dynamic property. The proprioceptive state predicted for 

the next time step is assumed to be sent to the primary motor cortex and to the cerebellum as 

the target proprioceptive state to be achieved. The inverse model assumed in the cerebellum 

(Wolpert & Kawato, 1998) may compute the corresponding motor commands, i.e., required 

motor torque to achieve a target joint angle in the robot implementation. A modification in 

the current renovated model is about the treatment of the visual perception and prediction in 

the fast dynamics network. The current model receives the head direction that represents the 

position of the currently attended object in the egocentric view as visual inputs, and it 

predicts the feature of the next attended objects, i.e., color of the object. 

3.2 Generalization and compositionality 

The current model which is inspired by the idea of the fronto-parietal network (Corbetta, 

1998; Rizzolatti & Craighero, 1998), demonstrated both characteristics of generalization and 

compositionality in learning complex goal-directed skilled actions that require integration of 

object-related visual attention and sensory-motor control. A distinct characteristic of the 

current model which has been found through the synthetic neuro-robotics experiment is that 

proactive visual attention and sensory-motor control are seamlessly integrated in the 

distributed neural activities appearing in the reciprocal interactions between the slow 

dynamics network (corresponding to the premotor cortex) and the fast dynamics network 

(corresponding to the parietal cortex). This characteristic, corresponding to the premotor 

theory for visual attention (Craighero et al., 1999; Rizzolatti et al., 1987), can allow precise 

adjustments and coordination between the two processes including timing control between 
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visual attention shifts and the starting of arm movements and the spatial coordination 

between the direction of visual fixation and target position for arm movement. Those details 

should be acquired through generalization in learning from various experiences and practices 

in object manipulation, because the details of those can vary and be complex, depending on 

the size and position of objects and exact sequences of action primitives. Our robotic 

experiment results showed that distributed neural representation of coupling these two 

processes emerged in the results of such generalization through iterative learning. It was also 

shown that the robot can achieve object manipulative actions for untrained position cases by 

generalization of learned skills. 

Another distinct feature observed in the presented model is that behavioral 

compositionality is achieved by self-organizing functional hierarchy, which is inherit from 

our prior studies (Nishimoto et al., 2009; Yamashita & Tani, 2008). The current result 

showed that integration of object-related attention (Craighero et al., 1999) and sensory-motor 

control for manipulating objects appeared in the fast dynamics network as reusable action 

primitives. Conversely, dynamic functions for sequential manipulation of those action 

primitives appeared in the slow dynamics network. However, it is noted that the hierarchical 

manipulation of the action primitives from the higher level to the lower level is not 

mechanized via symbolical manipulation and on-off type dispatching of the primitives but by 

parametric interactions between two dynamic networks of different timescales. More 

specifically, bifurcations in the fast dynamics network caused by parametric interactions from 

the slow dynamics network (in terms of neural activation inputs) enable a shift from one 

primitive to another. This parametric control from the slow dynamics network to the fast 

dynamics network also enables precise adjustments of on-going behaviors. For example, 

motor control for approaching and grasping an object is adjusted by means of proactive 
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attention to object features, either a smaller object (the red object in the current example) or a 

larger one (the blue one). One interesting observation in Figs. 7 and 8 is that the activities of 

slow dynamics units change continuously and smoothly, even in the discrete events of visual 

attention switches. It is highly speculated that this smoothness enables fluent shifts from one 

action primitive to another seamlessly. It is considered that a successive smooth connection 

between one primitive and another require fine adjustments between the “tail” of the 

foregoing primitive and the “head” of the subsequent one. Such fine adjustment could be 

done again by the parametric modulation of those successive action primitives from the 

higher level control. The experiment about additional learning of action V by smoothly 

connecting two of the previously learned action primitives would demonstrate this 

characteristic. This task was successfully achieved by allowing synaptic changes only in the 

slow dynamics network; this means that control by the slow dynamics network on the fast 

one, via parametric bifurcation and modulation achieved this.  

