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SummarySummarySummarySummary        

A novel approach to human-robot collaboration based on quasi-symbolic expressions is proposed. The target task 
is navigation in which a person with his or her eyes covered and a humanoid robot collaborate in a 
context-dependent manner. The robot uses a recurrent neural net with parametric bias (RNNPB) model to 
acquire the behavioral primitives, which are sensory-motor units, composing the whole task. The robot expresses 
the PB dynamics as primitives using symbolic sounds, and the person influences these dynamics through tactile 
sensors attached to the robot. Experiments with six participants demonstrated that the level of influence the 
person has on the PB dynamics is strongly related to task performance, the person’s subjective impressions, and 
the prediction error of the RNNPB model (task stability). Simulation experiments demonstrated that the 
subjective impressions of the correspondence between the utterance sounds (the PB values) and the motions 
were well reproduced by the rehearsal of the RNNPB model. 

  
 
 

1. Introduction 

Communication between people and robots requires 
an effective interface. The many kinds of interfaces 
that have been developed so far can be categorized 
into two types. The first type is interfaces with 
“continuous interaction,” and they include joysticks, 
master-slave interfaces, and other force-torque 
devices. Although users can control robot motions 
directly by using these devices, skill is needed to 
cooperate with the robot. The other type is interfaces 
with “discrete interaction” based on language and/or 
symbolic expressions. While there have been many 
studies on human-robot speech communication in 
which users share a task with robots explicitly, it is a 
major effort to implement the task model into the 
robot dialog efficiently due to the problem of “symbol 

grounding”. 
To avoid this problem, in this paper, we discuss the 

possibility of a quasi-symbolic interface that uses the 
representations robots acquire through experience. 
There have been many studies on machine learning, 
by which robots acquire representations of tasks, but 
they have usually focused on only the recognition of 
human’s motions and/or the generation of robot’s 
motions using the representations (motion primitives). 
We aim to use these representations for human-robot 
interactions and to generate a consensus concerning 
the representation between humans and robots. We 
think that there are two crucial aspects to this goal. 

One is an explicit consensus, that is, the labeling of 
representations by the human. The representations 
the robot acquires should be plausible for a human to 
guess their meaning. 



189 
 

 

Acquisition of Motion Primitives of Robot in Human-Navigation Task

However, before such an explicit consensus can be 
made, it is necessary to achieve an implicit consensus, 
which is a practical interaction using human-robot 
representation. The representations acquired by the 
robot should be variable and controllable enough for 
the human to interact with robot. 

We proposed the primitive-symbols of the Robot 
using the Self-Organizing Map (SOM) [Ogata 00]. 
However, SOM can only acquire the representations 
of static sensory-motor conditions. The human 
subjects could plausibly guess and label the 
representations with meanings that were acquired by 
the robot, however, the subjects could not interact 
with the robot using these representations. 

In this paper, therefore, we focus on the “behavioral 
(motion) primitive” as an interface channel by which 
a robot can communicate and interact with a person. 
A behavioral primitive is a motion unit composed of 
various and complex motions inherent to biological 
systems [Haruno 01][Tani 03]. 

We first describe the navigation task we used to 
investigate human-robot interaction. Then we 
describe our approach, in which a person and a robot 
work together, using behavioral primitives 
self-organized in an artificial neural net. We then 
present some of the results of our trial experiments, 
and discuss the relationship between the results of 
recurrent neural net (RNN) learning and the person’s 
subjective impressions. We also discuss the practical 
interaction using these primitives, which influence 
such impressions. 

 
2. Navigation Task 

To investigate the essential mechanism of 
human-robot mutual interaction, we designed a 
navigation task [Ogata 03] in which a humanoid 
robot called Robovie, developed at ATR [Ishiguro 01], 
and a person work together to navigate a given 
workspace. Robovie has various features enabling it 
to interact with people: two arms with four degrees of 
freedom, a head with audiovisual sensors, and many 
tactile sensors attached to its body. Photographs of 
Robovie and of Robovie and a person performing the 
navigation task are shown in Figure 1. The 
experimental workspace was a 5x5-m course in which 
the outside walls were marked red and blue (Figure 
2). Robovie and the person held their arms together 
and attempted to complete the course as quickly as 
possible without hitting the wall. Since the course 

had various branches, various kinds of experiments 
could be configured. The movement of the robot and 
the person was determined by a motor vector 
generated by the neural net in the robot. The person 
could affect the output of the neural net by using the 
tactile sensors on the arms of the robot, the detailed 
mechanism of which is described in Section 3. 3. The 
performance metric was taken by the time to 
complete the course. 

