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Abstract�—In order to achieve visual-guided object manipulation 
tasks via learning by example, the current neuro-robotics study 
considers integration of two essential mechanisms of visual 
attention and arm/hand movement and their adaptive 
coordination. The present study proposes a new dynamic neural 
network model in which visual attention and motor behavior are 
associated with task specific manners by learning with self-
organizing functional hierarchy required for the cognitive tasks. 
The top-down visual attention provides a goal-directed shift 
sequence in a visual scan path and it can guide a generation of a 
motor plan for hand movement during action by reinforcement 
and inhibition learning. The proposed model can automatically 
generate the corresponding goal-directed actions with regards to 
the current sensory states including visual stimuli and body 
postures. The experiments show that developmental learning 
from basic actions to combinational ones can achieve certain 
generalizations in learning by which some novel behaviors 
without prior learning can be successfully generated. 

Keywords-component; shift sequence in visual scan path; 
action generator; object manipulation task 

I.  INTRODUCTION 
HUMANS control gaze shifts and fixations (visual 

attention) proactively to gather visual information for guiding 
movements, which is highly related to a specified task [1]. This 
visual attention can improve reach accuracy by providing 
visual feedback on the hand position to guide the hand to a 
target [2] and guiding the hand even when the hand is not 
visible [3]. Also the visual attention can effortlessly detect 
(location) and recognize (identification) an interesting area or 
object within natural or cluttered scenes through the selective 
attention mechanism with various visual features such as color, 
orientation, scale and symmetry [1], [4], [5]. To achieve the 
visual-guided object manipulation tasks, the visual attention 
needs to switch to a specified task in time with hand 
movement.  

Andrew proposed a rule based reinforcement learning by 
visual attention and short-term memory with similar 
experiments to teach the visual attention shifts for goal-directed 
behaviors [6]. They defined the states of environments (world 
and sensory states) then taught the policy, which consists of 
�“if-then-else�” tree statements, to the model to avoid the 
obstacle in the driving way. It is important to find the close 

connection of visual attention shifts with action sequences such 
as hand/arm control, but it is complex because it involves the 
visual guidance of both the eyes and hands [7]. In contrast to 
this model, this study�’s model can automatically generate the 
actions with association of visual attention and motor behavior. 

The current study examines how a set of object 
manipulation action can be learned by acquiring adequate 
visual attention shifts in a specific brain model. The visual 
attention shifts are realized by a top-down visual attention 
model which consists of a top-down visual attention command 
generator and a top-down visual saliency map (SM) combined 
with bottom-up SM models. Another essential idea is to utilize 
a functional hierarchy and to integrate visual attention and 
behavioral generation by employing a new dynamic neural 
network model so-called the multiple timescale recurrent 
neural network (MTRNN) [8], [9]. It has been shown that a 
certain functional hierarchy can develop through learning of 
complex behaviors by utilizing timescale differences of neural 
activities set in the network model. More specifically, it was 
shown that a set of behavior primitives (reusable movement 
segments) are acquired in the fast dynamic networks in a lower 
level while the sequencing of these primitives takes place in the 
slow dynamics in a higher level. In the current model, the 
function for a top-down visual attention command generator is 
considered to be acquired in the slow dynamic networks along 
with the sequencing of the behavior primitives. These two 
different roles of dynamic networks can enforce the 
developmental learning for complex actions by learned 
behavior primitives. The output command of the visual shift 
from slow dynamic networks is sent to a hard-wired gaze 
system to achieve precise gaze control. To verify the proposed 
model performance, a humanoid robot experiment was 
conducted, which is similar to previous human experiment 
setting [1], [10]-[12]. They presented eye�–hand coordination 
when subjects moved color blocks from a pickup area and 
placed them in a desired location. Subjects attended a block 
before picking it up and a desired location before placing the 
block. In the current experiment the robot learns to perform 
similar visual attention shifts followed by acquired bimanual 
motion patterns; the robot attends to an object to pick it up and 
then to another destination object to place the object on.  