Therefore, highly sophisticated actions of manipulating multiple objects with 

accompanying proactive visual attention shifts are considered to require compositionality on 

one side, which is more like a symbolical process, and generalization on the other side, which 

is more like an analogical process. The presented model of the renovated MTRNN can satisfy 

these two seemingly conflicting requirements, utilizing two essential characteristics of 

distributed representation and multiple timescales dynamics in its neural activities.  

3.3 Related studies 

McCallum proposed rule based reinforcement learning using selective attention and short-

term memory, with similar experiments to teach the visual attention shift sequences for goal-

directed behaviors (McCallum, 1996). They defined the states of environments (world state 
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space and sensory state space) taught then by policy, which consists of if-then-else tree 

statements, in the model, to avoid the obstacle in the path. In contrast to this rule based 

reinforcement model, our model can automatically generate the actions, associating visual 

attention and motor behaviors, except providing adequate policy to manipulate the object 

using supervised teaching. 

Suzuki and Floreano showed a similar neural architecture to the current study that agents 

can learn in a scheme of active vision by switching attention with a small image size retina 

for goal-directed behaviors using a genetic algorithm (Suzuki et al., 2008). The scheme was 

successfully evaluated by navigation experiments using real mobile robots as well as a 

humanoid robot. A limitation in Suzuki’s approach comes from the neural architecture, as it 

must be carefully designed for each task (Suzuki et al., 2008). In contrast, the proposed 

model can share the previously learned primitive behaviors and generate combined actions, 

based on the primitive behaviors. 

3.4 Future studies 

We envision four directions for future studies to construct autonomously operating robots 

considering active environments; (1) we will add the object recognition function, utilizing 

texture, depth, and appearance of the object, to generate the complex top-down attention 

using high-level visual cognition to achieve the high-level object manipulation task. (2) We 

will introduce more diversity and complexity of actions, rather than current simple ones such 

as just placing objects. For example, we will consider how robots can acquire skills for tool 

usage actions that would require more complex spatio-temporal associations between the 

visual attention and behavior generations. (3) We will introduce a reinforcement learning 

paradigm to acquire the attention shift skills, as inspired by McCallum’s model. 
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4. Conclusion 

The main contribution of the paper is to present a cortical model of the fronto-parietal 

network that accounts for integrative learning of proactive visual attention shifts and sensory-

motor control by extending our prior proposal of MTRNN. The model was evaluated by 

neuro-robotics experiments in tasks of multiple object manipulation. The experimental results 

show that some extents of generalization, in terms of position and object size variances, can 

be achieved by organizing seamless integration of the visual attention and the sensory-motor 

control in the distributed neural activities in the model network. Furthermore, it was shown 

that additional learning of combining prior learned actions can be efficiently achieved, 

because a functional hierarchy was developed by acquiring a set of action primitives with 

seamless integration of visual attention and sensory-motor control via multiple timescales 

properties employed in the network model. These accounts correspond to an idea of the 

premotor theory for object-related visual attention discussed in cognitive neuroscience 

literature. 
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Table captions 

Table I. Experimental conditions for robot tasks 

Table II. Error and performance of robot basic behaviors 

Table III. Performance of robot behavior with additional behavior IV 

Table IV. Performance of robot behavior with additional behavior V 

 

Figure captions 

Figure 1. The overall architecture of the proposed model. MTRNN: Multiple Timescales RNN, In-

Out: input-output context unit, FAST: fast context unit, SLOW: slow context unit, vt: top-down visual 

attention command at time step t (four object categories; red, green, blue and default preference color), 

st: vision sense at time step t through the environment (directing the camera head; there is no eye 

saccadic movements), mt: proprioception values at time step t through the environments (arm joint 

angles vector with eight dimensions), mt+1: predicted proprioception value at time step t, vt+1: 

predicted top-down visual attention command at time step t, 1ts + : vision sense at time step t+1 

through the environment, 1+tm : proprioception values at time step t +1 through the environments. 

Figure 2. Workbench for robot experiments. (a) Real environment of workbench, (b) the specification 

of a workbench 

Figure 3. Robot tasks employed. (a) Basic action I, (b) basic action II, (c) basic action III, and (d) 

additional action IV. 