 

 Figure 1. Robovie and Navigation Task 
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Figure 2: Experimental Course Design 

 
It should be noted that the sensory information was 

quite limited for both the robot and the person in this 
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collaboration task (“hidden state problem”). The robot 
could access only local sensory information from 
ultrasonic sensors and a poor vision system (which 
could only detect vague color information for its 
surroundings), not exact global position information. 
While the person was allowed to survey the course 
before the trial began, his eyes were covered during 
the entire trial. The person had to estimate his/her 
situation or position based on the image retained of 
the course geometry. During the trial the robot and 
the person had to help each other, utilizing the poor 
sensory information of different modalities and 
utilizing the history of the sensory-motor sequence 
(contextual information). 

 
3. Proposed Approach 

This section describes how the robot acquires motor 
primitives and uses them to interact with person. 
Some models which generate the motion primitives 
by articulating observed motions have been proposed 
[Haruno 01] [Tani 03]. In our experimental tasks, 
because of the “hidden state problem” of the robot, we 
implemented the RNN, which can use and 
self-organize contextual information for the 
sensory-motor sequences, into the robot. We use the 
FF-model (forwarding forward model) proposed by 
Tani [Tani 03]. This model is also called the recurrent 
neural network with parametric bias (RNNPB) model. 
It articulates complex motion sequences into motion 
units, which are encoded as the limit cycling 
dynamics and/or the fixed-point dynamics of the 
RNN. 
3.1. RNNPB Model 

The RNNPB model has the same architecture as 
the conventional Jordan-type RNN model [Jordan 86] 
except for the PB nodes in the input layer. Unlike the 
other input nodes, these PB nodes take a constant 
value throughout each time sequence and are used to 
implement a mapping between fixed length values 
and time sequences. 

Like the Jordan-type RNN model, the RNNPB 
model learns data sequences in a supervised manner. 
The difference is that in the RNNPB model, the 
values that encode the sequences are self-organized 
in the PB nodes during the learning process. The 
common structural properties of the training data 
sequences are acquired as connection weights by 
using the back propagation through time (BPTT) 
algorithm [Rumelhart 86], as used also in the 

conventional RNN. Meanwhile, the specific properties 
of each individual time sequence are simultaneously 
encoded as PB values. As a result, the RNNPB model 
self-organizes a mapping between the PB values and 
the time sequences. 

The learning algorithm for the PB vectors is a 
variant of the BPTT algorithm. The step length of a 
sequence is denoted by l. For each of the 
sensory-motor outputs, the back-propagated errors 
with respect to the PB nodes are accumulated and 
used to update the PB values. The update equations 
for the ith unit of the parametric bias at the t in the 
sequence are as follows, 
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In Eq. (1), the δ force for the update of the internal 

values of the PB pt is obtained from the summation of 
two terms. The first term represents the delta error, 
δt

bp, back-propagated from the output nodes to the PB 
nodes: it is integrated over the period from the t–l/2 
to the t+l/2 steps. Integrating the delta error prevents 
the local fluctuations in the output errors from 
significantly affecting the temporal PB values. The 
second term is a low-pass filter that inhibits frequent 
rapid changes of the PB values. Internal value ρt is 
updated using the delta force, as shown in Eq. (2). kbp, 
knb and ε are coefficients. Then, the current PB values 
are obtained from the sigmoidal outputs of the 
internal values. After learning the sequences, the 
RNNPB model can generate a sequence from the 
corresponding PB values. 

Furthermore, the RNNPB model can be used for 
recognition processes as well as for sequence 
generation processes. For a given sequence, the 
corresponding PB value can be obtained by using the 
update rules for the PB values (Eqs. (1) to (3)), 
without updating the connection weight values. This 
inverse operation for generation is regarded as 
recognition. 