The paper examines how a set of object manipulation 
actions combined with an active vision can be learned by 
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introducing variances in object positions. Then, how learning 
of these basic actions and attention shifts can be generalized to 
achieve novel goal-directed actions which are composed by 
combining the basic actions is examined. This paper is 
organized as follows. Section 2 presents the problem 
description, the brain model of this study and the proposed new 
dynamic model. Section 3 presents the experimental results. 
Discussion and conclusions follow in Section 4. 

II. INTEGRATIVE MODEL OF VISUAL ATTENTION & ACTION 

A. Biological Background 
Fig. 1 shows the overall schematic of the two pathways of 

visual attention and arm motor movement to achieve the 
visual-guided tasks such as grasping and transporting an object 
to a desired location [13]-[15]. 

 

Figure 1.  Action programs generating by using vision and action pathway.  

From event related potential (ERP) and 
Magnetoencephalography (MEG) studies it has been shown 
that, in attention tasks, prefrontal cortex (PFC) is activated 
earlier than the parietal cortex, followed by the extrastriate and 
the striate cortices [13]. Therefore it is theorized that an action 
program for each task is set in PFC in terms of an initial state. 
The dynamics starts at the PFC with an initial state, which 
proceeds along two pathways for top-down visual attention and 
arm motor movement. The top-down visual attention is not 
directly modulated in frontal eye filed (FEF), but instead 
through intraparietal sulcus (IPS), which is part of the parietal 
lobe [14]. The FEF may send top-down modulated signals to 
lateral intraparietal area (LIP). Neurons in LIP flexibly code 
color information, when color indicates a task-relevant location 
for an eye movement as saccades [15]. In the arm movement 
pathway proceeds from PFC, the premotor and inferior parietal 
lobe (IPL) to predict change of arm posture in time with 
receiving visual related inputs from V1. By predicting posture 
in terms of target joint angles in the next step, necessary motor 
torques to achieve a target angle are computed in M1. 

B. System Overview 
Fig. 2 describes the overall information flow in the 

proposed model. When receiving a desired action as the input 
in the slow dynamic networks of MTRNN, the network 
predicts how the arm posture in terms of proprioception mt and 
visual attention command vt change in time. Here, the visual 
attention command represents 4 object categories (red, green, 
blue and default preference color) to be attended. The visual 

attention system receives a visual attention command from the 
MTRNN and the retina image from the robot�’s vision. Then, 
matching is made between the top-down visual attention of an 
object specified by a visual attention command and a specific 
color preferable SM generated from a retina image. By 
selecting the visual object to be looked at through this 
matching process, the robot generates a camera head 
movement to achieve the gaze to a selected object. The 
resultant camera head position st is sent back to the input part 
of the MTRNN as representing visual perception of relative 
position for objects. The prediction of an arm posture mt+1 is 
sent to the robot as a target joint angle of the arms at each time 
step, which results in actual movements of the arms. 

 

Figure 2.  The architecture of the proposed model. In-Out: input-output 
context units, FAST: fast context unit, SLOW: slow context unit, mt+1: 
predicted proprioception value at time step t, vt+1: predicted top-down visual 
attention command at time step t 

C. Bottom-up & Top-down Saliency Map for Attention Shifts 
The dynamic neural network generates a goal-directed 

visual attention command to a vision system with a top-down 
visual SM to find a specified object and complete the task. Fig. 
3 shows the architecture of a bottom-up and top-down visual 
SM model using reinforcement and inhibition networks [5], 
[16]. Itti et al. and Lee et al. used primitive features such as 
intensity, orientation, color and symmetry information to 
construct a bottom-up SM model [17], [18]. This study used 
only color features to construct a bottom-up SM because this 
experiment just consider a colorful object to move from one 
place to the other place in time. A localized area was regarded 
as that with the highest intensity values in the bottom-up SM as 
most salient regions to be analyzed for object identification. In 
the top-down manner, the human visual system determines 
salient locations through perceptive processing such as 
understanding and recognition considering task-dependent 
processing. In the course of detecting an object to achieve the 
object manipulation task, both the bottom-up and top-down 
processing work together for attention of a specified object 
region in an input scene. The Fuzzy adaptive resonance theory 
(ART) network together with the bottom-up SM model was 
used to implement a top-down visual SM model [5], [16]. The 
Fuzzy ART network learns and memorizes the characteristics 
of uninteresting areas and/or interesting areas selected by the 
bottom-up SM model. After training the reinforcement and 
inhibition networks by interaction with a human supervisor, the 
MTRNN generates goal-directed visual attention sequences 
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through time with a test mode. Then, a localized area selected 
by a bottom-up SM model is tested for matching how much the 
selected area meets the visual characteristics of an object for a 
specific task generated by the MTRNN. The matching process 
is realized by comparing a vigilance value ( ) between the 
selected color characteristics and the memorized color 
information. The model can focus on a specified colorful 
object, while it does not focus on a salient area with unwanted 
area. 