Figure 4. Additional robot task V by integrating basic actions II and I. 
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Figure 5. Example of robot trials in basic action II of the [LR] case. Proprioception (first and second 

row), vision sensation information (third and fourth row), visual attention command (fifth and sixth 

row) of teaching signals (odd row) and actual sensory feedback in physical environment (even row). 

The activation profiles for the fast dynamics units and the slow dynamics units using PCA with 1st PC 

axis to 4th PC axis, respectively (seventh and eighth row). In proprioception, four values consist two 

left and right arm joint angles out of eight motor joint angles were plotted. In vision sense, the bold 

dash-dot line represents the real head x-directional joint angle and the solid line represents the real 

head y-directional joint angle. In visual attention command, the bold line is the blue color effect, the 

solid line is the green color effect, the bold dash-dot line is the red color effects, and the dashed line is 

a default color effect. 

Figure 6. Trajectories of basic actions I, II, III and additional action IV by the fast and slow dynamics 

units with PCA. (a) Projection results for fast dynamics unit activation with 2nd PC and 4th PC axes. 

(b) Projection results for slow dynamics unit activation on the 2nd PC and 4th PC axes. Red, green, 

and blue lines represent the basement object located at the center, left, and right, respectively. Solid, 

bold, and dashed lines represent the destination area located at the center, left, and right, respectively. 

Figure 7. Comparison of the basic action II of the [CR] case and the additional action IV of the [CR] 

case. (a) Teaching trajectory of basic action II of the [CR] case, (b) Actual sensory feedback in 

physical environment of basic action II of the [CR] case, (c) Actual sensory feedback in the physical 

environment of the untrained additional action IV of the [CR] case. The figure legends are the same as 

for Fig. 5. 

Figure 8. Comparison of the basic actions II, I, and the additional action V that is sequentially 

combined with basic action II and I. (a) Actual sensory feedback in the physical environment of basic 

action II of the [RC] case. (b) Actual sensory feedback in the physical environment of basic action I of 

the [CL] case. (c) Actual sensory feedback in the physical environment of an additional action V of 

the [RCL] case. The figure legends are the same as for Fig. 5. 
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Table I. Experimental conditions for robot tasks. 

 Origin: 
object color 

Destination: 
object or sheet 

color 
Movement direction 

Number of 
behavior  
patterns 

Basic action I Blue Green From red object onto green sheet 9 
Basic action II Blue Red From pedestal onto red object 9 
Basic action III Red Blue From basement onto blue object 9 

Additional 
action IV Red Blue From pedestal onto blue object 9 

Additional 
action V Blue Red and then 

green 
From pedestal onto red object and 

then green sheet 27 

 

 

 

 

 

Table II. Error and performance of robot basic behaviors 

# of total behavior 
patterns: 9 

# of trained 
behavior patterns 

Learning 
error 

Success rate 
(# of success behavior patterns) 

Basic action I 

9 0.003631 

100% (9) 

Basic action II 100% (9) 

Basic action III 100% (9) 
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Table III. Performance of robot behavior with additional behavior IV 

# of total 
behavior 

patterns: 9 

# of trained/ # of all 
possible positional 

combinations 

Learning
error 

Success rate 
(# of success behavior patterns) 

Trained  
behavior patterns

Untrained 
behavior patterns 

Additional 
action IV 

4/9 0.003672 50% (2) 20% (1) 

6/9 0.003689 100% (6) 100% (3) 

 

 

 

 

Table IV. Performance of robot with additional behavior V 

# of total 
behavior 

patterns: 27 

# of trained/ # of all 
possible positional 

combinations 

Learning
error 

Success rate 
(# of success behavior patterns) 

Trained  
behavior patterns

Untrained 
behavior patterns 

Additional 
action V 

4/27 0.003683 50% (2) 49% (11) 

8/27 0.003678 100% (8) 79% (15) 
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Fig. 2 

 

 

 

 

 

 
 
 
 
 
 
 
 



44 
 

 
 

 

 

 

 

 
Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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