The other important characteristic of the RNNPB 
model is that relational structure among the training 
sequences can be acquired in the PB space through 
the learning process. This generation capability 
enables the RNNPB model to generate and recognize 
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unseen sequences without any additional learning. 
For instance, by learning several cyclic time 
sequences of different frequencies, it can generate 
novel time sequences of intermediate frequencies. 
3.2. Implementation 

Figure 3 shows the architecture of the RNNPB 
model used in the robot. The model has two 
parameter bias nodes, and operates in a discrete time 
manner by synchronizing each event. 
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Figure 3: Architecture of RNNPB Model 

 
The input layer of the RNNPB model consists of the 

current sensory inputs and the current motor values. 
The sensory inputs are comprised of the output of the 
ultrasonic range sensors and the color area acquired 
from an omni-direction camera mounted on the 
robot’s back. The robot’s vehicle has four range 
sensors on its right side and four on its left side. The 
average output of the sensors on each side is used for 
a neuron input (2 neurons). The area ratio of red and 
blue is used for a neuron input (1 neuron). The motor 
values are the forward velocity and the rotation 
velocity. The output layer is the prediction of the next 
sensory input and next action. The activations of the 
context outputs in the current time step are copied to 
those of the context inputs in the next time step. The 
context unit’s activities are self-organized through 
learning processes. The robot obtains the color area, 
range sensor data, and vehicle conditions every 0.1 s. 
This sensory-motor data is filtered and compressed 
1-s interval data and is used for the RNNPB input. It 
is also stored during the trial and used for the BPTT 
learning. 
3.3. Interface 

We designed the interface using the PB values, by 

which the person and robot interact. Since the 
person’s eyes were covered in the experiments, the 
robot had to inform the condition of the PB values 
using sounds. As described in the previous section, 
the RNNPB model has two parameter bias nodes. 
While it would be best if the person were informed of 
the analog values of these two nodes directly, it is 
quite difficult to express slight changes in the node 
values by sound. Therefore, we designed the robot to 
utter four different symbolic sounds (numbers) 
corresponding to the conditions of the PB nodes 
during navigation (Table 1). The activation of each 
parameter node was divided into two states (high and 
low) with the threshold set to 0.5. For example, if the 
parameter 1 is 0.7 and the parameter 2 is 0.3, then 
the output number becomes “3”. 

 
Table 1: PB Conditions and Numbers 
Parameter

1
Parameter

2
InPut

& Output
Low Low "1"
Low High "2"
High Low "3"
High High "4"  

 
The person had to learn the relationship between 

these sounds (PB vectors) and the actual robot 
motions (RNNPB outputs). The person then adjusted 
the PB values by touching the appropriate tactile 
sensors attached to the robot so as to move around 
the course as quickly as possible. The four utterance 
numbers corresponded to the four tactile sensors on 
the forearms and the wrists of the robot. The PB 
value was switched to the value corresponding to the 
number of the tactile sensor touched by the person. 
This process was implemented by modifying of the Eq. 
(1) as follows. 
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Here, ηi is either +1 or –1 depending on the input 
from the person, and kinput is the influence level. 

 
4. Experiments 

4.1. Pre-experiment on RNNPB model 
A pre-experiment using only the robot was carried 

out to confirm the basic characteristics of the RNNPB 
model. In this experiment, the RNNPB model had 
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only one PB node, facilitating observation of its 
change. 

Figure 4 shows the sensory-motor data and the PB 
value output when the robot moved twice around the 
“course A” shown in Figure 5. This data was used for 
the BPTT batch learning of the RNNPB. Here, 
“learning” curve means the result of PB learning, and 
“recognition” curve is the result of real-time PB 
identification. There was a delay between learning 
and recognition due to the time it took to calculate 
the updated PB value. 
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Figure 4: Sensory-Motor Data and Parameter Bias 

 

Course CCourse A Course B Course CCourse A Course B  
Figure 5: Three Courses for Pre-Learning and 

Experiments 
 

Although the dynamics of the sensory-motor data 
were quite complex, the curve of the PB vector 
showed that the actual motion could be clearly 
divided into two parts. The RNNPB model can thus 
convert complex dynamics into a combination of 
simple units. 
4.2. Experiments on Human-Robot 

Collaboration 
We tested human-robot collaboration using six 

male participants to determine how people might 
interpret the meanings of the four sounds (numbers) 
uttered by the robot and to determine how well people 
can cooperate with the robot by using the PB 

interface. We also investigated the effect of the 
influence level (kinput in Eq. (4)). 

Before the experiment, the robot’s RNNPB model 
(Figure 3) was trained (acquired motion primitives) 
using courses A and B, which are shown 
schematically in Figure 5. The sensory-moor data 
acquired in these courses were stored in the database, 
and used for the RNNPB training. 