 

Figure 3.  The architecture of a bottom-up and top-down SM model using 
reinforcement and inhibition networks. SP: salient point, IOR: inhibition of 
return. Square block 1 is an uninteresting area, but block 2 is an interesting 
area. Sold line: bottop-up attention, Dash line: top-down saliency 

D. MTRNN for Behavior Generation Related with Top-down 
Visual Attention Command and Arm Movement 
The MTRNN, which is a type of the continuous time RNN 

(CTRNN), was used to generate the behavior sequences [19], 
[20], in which neurons have different time scales therefore the 
MTRNN has the functional hierarchy characteristic.  

1) Forward generation  for Behavior Generation 
The MTRNN has three groups of neural units in the present 

study, namely input-output units (116), fast context units (70) 
and slow context units (30). Among the input units, the first 64 
units (i=1-64) correspond to the proprioceptive input (arm joint 
angle), the next 36 units (i=65-100) correspond to the visual 
input (neck joint angle) and the last 16 units (i=101-116) 
correspond to the visual attention command, respectively. The 
14 dimensional inputs, which consist of 8 joint angles for two 
arms with 4 degrees of freedom in each arm, 2 joint angles for 
neck and 4 dimensional visual attention command, were thus 
transformed into 116 dimensional sparsely encoded vectors by 
a topology preserving map (TPM) with 3x106 training epochs 
[21]. This transformation reduces the redundancy of the input 
trajectories for units. The size of the TPMs is 64 (8 × 8) for 
proprioception, 36 (6 × 6) for the visual input and 16 (4 × 4) 
for the visual attention command. Fig. 4 shows the architecture 
of the MTRNN model with TPMs. The fast context units are 
connected with the input-output units of which synaptic 
weights are determined through learning by examples. The 
activation of these units is calculated by Eq. (1) 

, , ,( / )i i t i t ij j t
j

du dt u w xτ = − +  (1) 

where ui,t is the membrane potential of each i-th neural unit at 
time step t and xj,t is the neural state of the i-th unit, and wij is 
synaptic weight from the j-th unit to the i-th unit. The time 
constant  is defined as the decay rate of a unit�’s membrane 
potential. This decay rate might be considered to correspond to 
an integrating time window of the neurons, in the sense that the 
decay rate indicates the degree to which the earlier history of 
synaptic inputs affects the current state. Context units were 
divided into two units such as fast and slow units based on the 
value of time constant . The fast context units with small time 
constant ( =4) whose activity changed quickly, whereas the 
slow context unit with a large time constant ( =20) whose 
activity, in contrast, changed much more slowly. Among the 
input-output units, units corresponding to the proprioception 
and visual attention commands were not connected to each 
other. In addition, input units were also not directly connected 
to slow context units. Neurons in the CTRNN are modeled by a 
firing rate model, in which the activity of each unit constitutes 
an average firing rate over units of neurons. Continuous time 
characteristics of the model neurons are described by Eq. (2). 

, 1 , ,(1 1/ ) (1/ )( )i t i i t i ij j t
j N

u u w xτ τ+
∈

= − + (2) 

Actual updating of ui,t is computed according to Eq. (2), which 
is the numerical approximation of Eq. (1). The activation of the 
i-th unit at time t is determined by the following Eq. (3) 
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where Z is a set of output units corresponding to the 
proprioception or the vision sense. Softmax activation is 
applied only to output units except for the context units. 
Activation values of the context units are calculated by a 
conventional unipolar sigmoid function f.  

 

Figure 4.  Architecture of MTRNN model with TPMs 

2) Additional training of novel sequences  
During additional action training after the basic training for 

learning the primitive behaviors, only the connections of the 
slow dynamic units were allowed to change. The other weights 
were unconnected with the slow dynamic units fixed at values 
from the basic training. Initial states of slow dynamic units 
were set to different values from those of the basic action 
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patterns. Slow dynamic units remembered sequences of 
primitive behaviors which were remembered by fast dynamics 
units. Therefore it was shown how the model can generate 
novel actions with object positions by using primitive actions. 

III. EXPERIMENT AND RESULTS 

A. Task Design 
A small humanoid robot named HOAP3 was used in the 

role of a physical body interacting with actual environments. A 
table was set in front of the robot where a fixed pedestal 
attached with a green sheet was placed as shown in Fig. 5 (a). 

 
                (a)                                                     (b) 

Figure 5.  Workbench for robot experiments. (a) real environment of 
workbench, (b) the specification of work bench 

The robot was supposed to displace two objects, 6x8x6 cm3 red 
object and 6x10x6 cm3 blue object between the basement and 
the green sheet on the pedestal. It was also supposed that the 
robot put one object on the other object which was placed on 
the basement. These sorts of level differences were introduced 
in the robot workspace because of the limited manipulation 
capability of the robot with multiple objects on a flat 
workspace. The position of the object in the basement as well 
as that of the green sheet on the pedestal can be varied with 8 
cm range from left to right. In the current convention an object 
located in the first, the second, the third and the forth level 
denote that the object is on the basement, on an object placed 
on the basement, on the green sheet attached on the pedestal 
and on an object placed on the pedestal, respectively. It is also 
noted that the exact robot arm posture for holding these two 
objects are different because of the size difference. 

The robot was initially trained for 3 types of basic 
displacement actions with all possible combinations for object 
position variations of left, center and right in the source and the 
destination. After the training of the basic action sets, the tests 
were conducted by a regeneration of them. Then, the 
experiment was further conducted for the additional learning 
where the robot was trained additionally for two more types of 
actions which share some primitive actions that appeared in the 
basic actions but combined in different ways in those actions. 
Only one teaching sequences was used to train for each task 
which is learned by back-propagation through time (BPTT) 
algorithm with 5x103 training epochs [8]. In this additional 
training, not all possible combinations of the position variations 
were completed but a part of them were trained. Also, only the 
synaptic weights in the slow dynamics part were modified with 
an expectation that a transfer of the skills preserved in the fast 
dynamics part could take place by means of generalization.  

Table I shows the experimental conditions of the tasks. The 
basic action I is to displace a blue object placed on a green 
sheet, the basic action II is to move a blue object placed on the 
pedestal onto a red one on the basement and the basic action III 
is to move a red object located on the basement onto a blue one 
located on the pedestal. Training of each basic action 
accompanied with the visual attention shifts was repeated for 9 
different positions under physical guidance of the arm 
movement trajectories by the experimenter. The additional 
action IV for the generalization test is to displace a red object 
located on a green sheet onto a blue object located on the 
basement. Although this action seems to share the similar 
motor profile with the basic action II, there is a slight 
difference in the arm posture for grasping different objects in 
the same position. This action was trained for 6 out of the 9 
possible object position variations and the remaining 3 
unlearned position variations were used for the generalization 
test. The additional action V is a sequential combination of the 
basic action II and action I in which the blue object located on 
the pedestal is moved onto the red object located on the 
basement and then moved back on to the green sheet located on 
the pedestal. This action was trained for 8 out of 27 object 
position variations and the remaining 19 unlearned position 
variations were used for generalization test. The time 
sequences of basic actions I, II, III and additional action IV are 
the same but the additional action V has 1.4 times of sequences 
of basic actions as shown by experimental trials. 