The actual course used in the collaboration 
experiment was course C, which is also shown in 
Figure 5. Since the RNNPB model mainly uses the 
contextual information (sensory-motor sequence), the 
differences between the three courses are quite large 
from the robot’s point of view. Furthermore, because 
the RNNPB model was not further trained during the 
collaboration experiment, the robot required the 
participant’s support and had to “reuse” the acquired 
motion primitives to move around the unfamiliar 
course as quickly as possible.  

The experiment had 14 trials and was divided to 
two parts 7 trials). In each part, kinput was set to 
either 0.05 or 0.01. After each trial, there was a break 
during which the participant completed a 
questionnaire based on NASA-TLX [Hart 88]. In total, 
we obtained 84 (14 trials x 6 subjects) sets of data 
(all-play-all). The parts were presented to the 
participants in random order to avoid the effects of a 
fixed-order presentation. 
4.3. Results 

Figure 6 shows the representative examples of the 
transition of primitive switching. The performance 
(traveling time) and the switching times fell as the 
trials increased. It is interesting that though the 
experimental course was not complicated, the 
participant and the robot changed the primitives 
many times.  

The average completion times are shown in Figure 
7. The time was reduced when the robot received 
support from a person. However, the variance was 
greater with the higher influence level. 

The average prediction errors of the RNNPB model 
are shown in Figure 8. While the errors were almost 
the same with only the robot and with human 
assistance (kinput=0.01), that with human assistance 
(kinput=0.05) was quite large. These results indicate 
that although a higher influence level can result in 
the better performance, the human-robot 
collaboration tends to be less stable. 
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Figure 6 Examples of Primitive Switching Transition 
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Figure 7: Comparison of Transit Time 
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Figure 8: Comparison of the Prediction Errors of RNN 
 

Figure 9 shows representative examples of the 
transition in utterance number switching for the 
three cases. The switching frequency with only the 
robot” was much higher than with human assistance. 
In particular, the primitive switched quite frequently 
around the branch points in the course (at about 
10-30, and 70-90 sec in the case of ‘robot only’ in 
Figure 8). 
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Figure 9: Comparison of Primitive Switching 

 
4.4. Subjective Impression 

The results of the NASA-TLX questionnaire are 
plotted in Figure 10. The significant values for the 1 
and 5 % levels were calculated using a t-test. The 
higher influence level resulted in a higher evaluation 
for all items. Note, however, that only “mental load” 
showed a substantial difference (p<0.01). This could 
have been due to the instability in the performance 
when the influence level was high, as mentioned in 
Section 4.3. 

 

-2.0

-1.0

0.0

1.0
No task complexity

No physical effort

No activity level

PerformanceNo mental effort

No anxiety level

No overall workload

k=0.01
k=0.05

++

+

+

+

-2.0

-1.0

0.0

1.0
No task complexity

No physical effort

No activity level

PerformanceNo mental effort

No anxiety level

No overall workload

k=0.01
k=0.05

++

+

+

+

 
Figure 10: Results of NASA-TLX Questionnaire 

 
Interviews with the participants about their 

impressions of the correspondence between the 
uttered numbers and actual motions of the robot 
revealed that all the participants had almost the 
same impressions after the 14 trials. The impressions 
are shown in Table 2. The order of primitive labeling 
was primitive 1 first, primitive 2 and 3 second, and 
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primitive 4 last. 

Table 2: Correspondence between Numbers and 
Motions 

Primitive Motion Output

Primitive 1 Moving Straight (Slow)

Primitive 2 Turning Right

Primitive 3 Moving Straight
(Left inclined, Fast)

Primitive 4 Turning Left
 

 
5. Discussions 

5.1. Fluctuation in PB Values at Branch 
Points 

The uttered numbers used primitives that tended 
to fluctuate especially at branches in the course as 
shown in Figure 9 (periods in red rectangles). 
Although the RNNPB model predicts the 
sensory-motor flow by using contextual information, 
it cannot predict the PB output by itself. Each branch 
in the course is thought to be a “saddle point” in the 
dynamical-system sense. Therefore, the robot 
requires higher-level information concerning the PB 
dynamics to select the correct direction at a branch 
point. In our experiment, the person predicted the PB 
dynamics based on experience, and supported the 
RNNPB model’s output. Thus, persons not only 
guessed the explicit meaning of the each primitive, 
but also acquired the implicit skills on how to use 
each primitive. 
5.2. Influence Level 

As described in Section 4.1, robot control was easier 
with the higher influence level k. However, the 
prediction error increased, and the performance 
became unstable, that is, the performance sometimes 
failed. 