 

B. Results 
Each action was tested with every possible combination of 

object positions (left [L], center [C] and right [R]) in an origin 
and in a destination. If the goal-directed task is that the robot 
places the source object located in left basement to place on 
right destination located in right pedestal, this was called 
�“action of [LR]�”. Performance was scored in terms of a success 
rate across all trials for each task. It was considered that a trial 
was successful if the object was successfully moved to the 
desired destination within the range of 2 cm. 

1) Basic actions I, II and III 
The robot could efficiently reproduce the whole learned basic 
actions through interacting with the environment. Whole basic 
actions are simultaneously generated by one network and this 
network had 0.003631 learning error between the teaching and 
output sequences, which is calculated by Kullback-Leibler 
divergence [8]. Additionally several trials were conducted for 
each action by placing the target object in arbitral points 
between the left and the right of trained positions. It turned out 
that the robot can perform the tasks successfully with more 

TABLE I. EXPERIMENTAL CONDITIONS FOR ROBOT TASKS 

Action Task Origin : 
Object color 

Destination :  
Object (seat) 

color 

Transport 
direction 

(position level) 

Basic I Blue Green Down (2) to up (3) 

Basic II Blue Red Up (3) to down (2) 

Basic III Red Blue Down (1) to up (4) 

Additional IV Red Blue Up (3) to down (2) 

Additional V Blue Red and then 
green 

Up (3) to down (1) 
and then up (3) 
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than 95 percentage success rate. This indicates that the robot 
achieved position generalization for the object to be 
manipulated via learning. Fig. 6 shows the result of the basic 
action II of [CC]. Here it can be observed that teaching signals 
are reconstructed in the generation only with minimal errors. It 
is not important to measure an error by the difference between 
the teaching signals and the generated signal, but within this 
experiment it was only considered whether an object was 
successfully moved to the desired destination within the range 
of 2 cm. For the analysis of the dynamic neural activities of an 
action, the PCA with the trajectories of the fast and slow 
dynamic units was applied. It can be seen that the profiles of 
fast dynamic units after the PCA contains more complex 
patterns as compared to those in the slow units as shown in Fig. 
6. This might be because that the activities in the fast dynamics 
units are self-organized such that they are responsible for 
reconstructing details of sensory-motor profiles by utilizing 
their fast dynamics as have been shown in the prior studies [8].  

 

Figure 6.  Examples of robot trials in basic action II of [CC]. (a), (c) and (e) 
are  encoded arm joint angle (proprioception), encoded neck joint angle 
(vision sensation information), preference degree (visual attention command) 
of teaching signal, (b), (d), (f), (g) and (h) are actual sensory feedback value in 
physical environmnet during robot action. The activation profiles for the fast 
dynamics units (g) and the Slow dynamic units (h) using PCA with 1st PC axis 
to 4th PC axis, respectively. In proprioception, 4 values out of 8 normalized 
motor joint angles were plotted. In vision sense, bold dash-dot line represents 
normalized x-axis of neck joint angle and solid line represent normalized y-
axis of neck joint angle. In visual attention command, bold, solid, bold dash-
dot line and dash line are blue, green, red and default color effect. 

Figs. 7 (a) and (b) represent the fast and slow dynamics 
activations, respectively, by PCA using 1st PC and 3rd PC to 
show the robot actions according to different object positions.  
Three different types of trajectories represent different object 
position cases. As shown in Fig. 7 (a), basic action I and III are 
similar patterns of the fast dynamics because these actions are 
similar in moving the objects in an upward direction. On the 
other hand, their slow dynamics patterns are different because 
their visual attention shift sequences are different. Finally, it 
can be observed that there are slight shifts for the trajectories 

within a limited range depending on the object positions for 
both of the fast and the slow dynamic units. This means that 
the internal neural activities successfully represent the action 
categories regardless of object position variance in each action. 