In our experiment, the person (with covered eyes) 
and the robot had to collaborate in a context 
dependent manner, because neither had enough 
sensory information to complete the task. A high 
influence level thus effectively improves task 
performance because a person can basically utilize 
contextual information better than a robot (RNN) as 
shown in Figure 10. However, once a prediction error 
occurred in the person’s mental image, it was quite 
difficult to recover the contextual image without the 

support of the robot. This is a main reason why the 
variance in transit time was large. Efficient 
human-robot collaboration is thus achieved only 
when the influence level is set to an appropriate 
degree. 
5.3. Subjective Impression, RNNPB Learning 

The dynamic properties of the RNNPB model we 
used were investigated in simulation experiments. 
Figure 11 shows the four trajectories generated when 
the RNNPB model rehearsed four times, each time 
with the PB values indicated in parentheses. For 
example, when the trajectory of number “2” was 
generated, the parameter 1 was set to “0.1” and the 
parameter 2 was set to “0.9” respectively.  In 
rehearsal, copies of the current sensory-motor 
prediction outputs are fed back to the next inputs 
(closed loop). This enables RNN prediction for an 
arbitrary number of future steps. 
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Figure 11: Simulated Trajectories of RNNPB model 

 
The trajectories shown in Figure 11 correspond 

exactly to the subjective impressions listed in Table 2. 
Actually, it was not easy for the participants to 
establish the correspondence because the PB 
condition was not clearly categorized into one of the 
four states. For example, we observed that the robot 
sometimes changed the utterance number drastically, 
possibly due to the fluctuation in PB values around 
the threshold of 0.5. Nevertheless, the participants 
could still guess the meaning of the uttered numbers 
based on their experience. This shows the feasibility 
of human-robot collaboration based on quasi-symbolic 
expressions using behavioral primitives. 

The trajectories generated by the RNN were 
mapped into the parameter values self-organizing 
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manner. Figure 12 and 13 show how the parameter 
space with two parameters are modulated upon the 
forward and rotation velocity respectively. It is 
observed that the landscapes are quite smooth in 
both maps and these explain generated trajectories in 
Figure 11. The RNNPB can generate other 
trajectories by changing the parameters.  
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Figure 12: Self-Organized Forward-Velocity Map in 

Parametric Space 
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Figure 13: Self-Organized Rotation-Velocity Map in 

Parametric Space 
 

Moreover, the labeling order of each primitive 
shown in Section 4.4 seems related to the area of each 
primitive occupied in this parameter space. Primitive 
4 tended to be labeled last because it meant “moving 
straight,” the same as primitive 1. The participants 
tended to progress in their primitive labeling and 
task proficiency simultaneously. 
 
6. Conclusion 

We have described a new approach to human-robot 
collaboration based on quasi-symbolic expressions. 

The target task is navigation in which a person (with 
his or her eyes covered) collaborates with a humanoid 
robot called Robovie in context dependent manner. 
The robot uses a recurrent neural net with 
parametric biases (RNNPB) to acquire the behavioral 
primitives, i.e., the sensory-motor units, composing 
the whole task. The robot expresses the PB dynamics 
as primitives using symbolic sounds, and the person 
influences the robot’s dynamics by touching tactile 
sensors attached to the robot. Experiments carried 
out with six male participants demonstrated that the 
level of influence is strongly related to task 
performance, the subject’s subjective impressions, 
and the prediction error of the RNNPB model (task 
stability). The subjects could acquire an explicit 
consensus (the labeling of the primitives) and an 
implicit consensus (the interaction using the 
primitives) simultaneously. Also simulation 
experiments demonstrated that the impression of the 
correspondence between the uttered sounds (the PB 
values) and the robot’s motions were well reproduced 
by the rehearsal of the RNNPB model. 

Our future work has two main objectives. One is to 
introduce a method for incremental learning. The 
RNNPB model we used was trained prior to the 
collaboration experiments, not during the experiment. 
When real-time incremental learning is introduced, 
we need to solve the problem of confliction between 
new memory and past memories [Ogata 03]. The 
second is to apply human-robot verbal communication 
based on the proposed method. By preparing more 
expressions translated from the PB values, we should 
be able to use our method for more complex tasks. 
Examination of the binding between sentences and 
sensory-motor sequences (embodied language) [Sugita 
03] will thus be quite important. 
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