 
(a)                                (b) 

Figure 7.  The trajectories of basic actions I and III by the fast and Slow 
dynamic units with PCA. (a) Projection results for fast dynamics unit 
activation with 1st PC axis and 3rd PC axis. (b) Projection results for slow 
dynamics unit activation with 1st PC axis and 3rd PC axis. [CC], [LC] and 
[RC] represent destination areas are equaly located in center but basement 
object is located in center, left and right, respectively.  

2) Additional action IV 
It was expected that the action IV could be learned with 

position generalization even with a partial set of training 
examples for position variances because this action is similar to 
the basic action II of previously acquired but with a target 
object of different size and color. It was found that the fast 
dynamics unit activation profiles are mostly similar between 
the two actions, those for the slow dynamics are different. This 
is because the slow dynamics part is responsible for generating 
different visual attention sequences. Also, it was found that all 
3 untrained object position cases can be successfully generated 
along with 6 trained with 0.003689 learning error. 

3) Additional action V 
It was expected that this action could be learned with 

combination of two basic actions with novel object positions, 
which are composed by the basic action II and I of previously 
acquired. It was found that 15 untrained object position cases in 
additional training sessions can be successfully generated along 
with 8 trained cases with 0.003678 learning error. It was 
observed that 4 unsuccessful cases resulted from just slight 
position error in placing an object in the destination. Also, it 
was found that the visual attention command and hand postures 
were successfully generated by network considering top-down 
visual attention shifts for achieving the task. Even though the 
visual attention sequences skip to see the blue one in the 
mediate stage between basic action II and I, additional action V 
is successfully completed after learning the primitive actions. 

IV. DISCUSSION AND CONCLUSION 

A. Different roles of two level networks with time constant 
Additional experiments showed that with each level 

adequate time constant in the network model is essential in 
successful developmental learning. This is because the two 
levels play different functional roles such as storing primitive 
behaviors in the lower level with fast dynamics and combining 
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them in sequences guided by visual attention shifts in the 
higher level with the slow dynamics. By these means, new 
combinations of prior trained primitive behaviors can be 
achieved by modifying the connectivity only in the slow 
dynamic networks. Therefore, it is argued that the time 
constant difference can enforce segregation of functional roles 
in hierarchy via self-organization and that this gains 
generalization through developmental learning. 

B. Future studies 
Five kinds of future studies to construct autonomously 

operating robot considering active environments should be 
considered; (1) Adding the object recognition function, by 
utilizing texture, depth and appearance of object, to generate 
the complex top-down attention using high level visual 
cognition for achieving the high-level object manipulation task. 
(2) Introducing more diversity and complexity of actions rather 
than the current simple ones such as just placing objects. For 
example, a study should consider how robots can acquire skills 
for tool usage actions which would require more complex 
spatio-temporal association between visual attention and 
behavior generations. (3) Introducing a reinforcement learning 
paradigm in acquiring attention shift skills as inspired by 
Andrew�’s model. (4) Both additional action IV and V used 
partial set of training examples. The number of training 
examples in additional actions IV and V is an important factor 
to verify the generalization capability of dynamic networks that 
this experiment does not have. Therefore, future studies should 
look at the effect of the number of training examples for 
additional actions. (5) Also, future studies will include the 
investigation of the relationships between the learning models 
and literature on human�’s eye-hand coordination. 

C. Concluding remarks 
For achieving the visual-guided objects manipulation tasks 

in neuro-robotics via learning by examples, it was proposed 
that a new dynamic neural networks model in which visual 
attention shift and motor behaviors are associated in task 
specific manners by learning with self-organizing functional 
hierarchy required for a visual cognitive task. The proposed 
model can generate the goal-directed actions, such as basic and 
additional actions, for humanoid robot with regarding to the 
current sensory states including visual stimuli and body 
postures through interacting with real environments. 
Additionally, this has shown that the robot could successfully 
generate each basic action with placing a target object in 
arbitral object positions between the trained positions. This 
experiment has shown that there are the two kinds of 
generalization performances: (1) unknown object position and 
size can be successfully generated along with previously 
trained cases. (2) Novel action based on two basic actions can 
be generated by using previously trained primitive actions not 
only for the trained object position but also untrained cases. 
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